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ABSTRACT
Solving linear regression problems based on the total least-squares
(TLS) criterion has well-documented merits in various applications,
where perturbations appear both in the data vector as well as in the
regression matrix. Weighted and structured generalizations of the
TLS approach are further motivated in several signal processing and
system identification related problems. On the other hand, modern
compressive sampling and variable selection algorithms account for
perturbations of the data vector, but not those affecting the regres-
sion matrix. The present paper addresses also the latter by introduc-
ing a weighted and structured sparse (S-) TLS formulation to exploit
a priori knowledge on both types of perturbations, and on the spar-
sity of the unknown vector. The resultant novel approach is further
able to cope with sparse, under-determined errors-in-variables mod-
els with structured and correlated perturbations, while allowing for
efficient sub-optimum solvers. Simulated tests demonstrate the ap-
proach, and especially its ability to reliably recover the support of
unknown sparse vectors.

Index Terms— Total least-squares, errors-in-variables models,
sparsity, coordinate descent.

1. INTRODUCTION

Sparsity is a property possessed by many signal vectors either natu-
rally, or, after projecting them over appropriate bases. It has been ex-
ploited for a while in numerical linear algebra, statistics, and signal
processing, but renewed interest emerged recently because sparsity
plays a key role in modern compressive sampling (CS) theory and
applications; see e.g., [1]. Using the basis pursuit (BP) approach [2],
CS can cope with noisy data when fitting parsimonious signal rep-
resentations – a task of major importance for signal compression
and feature extraction. The Lagrangian form of BP is also popular
in statistics for fitting sparse linear regression models, using the so-
termed least-absolute shrinkage and selection operator (Lasso); see
e.g., [7], [4], and references thereof. However, existing CS, BP, and
Lasso-based approaches do not account for perturbations present in
the matrix of equations, which in the BP (respectively Lasso) circles
is known as the representation basis or dictionary (correspondingly
regression) matrix.

Such perturbations appear when there is a mismatch between
the adopted basis matrix and the actual but unknown one – a
performance-critical issue in e.g., sparsity-exploiting approaches
to localization, time delay, and Doppler estimation in communi-
cations, radar, and sonar applications; see e.g., [9]. Performance
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analysis of CS and BP approaches for the partially-perturbed lin-
ear model with perturbations only in the basis matrix, as well as
for the fully-perturbed one with perturbations present also in the
measurements, was pursued recently in [5] and [3]. But devising
a systematic approach to reconstructing sparse vectors under either
type of perturbed models was left open.

Interestingly, for non-sparse over-determined linear systems,
such an approach is available within the framework of total least-
squares (TLS), the basic generalization of LS tailored for fitting
fully-perturbed linear models [6]. For fully-perturbed, under-
determined systems with sparse unknown vectors, a universal sparse
(S-)TLS approach was reported recently, but without accounting
for possibly available a priori information on the underlying per-
turbations [9]. Since structural or statistical information on the
perturbations is often available, the goal of this paper is to account
for it, and thereby generalize the S-TLS framework. Specifically,
algorithms will be developed to solve the weighted and structured
S-TLS problem, which is non-convex and thus challenging. Iterative
efficient solvers will be asserted convergent to a stationary point.
Maximum a posteriori optimality will be established for the well-
known errors-in-variables (EIV) model. And pertinent analytical
claims will be corroborated via simulations.

Notation: Upper (lower) bold face letters are used throughout to
denote matrices (column vectors); (·)T denotes transposition; (·)†
the matrix pseudo-inverse; vec(·) the column-wise matrix vector-
ization; bdiag(·) the matrix block diagonalization; ⊗ the Kronecker
product; 0m the m × 1 vector of all zeros; I the identity matrix of
appropriate dimensions; ‖ · ‖F the Frobenius norm; ‖ · ‖p the p-th
vector norm for p ≥ 1; and N (μ,Σ) the vector Gaussian distribu-
tion with mean μ and covariance Σ.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider the under-determined linear system of equations, y =
Axo, where the unknown n × 1 vector xo is to be recovered from
the given m × 1 data vector y, and the m × n matrix A. If the
unknown vector is sparse with many zeros at unknown entries, CS
theory ensures quantifiable chances of recovering xo even when
m < n, and the available y is perturbed [1]. Specifically, the ba-
sis pursuit (BP) scheme [2] and its Lagrangian counterpart (namely
Lasso) [4,7], both account for the said perturbations. For uniformity,
the BP/Lasso solvers can be equivalently written in the form of the
least-squares (LS) criterion regularized by the �1 norm, as

