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ABSTRACT
Block transmission of multi-scale orthogonal wavelet division mul-
tiplexing (OWDM) is proposed for signaling over wideband linear
time-varying channels (LTV). Such channels are best modeled by
multi-scale, multi-lag (MSML) models and the proposed OWDM
designs are tailored to such channels. Given this signaling, the ef-
fective channel matrix for the received signal is banded, allowing
for the modification of prior methods of equalization for orthogo-
nal frequency division multiplexing over narrowband LTV channels.
Performance of such equalizers and signaling is provided via simula-
tion and shown to offer good performance coupled with high spectral
efficiency over previously proposed designs.

Index Terms— Wideband channels, wavelets, OFDM, OWDM.

1. INTRODUCTION

Wideband linear time-varying (LTV) channels are of interest in a
variety of wireless communication scenarios including underwater
acoustic systems and wideband terrestrial radio frequency systems
such as spread-spectrum or ultrawideband. Due to the nature of
wideband propagation, such channels exhibit some fundamental dif-
ferences relative to so-called narrowband channels. In particular,
it has been shown that multi-scale, multi-lag (MSML) channel de-
scriptions offer improved modeling of LTV wideband channels over
multi-Doppler-shift, multi-lag models [1, 2]. Orthogonal frequency-
division multiplexing (OFDM) has been examined for wideband
channels. Approaches include splitting the wideband LTV channel
into parallel narrowband LTV channels [3] or assuming a simplified
model which reduces the wideband LTV channel to a narrowband
LTV channel with a carrier frequency offset [4].

Receivers for single-scaled wavelet-based pulses for wideband
MSML channels are presented in [1, 2], and a similar waveform
is adopted in spread-spectrum systems [5] over wideband chan-
nels modeled by wavelet transforms; while [6] considers equaliz-
ers for block transmissions in wideband MSML channels. In order
to achieve better realistic channel matching, single-scaled rational
wavelet modulation was designed in [7]. However these schemes
all employ single-scale modulation and thus do not maximize the
spectral efficiency. In particular, herein, we shall focus on a form of
orthogonal wavelet division multiplexing (OWDM) which has been
previously examined in [8] but for additive white Gaussian noise
channels. While we shall employ such a modulation over wideband
MSML channels, new equalizer designs are necessary.

The main contributions of this work is a particularization of
OWDM to a MSML channel model using multi-scale block trans-
mission, identifying proper wavelets for the wideband LTV channel

This work is supported in part by NWO-STW under the VICI program
(project 10382).

and providing equalizer designs for our system. In particular, we ob-
serve that our signaling and the channel yield a received signal with
an effective channel matrix which is banded. As such, equalization
methods designed for combatting inter-carrier interference due to the
use of OFDM in narrowband LTV channels (e.g. [9, 10]) can be ex-
ploited as we do so herein.

Notation: Upper (lower) bold-face letters stand for matrices
(vectors); Superscript H denotes Hermitian, ∗ conjugate, T trans-
pose, and † matrix pseudo-inverse. We reserve j for the imaginary
unit, �·� for integer ceiling, �·� for integer flooring, [A]k,m for the
(k,m)th entry of the matrix A, diag(x) for a diagonal matrix with
x on its main diagonal, and imod/k for the modulus of i divided by
k. δk represents a delta function which is equal to one only if k = 0
and zero otherwise.

2. WIDEBAND CHANNEL MODEL

A wideband LTV channel can be described by a general MSML
model [11],

r(t) =

∞∫
0

∞∫
−∞

h(α, τ)
√
αx(α(t− τ))dτdα+ v(t), (1)

where x(t) is the transmitted signal, r(t) is the received signal, v(t)
is the time domain white noise with σ2 as its power spectral density,
and h(α, τ) is the wideband channel spreading function [11]. This
model reflects the fact that the received signal r(t) can be repre-
sented by a superposition of different delayed (by τ ) and scaled (by
α) versions of the transmitted signal (

√
α is a normalization factor).

