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Abstract—This paper investigates the issue of dynamic re-
source allocation (DRA) in the context of multi-user cognitive
radio networks. We present a general framework adopting gen-
eralized signal expansion functions for representation of physical-
layer radio resources as well as for synthesis of transmitter
and receiver waveforms, which allow us to join DRA with
waveform adaptation, two procedures that are currently carried
out separately. Based on the signal expansion framework, we
develop noncooperative games for distributed DRA, which seek
to improve the spectrum utilization on a per-user basis under
both transmit power and cognitive spectral mask constraints.
The proposed DRA games can handle many radio platforms such
as frequency, time or code division multiplexing (FDM, TDM,
CDM), and even agile platforms with combinations of different
types of expansion functions. To avoid the complications of having
too many active expansion functions after optimization, we also
propose to combine DRA with sparsity constraints. Generally,
the sparsity-constrained DRA approach improves convergence of
distributed games at little performance loss, since the effective
resources required by a cognitive radio are in fact sparse. Finally,
to acquire the channel and interference parameters needed for
DRA, we develop compressed sensing techniques that capitalize
on the sparse properties of the wideband signals to reduce the
number of samples used for sensing and hence the sensing time.

Index Terms—Dynamic Resource Allocation, Waveform Adap-
tation, Game Theory, Sparsity, Compressed Sensing

I. INTRODUCTION

IN WIRELESS cognitive networks adopting open spectrumaccess, radio users dynamically decide the allocation of
available radio resources to improve the overall spectrum
utilization efficiency, also known as dynamic resource allo-
cation (DRA) [1], [2]. Key to this radio access paradigm
are frequency-agile cognitive radios (CRs) that are aware of
the radio environment and can dynamically program their
parameters to efficiently utilize vacant spectrum without caus-
ing harmful interference to authorized users. Evidently, the
DRA task is intertwined with channel sensing and transmitted-
waveform adaptation tasks.
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In the absence of a centralized spectrum controller, DRA
can be carried out in a distributed fashion using distributed
games [3], [4], [5], [6]. In that case, every radio will iteratively
sense the available resources and adjust its own usage of
these resources accordingly. While resources in a wireless
radio network can present broadly in time, frequency, space,
codes and so on, most of the DRA schemes for CR networks
model the radio resources in the form of power and spectrum,
and hence focus on frequency band allocation and power
control on the allocated bands. This is a special case of DRA
commonly known as dynamic spectrum allocation (DSA), for
which orthogonal frequency division multiplexing (OFDM)
is generally considered as the CR platform [7], [9]. After
DRA, CRs will rapidly adjust the spectral shapes of their
transmitted waveforms in order to transmit on the dynamically
allocated bands at permissible transmit power. There are a few
waveform adaptation techniques for CRs that build on digital
filter design and wireless communication techniques [10],
[11], including pulse shaping and single-carrier techniques
[12], [13], and multi-carrier techniques. With the exception
of multi-carrier OFDM systems, the DRA and waveform
adaptation tasks have been treated separately. Because it can
be difficult or costly to generate a transmitted waveform that
perfectly matches the allocated spectra of any flexible shape,
the separate treatment may not offer desired DRA solutions
for practical radios.

This paper develops a joint DRA and waveform adaptation
framework for efficient spectrum utilization in multi-user CR
networks. Here, physical-layer radio resources are represented
by transmitter and receiver signal-expansion functions, which
can be judiciously chosen to enable various agile platforms,
such as frequency, time, or code division multiplexing (FDM,
TDM, CDM). Besides OFDM with digital carriers as expan-
sion functions, many mature platforms are TDM- or CDM-
based and make use of different types of expansion functions
such as pulses, codes, or wavelets [11]. The signal expan-
sion framework allows us to extend the DSA approach to
a more general DRA approach that handles and/or combine
all kinds of expansion functions. Further, it makes it possi-
ble to combine DRA with waveform adaptation. CRs make
DRA decisions on their desired spectrum occupancies, and
simultaneously make adaptation on their transmitted waveform
spectra to realize such DRA decisions for spectrum sharing
and interference control.

Based on the representation of radio resources as transmitter
and receiver functions, we will develop distributed multi-user
DRA games that improve the network spectrum utilization
under transmit power and cognitive spectral mask constraints.
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Different from well-studied scalar or vector power control
games [3], [4], [5], [9], the DRA game with waveform adapta-
tion turns out to be a complicated matrix-valued optimization
problem. To simplify implementation and analysis, we will
convert the matrix-valued game into an equivalent vector-
valued convex problem by use of linear precoding similar to
[7], but have to deal with a nontrivial spectral mask constraint
in the presence of non-orthogonal expansion functions.
In the wideband regime, the optimal number of active

expansion functions can be huge, leading to a highly complex
repeated game with slow convergence. To solve this problem,
we will incorporate some form of sparsity constraints in
the distributed games to limit the number of active signal-
expansion functions and thus the number of optimization
parameters. By limiting the search space of a DRA game
to a small region of effective resources, sparsity-constrained
repeated games exhibit improved convergence at little perfor-
mance loss.
Finally, to support the proposed distributed DRA games,

we will discuss the intertwined sensing task and develop
efficient algorithms for channel estimation and inteference
sensing using compressive sampling techniques [17], [18]. The
sparseness of both the wideband channels and the interferences
on certain domain is identified and then utilized for sparse
signal recovery, which reduces the number of samples needed
for sensing and hence the sensing time.
The rest of the paper is organized as follows. Section II

presents the signal expansion framework for modeling the
radio resources of various platforms. Section III formulates
the design objective and constraints of a DRA problem and
joins it with waveform design and adaptation. A distributed
DRA game is formulated and charaterized in Section IV, and
sparsity-constrained DRA games are presented in Section V.
Compressed sensing techniques for acquiring the related chan-
nel and interference parameters are developed in Section VI.
Simulations are carried out in Section VII to illustrate the
proposed techniques, followed by a summary in Section VIII.

II. DATA MODEL

Consider a wireless network withQ active CR users seeking
radio resources, where each CR refers to a pair of one
transmitter and one receiver. In this paper, the physical-
layer radio resources that CRs can exploit are represented
by means of a set of K bandlimited transmitter and receiver
functions/filters {ψk(t)}K−1

k=0 and {φk(t)}K−1
k=0 , which are the

same for all CRs in our design. The size K is chosen large
enough on the order of the time-bandwidth product of the
wideband system, in order to adequately represent available
resources. Hence, each CR q, q ∈ [0, Q − 1], communicates
data using the transmitter functions {ψk(t)}k and preprocesses
the data at the receiver using the receiver functions {φk(t)}k.
These transmitter and receiver functions can be viewed as
the synthesis and analysis functions from the filter bank
theory, or as frames and their dual frames from the frame
theory [14]. They essentially act as signal basis functions
in a signal space representation [10], [15], but are termed
as signal expansion functions here because we allow K to
be larger than the dimension of the signal space in order

to accommodate redundant function sets. Adopting a block
transmission structure, CR q transmits a K × 1 coded data
vector uq = Fqdiag(aq)sq in each block, where sq consists
of K i.i.d. information symbols {sq,k}K−1

k=0 , Fq is a square
linear precoding matrix, and aq is a K × 1 amplitude scaling
vector. Without loss of generality we assume that sq,k has been
normalized to have unit energy, namely E(|sq,k|2) = 1, ∀k
(E(·) denotes expectation), since any non-unit energy can be
otherwise taken care of by the scaling factor aq,k. Inter-block
interference (IBI) can for instance be avoided by the use of a
cyclic prefix, as we will illustrate later. Each CR q modulates
the data symbol uq,k onto the transmitter function ψk(t), ∀k,
yielding the transmitted waveform uq(t) =

∑
k uq,kψk(t).