{x̂, ê}Lasso := arg min
x,e

‖e‖2
2 + λ1‖x‖1 (1a)

s. to y + e = Ax . (1b)
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In the context of CS, perturbations in A can emerge due to dis-
turbances in the compressing measurement matrix, the mismatch in
the adopted sparsity expansion basis, or, in both [9]. To account for
such perturbations, the S-TLS approach amounts to finding{

x̂, Ê, ê
}

S−TLS
:= arg min

x,e,E
‖[E e]‖2

F + λ‖x‖1 (2a)

s. to y + e = (A + E)x (2b)

where λ > 0 is a sparsity-tuning constant. Compared to the Lasso
in (1), the S-TLS constraint (2b) corrects both y and A “parsimo-
niously,” in the sense that the resultant linear system yields a solution
with minimal �1 norm. Similar to LS and BP/Lasso, the S-TLS es-
timates in (2) are also universal, meaning that perturbations can be
random or deterministic, with or without a priori known structure.

However, it is expected that exploiting prior knowledge on the
perturbations can only lead to improved performance. Thinking for
instance along the lines of weighted LS, one is motivated to weight
‖E‖2

F and ‖e‖2
2 in (2) by their inverse covariance matrices, respec-

tively, whenever those are known and are not both equal to I. As a
second motivating example, normal equations, involved in e.g., lin-
ear prediction, entail structure in E and/or e that capture sample
estimation errors present in the matrix [A y], which is Toeplitz.
Prompted by these examples, the present paper broadens the scope
of S-TLS with weighted and structured forms capitalizing on prior
knowledge available about [E e], following the spirit of generaliz-
ing the TLS to its weighted and structured counterparts in [6]. To
this end, it is first prudent to quantify the notion of structure.

Definition 1 The m × (n + 1) data matrix [A y](p) has structure
characterized by an np×1 parameter vector p, if and only if there is
a mapping such that p ∈ R

np → [A y](p) := S(p) ∈ R
m×(n+1).

Definition 1 is general enough to encompass any (even unstruc-
tured) matrix [A y](p), by simply letting p := vec([A y]) of
length np = m(n + 1). However, it becomes more relevant when
np � m(n + 1), the case in which p characterizes [A y] parsimo-
niously. Application examples are abundant: structure in Toeplitz
and Hankel matrices encountered with system identification, decon-
volution, and linear prediction; as well as in circulant and Vander-
monde matrices showing up in spatio-temporal harmonic retrieval
problems [6]. Structured matrices A for sparse vectors xo emerge
also in contemporary CS gridding-based applications e.g., for spec-
tral analysis and estimation of time-varying channels, where rows of
the FFT matrix are selected at random; details on other interesting
gridding-based cases can be found in [9].

Consider now re-casting the S-TLS criterion in terms of p, and
its associated perturbation vector denoted by ε ∈ R

np . The Frobe-
nius norm in the cost of (2a) is mapped to the �2-norm of ε; and
to allow for weighting the perturbation vector using a symmetric
positive definite matrix W ∈ R

np×np , the weighted counterpart of
‖[E e]‖2

F becomes εT Wε. With regards to the constraint, Defini-
tion 1 implies a perturbed matrix of the form S(p+ε) = [A+E y+

e]; hence, re-writing (2b) as [A+E y+e]
[
xT ,−1

]T
= 0m, yields

the structured constraint S(p+ ε)
[
xT ,−1

]T
= 0m. Putting things

together, leads to the weighted and structured (WS)S-TLS version of
(2) �

�

�

�

{x̂, ε̂}WSS−TLS := arg min
x,ε

εT Wε + λ‖x‖1

s. to S(p + ε)

[
x
−1

]
= 0m

(3a)

(3b)

which clearly subsumes the structured-only form as a special case
corresponding to W = I. With the WSS-TLS problem (3) in mind,

the main goal now is to develop efficient algorithms to solve it – a
challenging task since presence of the product between ε and x in
(3b) reveals that the problem is generally nonconvex. This consid-
eration motivates focusing on one practically interesting subset of
structure mappings. The same subset turns out to simplify the WSS-
TLS problem, and subsequently allows asserting MAP optimality for
EIV models, and developing efficient solvers based on block coordi-
nate descent.

3. AFFINE AND SEPARABLE STRUCTURES

To confine the structure quantified in Definition 1, two conditions
will be imposed. They are also adopted by TLS approaches [6], and
are satisfied by the CS applications in [9].

(as1) The structure mapping in Definition 1 is separable, meaning
that with p = [(pA)T (py)T ]T , where pA ∈ R

nA and py ∈ R
ny ,

it holds that S(p) := [A y](p) = [A(pA) y(py)]. In addition,
the separable mapping is linear (more precisely affine), if and only if
the S(p) matrix is composed of known structural elements, namely
“matrix atoms” {SA

k }nA
k=1 and “vector atoms” {sy

k}ny

k=1, so that

S(p + ε) = S(p) +

[
nA∑
k=1

εA
k SA

k

ny∑
k=1

εy
ks

y
k

]
(4)

where εA
k (εy

k) denotes the k-th entry of the perturbation εA (εy).
In accordance to separable structures, the weight matrix W takes
the block diagonal form W := bdiag(WA, Wy), which prevents
cross-term costs involving εA and εy in (3a).

As in Definition 1, interesting structures in (4) are those with
nA � mn and/or ny � m. (Consider for instance a circulant m×n
matrix A, which can be represented as in (4) using nA = m matrix
atoms.) The separation of entries of p according to their relations to
the data A or y decouples εA and εy , and renders W block diagonal.

The separability and linearity in (as1) simplifies the constraint
in (3b) for the given matrix atoms and vector atoms collected for
notational brevity in the matrices

SA := [SA
1 · · · SA

nA
] and Sy := [sy

1 · · · sy
ny

]. (5)

Indeed, the structure in (4) allows one to write the constraint (3b) as:
−S(p)[xT ,−1]T = y−Ax = [

∑nA
k=1 εA

k SA
k

∑ny

k=1 εy
ks

y
k][xT , −

1]T ; while the latter is compactly denoted by SA(I⊗x)εA −Syεy ,
using the definitions in (5) along with the identity

(∑nA
k=1 εA

k SA
k

)
x

= SA(εA ⊗ I)x = SA(I ⊗ x)εA. In a nutshell, (3b) under (as2)
becomes SA(I⊗x)εA −Syεy = y−Ax, in which εA is decoupled
from εy . Further, consider the Cholesky decomposition for the two
symmetric positive definite weight matrices

WA = (ΓA)−T (ΓA)−1, and Wy = (Γy)−T (Γy)−1. (6)

Correspondingly, the cost in (3a) becomes an unweighted quadratic
function for the normalized perturbations

εA := (ΓA)−1εA , and εA := (Γy)−1εy . (7)

Therefore, the WSS-TLS in (3) takes the structured-only form

�

�

�

	
min

x,εA,εy
‖εA‖2

2 + ‖εy‖2
2 + λ‖x‖1

s. to SA(I ⊗ x)ΓAεA − SyΓyεy = y − Ax

(8a)

(8b)
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or in a more compact form as: minx,ε {‖ε‖2
2 + λ‖x‖1} s.to

G(x)ε = r(x), after defining

G(x) := [SA(I ⊗ x)ΓA SyΓy] and r(x) := y − Ax . (9)

Interestingly, by eliminating one or two sets of variables in (8), it
is possible to establish statistical optimality for a structured EIV sys-
tem model, and obtain efficient, provably convergent solvers. Those
reformulations are given in the following lemma.

Lemma 1: The constrained WSS-TLS form in (3) is equivalent to
two unconstrained nonconvex optimization problems:
(a) one involving x and εA, namely

{x̂,ε̂A}WSS−TLS = arg min
x,εA

‖εA‖2
2

+
∥∥∥(SyΓy)†[SA(I ⊗ x)ΓAεA − r(x)]

∥∥∥2

2
+ λ‖x‖1 ; (10)

and (b) one involving only the variable x, expressed using (9), as

x̂WSS−TLS =arg min
x

rT (x)
[
G(x)GT (x)

]†
r(x)

+λ‖x‖1 . (11)

Both reformulations follow by optimizing over a subset of (in-
ner) variables (εy only in (a), or both εA and εy in (b)), while fixing
the rest of the variables. The proof relies on the existence of closed-
form solutions for the two aforementioned inner problems, which
can be substituted back to (8) to yield the unconstrained formulations
in Lemma 1. It will be shown next that the equivalent unconstrained
WSS-TLS problem in (10) leads to a MAP optimal estimator which
is also obtained efficiently.