It is worth noting that the signal expansion structure we
present here for constructing the transmitted waveforms differs
from that in a traditional digital filter synthesis approach for
pulse shape design [10], [13], because we do not weight the
transmitter expansion functions with chosen filter coefficients
bur rather modulate them using data symbols based on a filter-
bank structure.
The CR sends uq(t) over a dispersive channel with impulse

response gq(t), and preprocesses it at the receiver using the
receiver functions {φl(t)}K−1

l=0 to collect a block of K data
samples xq := [xq,0, . . . , xq,K−1]T . Meanwhile, the receiver
is inflicted with an interfering signal vq(t), which accounts for
the aggregate interference from other CRs, primary users and
ambient noise as well. We assume that each CR pair is syn-
chronized, but different CRs do not have to be synchronized
among one another1. Hence, the discrete-time data model can
be described as

xq = Hquq + vq (1)

where Hq is the K × K aggregate channel matrix with its
(l, k)-th element given by hq,k,l = gq(t)�ψk(t)�φ∗l (−t)|t=0 (�
stands for convolution and ∗ denotes conjugate), ∀k, l, and vq
is theK×1 filtered noise vector with vq,l = vq(t)�φ∗l (−t)|t=0,
∀l. Apparently, Hq encompasses the composite effect of not
only the channel, but also the transmitter and receiver filters.
The above setup incorporates well-known multiplexing sce-

narios such as FDM, TDM and CDM. For example, in a
baseband digital implementation, the set of transmitter and
receiver functions can be chosen as

ψk(t) =
1√

K +N
∑K−1

n=−N
ck,<n>Kp(t− nT ), (2a)

φl(t) =
1√
K

K−1∑
n=0

cl,np(t− nT ), (2b)

where {ck,n}k,n represent the digital modula-
tion/demodulation coefficients, < n >K denotes the
remainder after dividing n by K , and p(t) is the normalized
pulse used at the DAC and ADC. It is assumed that p(t) has
a time span [0, T ) and an essential bandwidth [−B/2, B/2)
(B = 1/T ), for example, a rectangular pulse of width T .
Here, the considered range is t ∈ [0, (K +N)T ), where NT
is an upper bound on the length of any channel gq(t). To avoid

1The assumption about the asynchronous access to the channel derives
from the fact that we do not separate interfering users but only deal with the
composite interference.
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IBI, we have assumed that the transmitter functions ψk(t)
include a cyclic prefix of length NT , and that the receive
functions φk(t) remove this cyclic prefix. The waveforms in
(2) subsume FDM, TDM and CDM as follows

FDM : ck,n = ej2πkn/K , k, n = 0, . . . ,K − 1;

TDM : ck,n =
√
Kδk−n, k, n = 0, . . . ,K − 1;

CDM : {ck,n}K−1
n=0 is a length-K spreading code, ∀k.

Note that the above described FDM scheme actually cor-
responds to OFDM (orthogonal frequency division multiplex-
ing), whereas the TDM scheme corresponds to SCCP (single
carrier with a cyclic prefix). Passband and analog versions
of FDM and TDM can be described in a similar fashion.
In general, there are a number of possible choices for the
transmitter and receiver functions, such as carriers, pulses,
codes, wavelets, and other forms. The size K is determined by
the choice of the function sets, the total network bandwidth
as well as the desired precision of waveform design. Also,
redundant sets of non-orthogonal functions are suggested [19],
e.g., using combinations of the functions used in FDM, TDM
and/or CDM, to yield over-complete representations of the
available radio resources. This strategy is useful in exploring
the sparsity property of CR networks for efficient DRA, which
we will discuss in Section V.

III. JOINT DYNAMIC RESOURCE ALLOCATION AND

WAVEFORM ADAPTATION

DRA in a CR network concerns the spectrum utilization
efficiency, measured for instance by the system capacity. From
(1), DRA at the transmitter side can be carried out through the
linear precoder Fq and the length-K amplitude scaling vector
aq . Given the data model (1) resulted from the adopted signal
expansion structure and assuming uncorrelated interferences
{vq,l}l on different receiver waveforms {φl(t)}l, the per-user
capacity formula is given by

C(aq ,Fq) =
1
K

log2

∣∣IK+ diag(aq)FHq BqFqdiag(aq)
∣∣ (3)

where Bq = HH
q R−1

q Hq and Rq = E(vqvHq ) is the
interference covariance matrix. In (3), we have omitted the
impact of data detection, since there are known capacity-
preserving receivers such as the minimum mean-square error
(MMSE) linear receiver [15].
In our modeling of radio resources, the DRA problem is

intimately related to waveform design and adaptation. The
design parameters {(aq,Fq)}q not only affect the DRA ef-
ficiency via (3), but also determine the spectral shapes of
the transmitted waveforms. Specifically for CR q, the power
spectral density (PSD) of the transmitted signal uq(t) with
respect to the frequency f is given by

Sq(f ;aq,Fq) =
∑K−1
k=0 a2

q,k

∣∣∣∑K−1
i=0 [Fq]i,k ψi(f)

∣∣∣2 . (4)

In CR applications, the spectral shapes of transmitted
waveforms need to comply with some design and regulatory
requirements. For example, the average transmit power Pq of

CR q has to be confined below an upper limit Pq,max, ∀q,
which can be expressed as

Pq(aq,Fq) =
∫
Sq(f ; aq,Fq)df

= tr
(
diag(aq)FHq SψFqdiag(aq)

) ≤ Pq,max (5)

where Sψ is the K ×K pulse-shaping autocorrelation matrix
with [Sψ]k,l=

∫
ψ∗
k(f)ψl(f)df , and tr(·) denotes trace.