4. WSS-TLS OPTIMALITY AND SOLVERS

4.1. MAP Optimality for EIV Models

Consider the structured EIV model with perturbed input (A) and
perturbed output (y) obeying the relationship

y = A(pA
o )xo + (−Syεy) ,

A = A(pA
o ) +

[
−SA(εA ⊗ I)

]
(12)

where the notation of the model perturbations εA and εy stresses
their difference with the optimization variables εA and εy in (8). Un-
known are the vector xo, and the inaccessible input matrix A(pA

o ),
characterized by the vector pA

o . The WSS-TLS estimator will turn
out to be MAP optimal under the following assumption.

(as2) Perturbations in (12) are jointly Gaussian, i.e., [εA εy] ∼
N (0np ,W−1), as well as independent from pA

o and xo. Entries
of xo are zero-mean, i.i.d., according to a common Laplace distri-
bution with common parameter 2/λ, and are independent from pA

o ,
which has i.i.d. entries drawn from a zero-mean uniform (i.e., non-
informative) prior pdf.

Note that the heavy-tailed Laplacian prior on xo under (as2) is
in par with its “non-probabilistic” sparsity attribute. It has been used
to establish that the Lasso estimator x̂Lasso in (1) is MAP optimal
when εA ≡ 0nA and εy is white Gaussian with Sy = I [7]. More-
over, viewing xo and pA

o as deterministic, the weighted TLS estima-
tor is known to be optimum in the maximum likelihood (ML) sense
for the unstructured counterpart of the EIV model in (12) where
p =vec([A y]) [6].

The following optimality claim holds for the WSS-TLS estima-
tor in (10), assured to be equivalent to the solution of problem (8)
by Lemma 1. The proof is based on obtaining the log-likelihood and
log-prior probability for xo and pA

o , as detailed in [9].

Proposition 1: (MAP optimality of WSS-TLS). Under (as1) and
(as2) and assuming Sy of full column rank, the equivalent WSS-TLS
problem in (10) yields the MAP optimal estimator of xo and pA

o in
the structured EIV model (12).

4.2. WSS-TLS Solvers

The formulation in (10) also suggests directly an iterative WSS-TLS
solver based on the block coordinate descent method, which alter-
nately optimizes over the variables εA and x. Specifically, suppose
that the estimate εA(i) of εA is available at iteration i. Substituting
εA(i) into (10) and defining the un-normalized perturbation iterate
εA(i) := ΓAεA(i) [cf. (7)], allows to estimate x as

x(i)=arg min
x

∥∥∥(SyΓy)†
[
SA(εA(i) ⊗ I)x − r(x)

]∥∥∥2

2

+ λ‖x‖1 . (13)

Since r(x) is linear in x [cf. (9)], the cost in (13) is convex (quadratic
regularized by the �1-norm as in the Lasso cost in (1)); thus, it can be
solved efficiently. Likewise, given x(i) the perturbation vector for
the ensuing iteration can be found in closed form since the pertinent
cost is quadratic; that is,

εA(i + 1) =arg min
εA

‖εA‖2
2

+
∥∥∥Š(i)εA − (SyΓy)†r(x(i))]

∥∥∥2

2
(14)

where Š(i) := (SyΓy)†SA(I ⊗ x(i))ΓA. To express εA(i + 1)
compactly, equating to zero the gradient of the cost in (14), yields

εA(i + 1) =
[
I + ŠT (i)Š(i)

]−1

ŠT (i)(SyΓy)†r(x(i)) . (15)

Initialized with εA(0) = 0nA , the algorithm cycles between
iterations (13) and (15). Using the basic convergence result in [8], it
can be shown that these iterations are convergent as asserted in the
following; see [9, Prop. 3] for detailed arguments.

Proposition 2: (Convergence). Under (as1), the iterates in (13)
and (15) converge monotonically at least to a stationary point of
the unconstrained WSS-TLS problem in (10).

As estimating εA is simple using the closed form in (15), it
is useful at this point to explore tailored solvers for the Lasso-
type problem in (13). The coordinate descent (CD) is a popu-
lar choice for this purpose; see e.g., [4]. In the present context,
CD cycles between εA(i), and scalar iterates of the x(i) en-
tries. To update the ν-th entry xν(i), suppose precursor entries
{x1(i), . . . , xν−1(i)} have been already obtained in the i-th itera-
tion, and postcursor entries {xν+1(i − 1), . . . , xn(i − 1)} are also
available from the previous (i − 1)-st iteration along with εA(i),
found in closed form as in (15). Letting αν(i) denote the ν-th
column of

[
(SyΓy)†

(
A + SA(εA(i) ⊗ I)

)]
, the effect of these

known entries can be removed from y by forming

eν(i) := (SyΓy)†y−∑ν−1
j=1 αj(i)xj(i)

−∑n
j=ν+1 αj(i)xj(i − 1) . (16)

Using (16), the vector optimization in (13) now reduces to the fol-
lowing scalar one: xν(i) = arg minxν{‖αν(i)xν − eν(i)‖2

2 +

3794



λ|xν |}. This scalar Lasso problem is known to admit a closed-form
solution expressed in terms of a soft-thresholding operator

xν(i) =sign
(
eT

ν (i)αν(i)
)[ ∣∣eT

ν (i)αν(i)
∣∣

‖αν(i)‖2
2

− λ

2‖αν(i)‖2
2

]
+

(17)

where sign(·) denotes the sign operator, and [χ]+ := χ, if χ > 0,
and zero otherwise.

Cycling through the closed forms (15)-(17) explains why CD
here is faster than, and thus preferable over general-purpose convex
optimization solvers of (13). Another factor contributing to its speed
is the sparsity of x(i), which implies that starting up with the all-
zero vector, namely x(−1) = 0n, offers initialization close to a
stationary point of the cost in (10). Convergence to this stationary
point is guaranteed by using the results in [8], similar to Proposition
2. Note also that larger values of λ in (17) force more entries of x(i)
to be shrunk to zero, which corroborates the role of λ as a sparsity-
tuning parameter.

The CD based WSS-TLS solver is tabulated as Algorithm 1.

Algorithm 1 : CD for WSS-TLS

Initialize with ε(0) = 0nA and x(−1) = 0n

for i = 0, 1, . . . do
for ν = 1, . . . , n do

Compute the residual eν(i) as in (16).
Update the scalar xν(i) via (17).

end for
Update the iterate εA(i + 1) as in (15).

end for

5. NUMERICAL EXAMPLES

To illustrate the merits of the WSS-TLS algorithm, consider a de-
convolution problem setup, where the 20 × 40 regression matrix A
has non-symmetric Toeplitz structure [6]. A structured EIV model in
(12) is randomly generated per trial, with the 20 + 40 − 1 = 59 en-
tries of pA

o independent, zero-mean, Gaussian distributed with vari-
ance 1/20 (so that on average each column of A has unit �2 norm).
Vector xo has only 10 nonzero entries drawn from the standardized
Gaussian distribution. Following (as2), εA and εy in (12) are inde-
pendent white Gaussian vectors with corresponding entry-wise vari-
ances (0.15)2/20 and (0.05)2/20. The Lasso and various (WS)S-
TLS estimates are compared over 100 trials and 20 values of λ uni-
formly distributed in log-scale. The structured S-TLS only accounts
for the Toeplitz structure with W = I in (8), while the weighted one
refers to the unstructured WSS-TLS with p = vec ([A y]). Fig. 1
compares their empirical �0 and �2 errors 1 in estimating xo.

Fig. 1 illustrates that all (W/S)S-TLS approaches outperform the
Lasso one, especially in recovering the support based on the �0 error.
As shown in Fig. 1(a), the two structured S-TLS variants improve
over their unstructured versions, while WSS-TLS achieves smaller
error compared to the structured-only S-TLS. Nevertheless, as λ in-
creases all estimates degrade equally. This is because the increas-
ing sparsity penalty favors the all-zero solution. Although the Lasso
estimate exhibits smaller errors at the tail, the S-TLS variants, es-
pecially the WSS-TLS one still shows a slight edge over the range
of moderate λ values. More practical examples and tests are avail-
able in [9], which shows applicability of (WS)S-TLS in calibrating

1The �0 error records the percentage of entries where the support of the
two vectors differs; the �1 error plot is similar to the �2 one in comparing
these methods, and is omitted due to space limitation.
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Fig. 1. Comparisons among the Lasso and variants of (WS)S-TLS
estimates for the (a) �0 error; and (b) �2 error.

the mismatch effects of contemporary grid-based approaches to cog-
nitive radio sensing, and high-resolution direction-of-arrival estima-
tion using antenna arrays.
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