We further impose a cognitive spectral mask Sc(f) that
accounts for both policy-based long-term regulatory spectral
masks and cognition-based dynamic frequency notch masks
for interference control. Once an active primary user is de-
tected, a frequency notch on the licensed spectrum band(s)
would be imposed on the spectral masks of CRs in order to
protect the primary user. Intersection of these masks yields
a composite cognitive mask Sc(f), resulting in the following
spectral mask constraint for any CR q:

Sq(f ; aq,Fq) ≤ Sc(f), ∀f. (6)

From a global network perspective, the objective of DRA
is to determine the collective actions {(aq,Fq)}Q−1

q=0 that
maximize the sum-rate of all users, that is,

max
{aq�0}q,{Fq}q

Q−1∑
q=0

C(aq,Fq), (7)

s.t. (5), (6), q = 0, 1, . . . , Q− 1,

where � denotes element-by-element ≥ operation. In our
DRA optimization, the transmitter and receiver functions
{ψk(t)}k and {φl(t)}l are pre-defined for DSP implementa-
tion simplicity. Nevertheless, the spectral shapes Sq(f ;aq,Fq)
of the transmitted waveforms can adapt to the radio resources
via adjusting (aq ,Fq). As we dynamically sense the channel
parameters {Hq,Rq} used in (3) and accordingly optimize
the adaptation parameters (aq,Fq) via (7), a joint DRA and
waveform adaptation approach arises.
However, the formulation in (7) leads to a centralized

non-convex optimization problem, which is NP-hard with
complexity scaling exponentially in the number of users
[4]. Furthermore, it requires knowledge of all the available
resource information {Hq,Rq}q , which can be infeasible to
obtain even for a central spectrum controller such as a base
station. For any-to-any connections, it is more appropriate
to perform decentralized DRA, for which the game-theoretic
approach is well motivated due to its distributed nature.

IV. MULTI-USER DRA GAME

This section develops a distributed DRA game that adopts
individual (per-user) objective functions and constraints for
optimizing the design parameters {(aq,Fq)}q. Formulation,
implementation and characterization of the DRA game are
presented in this section, while acquisition of the related
channel and interference parameters Hq and Rq, and hence
Bq in (3), will be presented in Section VI.
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A. Distributed Game Formulation and Implementation

In a DRA game, CRs are game players, each of which
seeks to maximize a capacity-related utility function by taking
allocation actions on (aq ,Fq) from its own set of permissible
strategies. In contrast to the centralized DRA formulation in
(7), a standard noncooperative game can be formulated by
decoupling the objective function and constraints for each CR
user [16], as follows:

max
aq�0,Fq

C(aq,Fq), s.t. (5), (6). (8)

On a per-user basis, (8) results in the optimal decentralized
DRA solutions (a�q ,F�q), without knowledge of other users’
allocation {(ar,Fr)}r �=q. Nevertheless, the interference Rq

needs to be sensed while other users are transmitting using
their allocation actions {(ar,Fr)}r �=q. The intricacy among
sensing, transmission and distributed DRA suggests a repeated
game approach, wherein players change their strategies one
at a time according to (8), as a reaction to changes in the
strategies of the other players. Players repeatedly change
their strategies in a sequential, simultaneous or asynchronous
fashion [7], [16], until reaching steady-state DRA decisions,
if existent. Particularly, a repeated game with asynchronous
moves is most suited for distributed DRA, where not all
players may revise their actions in every round, and the
convergence can be treated as a sequential repeated game as
long as players take actions in an almost cyclic pattern.
Let the CRs initialize their transmissions with no precoding

and equal power loading, i.e., Fq = IK and aq = 1.
The ensuing iteration steps in a repeated DRA game can be
summarized as below.

—

S1) At the present round of the DRA game, choose the order
for CRs to take actions, in a sequential, simultaneous,
or asynchronous fashion;

S2) For CR q that is in its order to take action, it

a) senses the channel and interference parametersHq

and Rq, using possibly the compressed sensing
techniques developed in Section VI;

b) finds the current best response strategy (a�q ,F
�
q)

that optimizes (8), which we will elaborate in
Section IV-B;

c) adapts its transmission by implementing (a�q ,F
�
q)

on the signal expansion functions;
S3) iterate to the next round, until convergence.

—

This game procedure joins the two tasks of DRA optimiza-
tion (in S2(b)) and online waveform adaptation (in S2(c)),
thanks to the enabling signal expansion framework we adopt.
By doing so, it is feasible for CRs to perform dynamic sensing
of the aggregate interference (in S2(a)). In contrast, existing
work separately treats DRA and waveform adaptation: the
DRA literature focuses on direct optimization of the power
spectrum Sq(f) based on proper spectrum efficiency criteria
[3], [4], [5], while the waveform design literature investigates
analog or digital pulse shaping techniques to comply with the
allocated power spectrum Sq(f) [10], [12], [13]. The separate

approach to DRA and waveform design has several limitations:

• When waveform adaptation is based on finalized DRA
decisions and thus completely decoupled from the DRA
process, sensing the aggregate interference is impossible
prior to transmission. One way to solve this problem is
to formulate centralized DRA, but this will cause a large
communication overhead from the CRs to the spectrum
controller.

• In the absence of waveform shaping and adaptation,
distributed DRA is still possible. However, this mandates
each DRA decision be made from the knowledge of the
all the received interfering channels, in combination with
either a one-shot game or a repeated game. One-shot
games do not require knowledge of other users’ DRA
decisions, but exhibit a considerable performance gap
from the socially optimal sum-capacity in (7). Repeated
games, on the other hand, require users to broadcast
their DRA decisions during iterations, resulting in a
heavy communications overhead over a dedicated control
channel.

• It can be difficult or costly to generate a transmitted
waveform that perfectly matches the allocated Sq(f) of
any flexible shape [13]. Without respecting the implemen-
tation limitations of waveform design, the DRA decisions
made on Sq(f) are no longer optimal when implemented
in practical radios.

Our DRA approach overcomes the above limitations. It
offers a truly distributed framework in which the allocation
vectors are optimized under a practical transmitter imple-
mentation structure. Besides, the need for sensing all the
interfering channels in the separate approach is circumvented,
but rather only aggregate channels need to be acquired in our
joint approach. For some special transmission types, such as
OFDM, the allocated Sq(f) can be implemented exactly by
power loading on subcarriers, thus joining DRA with spectrum
shaping [7], [9]. Dynamic power loading for OFDM can be
treated as a special case of our signal expansion framework
using complex exponentials as expansion functions. However,
many platforms are TDM- or CDM-based and make use of dif-
ferent types of expansion functions. Thus, our DRA approach
is more general in treating diverse radio platforms. Further-
more, we will develop in Section V a sparsity-constrained
DRA formulation to alleviate the slow convergence and high
communication overhead that existing iterative OFDM power
loading games may encounter over wideband channels.

B. Best Response in the DRA Game

This subsection solves for the best response (a�q ,F
�
q) to

the per-user optimization problem in (8). From (3) and (5),
it is obvious that the DRA game formulation in (8) is a
matrix-valued problem with respect to actions (aq ,Fq), which
is much more involved than a game with scalar or vector
actions [7]. Particularly when the pulse-shaping autocorrela-
tion matrix Sψ in (5) is non-diagonal due to non-orthogonal
transmitter functions, simultaneous optimization of the action
pair (aq ,Fq) is nontrivial.
To deal with a general-form Sψ in (5), we define F̄q =

Λ1/2
s UH

s Fq , where Us and Λs are the eigenvector and
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eigenvalue matrices of Sψ respectively. Rewriting the power
constraint as tr(diag(aq)F̄Hq F̄qdiag(aq)) ≤ Pq,max, and us-
ing the Hadamard inequality, we deduce that the determi-
nant in (3) is maximized when F̄q diagonalizes B̄q =
Λ−1/2
s UH

s BqUsΛ−1/2
s . Let Uq and Λq denote the eigenvec-

tor and eigenvalue matrices of B̄q, respectively. This suggests
setting F̄q = Uq and Fq = UsΛ−1/2

s Uq , which yields

C(aq) = max
Fq

C(aq,Fq) =
1
K

log2

∣∣IK + Λqdiag(aq)2
∣∣

=
1
K

K−1∑
k=0

log2(1 + a2
q,kλq,k), (9)

where λq,k = [Λq]k,k, ∀k.
Let us define a K × 1 power loading vector pq whose k-th

element is pq,k = a2
q,k. Since FHq SψFq = F̄Hq F̄q = I, the

power constraint in (5) is simplified to

1Tpq ≤ Pq,max. (10)

Meanwhile, the transmitted PSD in (4) can be re-
written as Sq(f ;pq) = zTq (f)pq , where [zq(f)]k =∣∣∣∑K−1

i=0 [Fq]i,kψi(f)
∣∣∣2, ∀k. To render the number of spectral

mask constraints finite, we sample Sq(f ;pq) uniformly in
frequency at N points FN := {f1, . . . , fN}, N ≥ K , and
replace the spectral mask constraint in (6) by

Zq,Npq ≤ Sc,N , (11)

where Zq,N = [zq(f1), . . . , zq(fN)]T is of size N ×K , and
Sc,N = [Sc(f1), . . . , Sc(fN )]T is the N × 1 sampled vector
of the cognitive spectral mask Sc(f). Multiplying the pseudo-
inverse Z†

q,N of Zq,N on both sides of (11), it is straightfor-

ward that pq shall be upper bounded by pq,max = Z†
q,NSc,N .

With (9), (10) and (11), the matrix-valued DRA optimiza-
tion problem in (8) with respect to (aq,Fq) can be re-
formulated into a vector-valued problem with respect to pq
as follows:

max
pq�0

C(pq) =
1
K

K−1∑
k=0

log2(1 + pq,kλq,k) (12a)

s.t. 1Tpq ≤ Pq,max; (12b)

pq ≤ pq,max. (12c)

This re-formulation does not incur performance loss compared
with the original problem (8). The best response (a�q ,F

�
q) to

(12) is the well-known water-filling scheme [3], [7], [9], that
is,

F�q = UsΛ−1/2
s Uq, p�q : p�q,k =

[
μq − λ−1

q,k

]pq,max(k)

0
, ∀k.
(13)

where [x]ba indicates the Euclidean projection of x onto [a, b]
such that x = x, a and b for x ∈ [a, b], x < a and
x > b respectively, and the water level μq is chosen to
satisfy

∑K−1
k=0 pq,k = Pq,max as in (12b) [7]. The closed-form

solution in (13) to the per-user best response facilitates the
implementation of the DRA game in Step S2(b).

C. Game Characterization

When playing a repeated game, it is essential to under-
stand whether an equilibrium point can be reached [6]. This
subsection characterizes the properties of steady state Nash
Equilibriums (NEs) of the proposed DRA game. Relevant
issues include the existence, optimality, uniqueness of NEs,
and whether a game implementation converges to the NEs.
In Section IV-B, we have shown that the matrix-valued

problem in (8) with respect to (aq,Fq) can be transformed
into a vector-valued problem in (12a) with respect to the power
allocation vector pq; in addition, the transformed power con-
straint (12b) entails a diagonalized channel structure. Hence,
it can be shown that the noncooperative game in (12a) is
a convex problem, because the utility is continuously quasi-
concave in pq , and the action space defined by the power and
mask constraints is a non-empty compact convex set. As such,
the Glicksberg-Fan fixed point theorem ensures the existence
of NEs by pure strategies [16].
Note that (12a) resembles a standard OFDM-based game

based on orthogonal carriers. For synchronous OFDM systems
that appear in DSL applications, sufficient conditions for
uniqueness have been delineated under the power and mask
constraints [7], [9]. For the mask-constrained asynchronous
case that we consider here, the uniqueness of the NE is still
an open problem [8].
Finally, we remark that a noncooperative game has been

proposed in [7] using linear precoding strategies under both
power and spectral mask constraints. For analysis purposes,
the schemes therein use an IFFT matrix to diagonalize all the
intended and interfering channel matrices that are Toeplitz.
This implies block-by-block synchronization among users,
whereas this paper obviates this assumption. In [15], a fil-
terbank structure is proposed for centralized transceiver op-
timization, whereas our expansion functions are not confined
to be mutually orthogonal. In both [7] and [15], the channel
matrices have to be linear transformations of a Toeplitz matrix
and the properties of Toeplitz matrices are capitalized, which is
not necessary in our case. The capability in subsuming various
types of expansion functions offers added flexibility in re-
shaping the dispersive channels. Even though these expansion
functions are fixed in this paper for simplicity, we do allow
for redundant non-orthogonal functions to explore the sparsity
property in CR networks, as discussed next.

V. SPARSITY-CONSTRAINED DRA GAMES

CRs often search for resource opportunities over a very wide
spectrum range. In order to represent the optimal transmitted
PSD over a very wide band, the required number of expansion
functions can generally be very large. In this case, it is costly
to compute, communicate, and implement the allocation vector
aq of sizeK . On the other hand, the effective resources needed
for a CR to transmit reliably are in fact sparse compared
with the total available resources in the wideband network.
This observation suggests that (near-)optimal DRA may be
carried out over a few selected expansion functions, instead
of over the entire function set. It boils down to imposing zero
entries in the allocation vector aq and performing DRA over
the remaining nonzero entries only. With a small number of
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allocation elements to be optimized, the resulting repeated
games may benefit from reduced computational complexity
and improved convergence rates. Due to the dynamic nature
of channel resources, however, the locations of those effective
nonzero entries cannot be preset and shall be optimized during
waveform adaptation. This section presents such a sparsity-
constrained formulation for DRA in the wideband regime.
Suppose that each CR transmits data over M expansion

functions, M < K . Functions are selected via a selection
matrix Jq = diag(jq), where jq ∈ {0, 1}K indicates whether
ψq,k(t) is selected (‘1’) or not (‘0’). Removing those all-zero
columns in Jq , we get J̃q of size K×M . DRA are performed
on the M selected functions, via an M × 1 loading vector
ãq = J̃Hq aq and an M ×M precoder F̃q = J̃Hq FqJ̃q . The
aggregated channel effect is captured in B̃q = J̃Hq BqJ̃q , and
the capacity formula in (3) is modified to

C(aq,Fq,Jq)=
1
M

log2

∣∣∣IM+diag(ãq)F̃Hq B̃qF̃qdiag(ãq)
∣∣∣ .
(14)

Replacing the utility function in (12a) by (14), we reach a
DRA game with dynamic function selection. We note now
that selecting M functions is equivalent to setting (K−M)
elements of the allocation vector aq to be zeros, that is,
||aq||0 = M . Hence, when M � K , aq becomes a sparse
vector, which can be treated under the framework of sparse
signal recovery [18].
In the absence of linear precoding, function selection boils

down to limiting a general-form sparsity measure of aq , that is
its l-norm ||aq||l, where 0 ≤ l < 2, by an upper bound L(l)

q,max.
Adding this sparsity constraint to (12), we merge DRA with
function selection to formulate a sparsity-constrained DRA
problem as follows

maxaq�0 C(aq,Fq = IK) (15)

s.t. (5), (6);
||aq||l ≤ L(l)

q,max.

When l = 0, the parameter L(0)
q,max directly reflects the number

of functions selected, but (15) is nonconvex and difficult to
solve. When l ∈ [1, 2), (15) is a convex problem that permits
well-behaved numerical algorithms. However, the parameter
L

(l)
q,max is more difficult to choose in order to produce exact
sparsity. Some cross-validation techniques can be tailored to
this problem to aid the selection of L(l)

q,max. Following the
arguments in Section IV-C, this sparsity-constrained DRA
game reaches steady-state Nash equilibria when 1 ≤ l < 2.
When linear precoding is present (Fq 	= IK ), we note

from (9) that the linear precoder F̄q serves to diagonalize
the channel B̄q, while the ensuing power loading in (12) is
determined by the channel eigenvalues Λq . This observation
suggests to perform function selection by finding a primary
minor channel matrix B̃q with the best eigenvalue quality
measured by |IM+B̃q| =

∣∣IK+JHq B̄qJq
∣∣, i.e.,

maxjq�0 log2

∣∣IK + JHq B̄qJq
∣∣ (16a)

s.t. ||jq||l ≤ L(l)
q,max; (16b)

eTk Jqek = jq,k, k = 0, . . . ,K − 1; (16c)
eTk Jqel = 0, ∀k 	= l. (16d)

In (16), (16c)-(16d) are used together to express the relation-
ship Jq = diag(jq) as the intersection of a set of convex
functions in jq and Jq , ek denotes the k-th column of the
identity matrix IK , ∀k. Relaxing l to be l=1, (16) becomes a
convex problem that obviates undesired combinatorial search.
Afterwards, DRA is carried out on theM functions using (14),
in which the linear precoder F̃q can diagonalize the channel
to simplify the problem to a water-filling scheme.
Additionally, considering that the design vector jq is binary

valued, the function selection problem can be relaxed and
formulated as

max
jq

log2

∣∣IK + JHq B̄qJq
∣∣

+ μ
∑K
k=1

(
log(jq,k) + log(1 − jq,k)

)
(17a)

s.t. 1T jq = L(0)
q,max; (17b)

eTk Jqek = jq,k, k = 0, . . . ,K − 1; (17c)

eTk Jqel = 0, ∀k 	= l. (17d)

Here, the variables jq,k are relaxed to be real-valued, and the
sparsity constraint in (16b) is replaced by a penalty term in
the objective function along with a linear constraint (17b), as
suggested in [22]. The penalty term implicitly confines jq,k
to be within [0, 1], ∀k, and μ is a positive parameter that
controls the quality of approximation. Meanwhile, the number
of selected functions can be explicitly set by choosing L(0)

q,max.
As explained in [22], the objective function is concave and
smooth, so the problem (17) can be efficiently solved by the
Newton’s method.
As a final remark, it is interesting to observe that our DRA

problem based on the signal expansion framework resembles
the multiuser MIMO problems. Expansion functions play
the roles of transmitter and receiver antennas, corroborated
by the capacity formula (3) that applies to both problems.
Hence, the literature on multiuser MIMO can benefit our work
and from our work as well. For example, [25] suggests the
use of antenna selection techniques for MIMO systems to
solve the sparsity-constrained DRA games. Nevertheless, our
design focus is to perform efficient resource allocation rather
than harvesting antenna diversity and multiplexing gains. As
such, we may use a large number of expansion functions
to induce redundancy in resource representation, followed by
dynamic function selection to allocate resources efficiently at
reduced implementation costs. In this sense, our theme departs
from that of multiuser MIMO problems. Besides, channel
estimation is an easier task in our problem, allowing possibly
compressed sensing at reduced sampling rates.

VI. COMPRESSED SENSING FOR DRA

This section develops channel estimation and interference
sensing methods for acquiring the knowledge of Hq and Rq

as required by the sensing step S2(a) in Section IV-A. This
sensing task takes place during the training phase by sending
out training symbols sq and hence known data symbols uq =
Fqsq, which yield the received samples xq = Hquq + vq .
We will first estimate the channel matrix Hq by treating vq
as an unknown nuisance noise, and then cancel the estimated
Hquq from xq in order to sense the inference vq and estimate
its covariance matrix Rq as the sample average. For both
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channel estimation and interference sensing, we will develop
compressive sampling techniques for efficient estimation using
a small number of samples only.

A. Channel Estimation

Our channel estimation algorithm is based on modeling the
channel impulse response gq(t) as a tapped delay line:

gq(t) =
N−1∑
n=0

gq,nδ(t− nT ),

where N is the number of taps and T is the tap spacing
corresponding to the essential bandwidth B as T = 1/B. This
tapped delay line model serves as a mathematical description
of the interested wideband channel, and it has been shown to
be a valid model even for ultra wideband scenarios [24]. Under
the above assumption, the channel coefficients {hq,k,l}k,l can
be written as

hq,k,l =
N−1∑
n=0

gq,n ψk(t− nT ) � φ∗l (−t)|t=0 =
N−1∑
n=0

gq,nr
(ψφ)
n,k,l .

(18)
where r(ψφ)

n,k,l = ψk(t− nT ) � φ∗l (−t)|t=0. Evidently, there is a
linear relationship between the composite channel coefficients
{hq,k,l}k,l and the channel taps {gq,n}n, and the latter set of
size N is generally much smaller than the first set of size K2,
with N ≤ K ≤ K2. Furthermore, the channel taps are often
sparse for a wideband channel. This observation suggests us to
directly estimate the channel vector gq = [gq,0, . . . , gq,N−1]T

and then compute {hq,k,l}k,l via (18).
The minimum number of training symbols we require

to estimate gq is N . Thus, we will only make use of a
small number M̄ , with N ≤ M̄ � K , of transmitter and
receiver functions during the training phase, thereby reducing
the complexity. Suppose that during the training phase, we
only use the transmitter and receiver functions with indices
from the set K̄ = {k̄0, . . . , k̄M̄−1}, where we assume that
k̄0 < k̄1 < · · · < k̄M̄−1. Then, we obtain

xq,l =
∑
k∈K̄

uq,khq,k,l + vq,l =
∑
k∈K̄

uq,k

N−1∑
n=0

gq,nr
(ψφ)
n,k,l + vq,l

= ūTq Ālgq + vq,l,

where ūq = [uq,k̄0 , . . . , uq,k̄M̄−1
]T , Āl is an M̄ × N matrix

with its (m,n)-th element given by [Āl]m,n = r
(ψφ)

n,k̄m,l
,

and gq = [gq,0, . . . , gq,N−1]T . Stacking the M̄ outputs
{xq,k̄m

}M̄−1
m=0 into the vector x̄q = [xq,k̄0 , . . . , xq,k̄M̄−1

]T , we
finally obtain

x̄q = (IM̄ ⊗ ūTq )Āgq + v̄q, (19)

where v̄q = [vq,k̄0 , . . . , vq,k̄M̄−1
]T and Ā =

[ĀT
0 , . . . , Ā

T
M̄−1

]T . Since the interference vector v̄q is
unknown at this point (as well as its statistics), we simply
stick to a least-squares (LS) algorithm to solve for gq from
(19), yielding:

ĝq = [(IM̄ ⊗ ūTq )Ā]†x̄q.

For wideband channels that are typically considered as
having sparse multipath echos, the channel vector gq is sparse

with a small number of nonzero amplitudes at unknown
delays. The sparsity feature can be incorporated as prior
knowledge to enhance the estimation accuracy, via the fol-
lowing �1-regularized LS formulation:

ĝq = argmin
gq

{
‖gq‖1 + λ

∥∥x̄q − (IM̄ ⊗ ūTq )Āgq
∥∥2

2

}
(20)

where the �1-norm term imposes sparsity on the recovered
channel vector, and the positive weight λ balances the bias-
variance tradeoff in the channel estimate [21].
For OFDM, the channel estimation problem greatly simpli-

fies, because r(ψφ)
n,k,l = 0, ∀k 	= l, in this special case. As a

result, when M̄ ≥ N , the LS solution is reduced to

ĝq = ¯̄A
†
diag(ūq)−1x̄q,

where ¯̄A is an M̄×N matrix with its (m,n)-th element given
by [ ¯̄A]m,n = r

(ψφ)

n,k̄m,k̄m
. Note that under a zero-mean white

Gaussian interference assumption, the ML-optimal training
consists of using M̄ equi-powered and equi-spaced training
symbols [23].
Estimates of the channel coefficients {hq,k,l}k,l can finally

be obtained according to (18).

B. Interference Sensing

Having estimated Hq, it is possible to estimate the filtered
interference sample vector vq simply as v̂q = xq − Ĥquq.
Subsequently, the interference covariance matrix Rq can be
computed from the sample average. Although conceptually
simple, this approach to interference sensing makes use of all
K receiver functions to collect at least K samples per block in
order to form xq . To reduce hardware-related implementation
costs, we develop a compressive sampling mechanism for
sensing vq using a small number of samples.
Consider the signal space spanned by the receiver functions

{φk(t)}K−1
k=0 . To assess the filtered outputs {vq,l}l, it suffices

to ignore irrelevant noise outside the signal space and represent
vq(t) by the following expansion model:

vq(t) =
K−1∑
k=0

αq,kφk(t) (21)

where αq = [αq,0, . . . , αq,K−1]T is the vector representation
of vq(t) on the space spanned by {φk(t)}K−1

k=0 . Accordingly,
the filtered interference sample vq,l can be written as

vq,l =
K−1∑
k=0

αq,k φk(t) � φ∗l (−t)|t=0 =
K−1∑
k=0

αkr
(φφ)
l,k , (22)

l = 0, . . . ,K − 1,

or in a matrix form,

vq = Rφφαq (23)

whereRφφ is aK×K known matrix with its (l, k)-th element
given by [Rφφ]l,k = r

(φφ)
l,k . The sensing task of estimating vq

is now equivalent to estimating αq .
Our interference sensing strategy hinges on the observa-

tion that vq(t) is sparse in the signal space spanned by
{φk(t)}k, that is, its vector representation αq in (21) is a
sparse vector with only a small number of nonzero elements,
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whose locations are clearly unknown. The sparse nature of
αq results from both the CR context of interest and the
sparsity-constrained DRA problem that we have formalized in
(16). First, the set of expansion functions {φk(t)}k we adopt
at the receiver can be a redundant non-orthogonal set or a
combination of sets of orthogonal functions tailored for com-
munication signals, e.g., a combination of the functions used
in FDM and TDM; accordingly, it provides an over-complete
representation of the signal space. Second, as elaborated in
Section V, we impose sparsity constraints to limit the number
of transmitter functions employed, which results in sparse
resource occupancy by CR users after DRA optimization. As
a result, there is only a small number of nonzero elements in
αq , measured by its l0-norm K0 = ||αq||0. The upper bound
of K0 is known empirically, but the locations of nonzero
elements in αq are unknown. Further, the sparsity of αq can
be induced or made stronger by using a sparsifying basis Tq

for αq , such that α̃q = T−1
q αq has a low sparsity order. With

the use of Tq , vq = (RφφTq)α̃q has a sparse representation
α̃q on the transformed receiver waveforms RφφTq . We focus
on recovering αq , while α̃q can be recovered similarly when
stronger sparsity is desired and Tq is properly chosen.
Due to its sparseness, αq can be possibly recovered from

a small number of M linear representations, K0 < M ≤ K ,
according to recent results in compressive sampling [17], [18].
To implement a compressive sampler, we employ an auxiliary
wideband filter ζ(t) of essential bandwidth B = 1/T at
the receiver end, in parallel to those receiver functions. The
filter output xq(t) � ζ∗(−t) is sampled at M time instances
{tm}M−1

m=0 , M < K , taken within each block after skip-
ping the cyclic prefix length NT . For each sample yq,m =
xq(t) � ζ∗(−t)|t=tm , the signal part

∑
k uq,kψk(t) � gq(t) �

ζ∗(−t)|t=tm can be cancelled out after channel estimation of
gq, yielding the filtered interference sample ζq,m = vq(t) �
ζ∗(−t)|t=tm , ∀m, as follows:

ζq,m = yq,m −
∑
k

uq,k

N−1∑
n=0

ĝq,n[ψk(t− nT ) � ζ∗(−t)|t=tm ].

(24)
Compressive sampling theory has alluded to several effec-

tive means for generating {ζq,m}M−1
m=0 as random measure-

ments, in order to ensure recovery of the sparse unknowns with
high probability from an under-determined linear measurement
system [17], [18], [20]. For example, when the sampling
filter ζ(t) takes a general shape such as a rectangular pulse
of length T , the sampling instances {tm} shall be random
and spaced at least a time span T apart. Alternatively, when
ζ(t) is properly designed with inherent randomness, such as
the analog-to-information (AIC) converter [20], a reduced-rate
uniform sampler can be employed with tm = m(K/M)T ,
m = 0, 1, . . . ,M − 1.
With (21), ζq,m can be expressed as

ζq,m =
K−1∑
k=0

αq,k φk(t) � ζ∗(−t)|t=tm =
K−1∑
k=0

αq,kr
(φζ)
m,k ,

(25)
or in a matrix form,

ζq = Rφζαq (26)

where ζq = [ζq,0, . . . , ζq,M−1]T is an M × 1 linear mea-
surement vector and Rφζ is an M × K known random
measurement matrix with its (m, k)-th element given by
[Rφζ ]m,k = r

(φζ)
m,k = φk(t) � ζ∗(−t)|t=tm . Accordingly, the

sparse signal αq can be recovered from the compressive
measurements ζq using an �1-norm regularized least squares
formulation [21], as follows:

α̂q = arg min
αq

||αq||1 + λ||ζq − Rφζαq||22. (27)

Here, the first �1-norm term imposes sparsity on the recov-
ered signal, the second least-squares term accounts for the
measurement equation (26), and the weight λ reflects the
tradeoff between bias and variance of the signal estimate
[21]. Computationally feasible algorithms exist to accurately
approximate the solution of (27), such that the Lasso algorithm
[21] and greedy algorithms.
Subsequently, the interested vq can be estimated as v̂q =

Rφφα̂q . Sensing the interference on a number of blocks,
we will be able to construct an estimate of the interference
covariance matrix Rq = E(vqvHq ) by its sample average.

VII. SIMULATIONS

Consider a Q-user peer-to-peer CR network. Each user
corresponds to one pair of unicast transmitter and receiver,
giving rise to Q2 channel links: Q of them are desired links
while the others are interference links. We suppose that each
link experiences frequency-selective fading modeled by anNt-
tap tapped delay line, where each tap coefficient is complex
Gaussian with zero-mean and unit variance. For each link,
we generate these random tap coefficients and then use (18)
to generate the channel matrices {Hq}q. The link power
gain is denoted by a scalar ρrq > 0, ∀r, q ∈ [1, Q], which
captures both the path loss and the fading power. The noise
variance is assumed to be 1 in all cases. Subsequently, the
interference covariance matrix Rq is given by the covariance
of the aggregated interference (from all the Q − 1 received
interference channels) plus noise. Note that the interference
from primary users reflects in Rq as well, which can be
acquired via sensing. Hence, as long as the sensing results
are accurate, the impact of primary users can be treated in the
same way as that of other secondary users. We simulate Rq

using interfering CR users without loss of generality, and test
the impact of sensing errors on the DRA efficiency. Focusing
on the sparsity issue in DRA, we drop the mask constraint (6)
and correspondingly (12c) in all examples.

A. Distributed DRA and Waveform Adaptation

To demonstrate the flexibility of our joint approach to DRA
and waveform adaptation, we first consider the distributed
DRA formulation in (12) in the absence of sparsity con-
straints. The channel and interference information {Hq,Rq}
is assumed known, while the impact of estimation errors will
be investigated later. Figure 1 shows the transmitted power
spectra of the resulting multicarrier (MC) power allocation for
3 users operating in different scenarios described by following
parameters: (a) P2 = P3 = 10, P1 = 5, ρrq = 5, ∀r 	= q, and
Nt = 8; (b) Pq = 20, ∀q, ρrq = 0.2, and Nt = 4. In both
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cases, we assume ρqq=1 w.l.o.g., and K = 32 digital carriers
as the transmitter and receiver functions. In (a), all users
experience strong interference, and the DRA game results in
an FDM-type solution where the power spectra of different
users are non-overlapping in frequency. In contrast, users in
(b) have high transmit power and low interference, and the
optimal DRA suggests frequency reuse via spread spectrum
(SS) transmission. Users overlap in frequency to occupy nearly
the entire bandwidth, and adapt mainly to their own channels.
Such results confirm the theoretical prediction in [7], and
demonstrate the flexibility of our signal expansion framework
in instantiating various optimal multiple access schemes under
available resources.
For scenario (b), we also select a different set of expansion

functions whose frequency responses are piecewise flat at
levels {0, 1} that match to length-K Hadamard codes (HC).
The optimal allocation using Hadamard codes has low exact
sparsity of ||p(HC)q ||0 = 11, 10, 8 for various q’s, whereas the
multi-carrier design is less sparse with ||p(MC)q ||0 = 18, 25, 28.
Both sets of expansion functions result in the same transmitted
spectra and user capacity (hence, we do not include the curves
which overlap with those for (b)). Low sparsity means low
hardware cost, and may even reduce computational load and
improve the convergence of iterative games.

B. Capacity under Sparsity Constraints

To shed light on the inherent sparsity of the DRA problem
in the CR context, we compare three DRA techniques: i)
DRA via (12) without sparsity constraints; ii) DRA via (12)
performed over a fixed subset of L(0)

q,max=K ′ subcarriers out
of the K transmitter and receiver functions, with K ′ ≤ K;
and, iii) DRA via (15) under sparsity constraints on the l-
norm, for l = 0.2 and l = 1. Both ii) and iii) aim at limiting
the l0-norm of the DRA solutions in order to reduce the
implementation complexity.
First, we consider a 4-user system with the following param-

eters: Pq = 20, ρqq = 1, ∀q, and ρrq = 5 for ∀r 	= q. All the
channels are randomly generated as we specified before, using
Nt = 5 taps. FDM subcarriers are used as the transmitter and
receiver functions, with K = 32 subcarriers. Fig. 2(a) depicts
the sum capacity of all users versus the sparsity parameter
L

(l)
q,max, averaged over 100 sets of channel realizations by
Monte Carlo simulations. For any power-constrained pq , its
l-norm is upper bounded by K for l=0 and by

√
PqK(2/l)−1

for l > 0. The K-point grid on the x-axis is equally spaced
from 1 to K for K ′ in ii), and from 1 to

√
PqK(2/l)−1 for

L
(l)
q,max in iii).
When the sparsity constraints in ii) and iii) are loose, all

DRA designs converge to the same C(p�q) of the sparsity-
unconstrained design i), indicated by the rightmost region in
Fig. 2(a). In design ii), asK ′ decreases, the sparsity constraints
becomes tighter, and the resulting capacity exhibits a notice-
able gap from that of i). In essence, ii) can be regarded as a
naive way to constrain the l0-norm sparsity, by pre-defining
the possible locations of nonzero elements in pq regardless
of the channel dynamics. In contrast, the sparsity-constrained
DRA designs in iii) result in average capacities close to that
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Fig. 1. Optimal transmitted power profiles of two users: (a) strong
interference case, (b) weak interference case.

in i), because iii) optimally selects active expansion functions
where the effective resources lie dynamically.

In terms of the sparsity metric, the l0-norm constraint
directly controls the exact sparsity and thus complexity, but
incurs combinatorial computational load. When l is close to
0, e.g., l = 0.2, the optimal solution closely approximates a
sparse representation. However, l < 1 results in a nonlinear
concave constraint. Solving for the global optimum can be
computationally intractable, while suboptimal local minima
give rise to convergence errors. For l ≥ 1, the sparsity
constraint becomes convex, thus circumventing convergence
errors. However, as l increases, the resulting allocation tends
to be less sparse. The global optimum does not necessarily
coincide with the sparsest solutions, resulting in structural
errors. Further, when l gets close to 2, a small value of
L

(l)
q,max may limit the transmit power, which in turn degrades
the attainable capacity. These assessments are corroborated in
Fig. 2(b), which depicts the average complexity and hardware
costs measured by the sum of the l0-norm of the optimized
allocation vectors of all users. When the norm order l and
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Fig. 2. Sparsity-constrained DRA: (a) average sum capacity measured in
bits/second/Hertz, (b) average sum complexity measured by l0-norm.

the sparsity upper bound L(l)
q,max are properly chosen, e.g.

l = 0.2 and L(l)
q,max ∈ [10, 15] in this simulation case, the

sparsity-constrained DRA reaches high capacity performance
comparable to that of the unconstrained case, with noticeable
saving in complexity.

Next, we test and compare the sparsity-constrained DRA
performance using different transmitter and receiver functions
and adopting the function selection scheme defined in (16).
We consider a CR system with Nu = 4 or Nu = 8 users with
equal power levels Pq = 20 and link power gains ρqq = 1,
with 1 ≤ q ≤ Nu. Three sets of systems parameters are
tested: i) in the weak interference case, we set ρrq = 0.1
for ∀r 	= q, and use K = 32 Hadamard codes as transmitter
and receiver spreading codes; ii) in the medium interference
case, we set ρrq = 1 for ∀r 	= q, and use K = 32 FDM
subcarriers as transmitter and receiver functions; iii) in the
strong interference case, we set ρrq = 5 for ∀r 	= q, and
use K = 32 FDM subcarriers as transmitter and receiver
functions. In the above cases, all the channels are randomly
generated as we specified before, using Nt = 5 taps. The

0 5 10 15 20 25 30
0

5

10

15

20

25

Lmax

S
um

 C
ap

ac
ity

 

 

Norm−1
fixed sparsity

CDM-WI
SNR= 20dB
Nu = 4
K = 3 2

Fig. 3. Average sum capacity measured in bits/second/Hertz for the sparsity-
constrained DRA with Nu = 4 users for CDM in weak interference.
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Fig. 4. Average sum capacity measured in bits/second/Hertz for the sparsity-
constrained DRA with Nu = 8 users for FDM in medium interference.

sparsity norm order is set to l = 1 for computational easiness.
Fig. 3 depicts the sum-capacity averaged over the active
users for the CDM system in i). It can be observed that the
sparsity-constrained DRA optimization induced by the l-norm
outperforms that with fixed sparsity, and converges to the same
sum-capacity level when the constraint becomes loose, i.e.,
L

(l)
q,max is large. In Figs. 4-5, we increase the number of users
to Nu = 8, and focus on the FDM system in ii) and iii),
respectively. Interestingly, the same superiority of the sparsity-
constrained DRA exhibits, and the sum-capacity level reaches
asymptotically to a higher level than that in Figure 3 due to the
increased number of active users. Further, for both the FDM
and CDM systems the sparsity-constrained solution offers a
considerable gain in the sparsity order measured as the sum
of the 0-norm of the optimized coefficients (results not shown
due to space limitation).

C. Performance and Impact of Interference Sensing

To testify the effectiveness of the compressed interference
sensing technique in Section VI-B, we now revisit scenario
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Fig. 5. Average sum capacity measured in bits/second/Hertz for the sparsity-
constrained DRA with Nu = 8 users for FDM in strong interference.

(a) in Figure 1 and focus on OFDM-based DRA. We assume
perfect channel knowledge, since accurate OFDM channel
estimation has been demonstrated in the literature for non-
cognitive wireless systems. The auxiliary wideband filter
ζ(t) is chosen to be a rectangular pulse of time-span T .
Figure 6 depicts the recovered interference vector vq within
one data block, for various compression ratios M/K =
45%, 70%, 90% and 100%. When the compression ratio is
chosen moderately, the compressed sensing scheme is able to
reliably recover the instantaneous interference profile, without
having to collecting a minimum of K samples per block or
activating all K receiver functions.
Figure 7 evaluates the impact of sensing errors on the capac-

ity performance of DRA. During DRA, the allocation vectors
{pq}q are decided based on imperfect interference values
{v̂q}q which deviate from the true values {vq}q element by
element by a standard deviation σv . We compare the attained
sum capacity versus SNR for DRA under scenario (a), for the
cases of no sensing errors (σv = 0) and moderately large sens-
ing errors (σv = 0.1). Both the sparsity-unconstrained DRA
scheme in (12) and the sparsity-constrained DRA scheme in
(15) are evaluated. It can be observed from Figure 7 that the
capacity performance is quite robust to interference estimation
errors. This is because each allocation vector is determined by
relative values of the signal to interference and noise ratio
on the K receiver functions. Hence, the deviations of the
relative values {v̂q,k/v̂q,l}k �=l from {vq,k/vq,l}k �=l degrade the
capacity more than the deviations of the actual values {v̂q,k}k
from {vq,k}k. As SNR increases, σv has less noticeable impact
on the relative values {v̂q,k/v̂q,l}k �=l, compared to its impact
on {v̂q,k}k. The performance robustness of DRA to sensing
errors allows us to alleviate the complexity burden of sensing
by using a small compression ratio M/K .

VIII. SUMMARY

This paper has presented a general framework for joint DRA
and waveform adaptation based on the signal expansion ap-
proach. Generalized transmitter and receiver signal-expansion
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Fig. 6. Estimated interference values {vq,l}q=1,2,3 versus index l, for (a)
1st user (q = 1), and (b) 2nd user (q = 2). In each subplot, dotted vertical
lines indicate the interference profile in the noise free case, the dashed line
is its noisy realization, and the solid line is the estimated interference by
compressed sensing. The results of user 3 are omitted to save space. The
case of full-rate sampling, i.e., M/K = 100%, results in perfect recovery
ans is not shown.
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functions are employed to formulate CR-oriented DRA de-
sign objectives and cognitive spectral mask constraints. This
approach offers a truly distributed DRA optimization frame-
work with waveform adaptation capability under a practical
transceiver implementation structure. This signal expansion
structure is also amenable to carrying out additional flexible
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designs such as quantized feedback and low-resolution DSP
implementations, which we will explore in future work.
Sparsity properties are explored in this paper for channel

estimation, interference sensing and DRA optimization. In
all cases, the inherent sparsity in various elements of a CR
network allows us to considerably reduce the computation
and implementation complexities, at little performance cost.
For DRA optimization, the use of redundant signal-expansion
functions, together with properly imposed sparsity constraints,
can attain high capacity performance at reduced complexity
and improved convergence speed, and naturally lead to opti-
mized adaptation to diverse channel environments.
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