Due to practical restrictions, τ and α can be limited to τ ∈ [0, τmax]
and α ∈ [1, αmax] without loss of generality by appropriately delay-
ing and scaling the received signal. The parameters τmax > 0 and
αmax − 1 > 0 respectively represent the delay spread and Doppler
scale spread.

We assume that the wideband transmitted signal has a bandwidth
of W� and a Mellin support of M�

1. Then (1) can be approximated
by the following finite-dimensional discrete MSML model ([1, 2]):

r(t) =

R�∑
r=0

L�(r)∑
l=0

hr,la
r/2
� x(ar

�t− lT�) + v(t), (2)

where T� = 1/W� is the arithmetic time resolution and a� =

e1/M� > 1 is the geometric scale resolution of the model. Further,

the channel coefficients are given by hr,l = ĥ(ar
�, lT�/a

r
�) with

ĥ(α, τ) defined in [1] as the doubly-smoothed version of h(α, τ).
Finally, the scale order R� is given by R� = �loga�

(αmax)�,
and the delay order for the rth scale L�(r) is given by L�(r) =

1The Mellin support is the scale analogy of the Doppler spread for nar-
rowband LTV channels – further details and definitions can be found in [12].
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�ar
�τmax/T��. In this work, we assume as in [1] that the discrete

MSML model is well-matched and thus there is negligible differ-
ence between (1) and (2).

3. SCALE LAYERED TRANSMISSION

As previously noted, most prior work on wideband LTV systems em-
ployed transmitted signals at a single scale (or a single delay); herein
we generalize it to multiple scales and delays to increase spectral ef-
ficiency by using an OWDM scheme. By further imposing inter-
scale and inter-delay orthogonality via wavelet signaling, we can
simplify receiver processing. However, it should be observed that
just like in the narrowband time-varying case, we cannot perfectly
jointly diagonalize across delay and scale.

3.1. Signaling Scheme

We start from a unit-energy orthogonal mother wavelet ψ(t) with
unity orthogonality time shift (we call this base time from now on)

and a base scale of a, i.e.
∫∞
−∞ ψ(akt − n)ψ∗(ak′

t − n′)dt =
δk−k′δn−n′ . A symbol is modulated onto the kth scale and nth
delay via the unit-energy pulse

ψk,n(t) =

√
ak

T
ψ(akt/T − n),

which has a base time of T/ak and the base scale a > 1. It is easy
to show that

∫∞
−∞ ψk,n(t)ψ

∗
k′,n′(t)dt = δk−k′δn−n′ .

A critical element of our system is the assumption that we can
properly match the scales and delays of our signaling to that of the
channel, that is, the base time T/ak and base scale a of ψk,n(t)
are matched to the time resolution T� and scale resolution a� of the
channel, which on its turn is determined by the bandwidth and the
Mellin support of the transmitted signal, respectively. Thus, ψk,n(t)
should have a bandwidth of ak/T and a Mellin support of 1/ ln a
(equivalently ψ(t) should have a bandwidth of 1 and a Mellin sup-
port of 1/ ln a). Not all wavelet families satisfy these constraints; in
particular, band-pass natured wavelets often violate our constraints.
However, some orthogonal wavelet families possess good frequency
and Mellin localization (e.g., Shannon wavelets [13]) and as such
approximately satisfy our constraints and thus are candidates for our
signaling system. We assume for simplicity that the desired match-
ing can be achieved without any errors.

We underscore that the base time (and thus bandwidth) of each
ψk,n(t) is different per scale. We equivalently refer to scale or layer
in the context of the signaling scheme. Hence, for the kth layer, the
system model of (2), ignoring the additive noise, is adapted to the
appropriate time and scale resolutions, i.e., we select a� = a and
T� = T/ak in (2), which leads to

rk(t) =
R∑

r=0

L(k+r)∑
l=0

hr,l(k)a
r/2xk(a

rt− lT/ak), (3)

where xk(t) is the transmitted signal at the kth layer (scale), rk(t) is

the received signal at the kth layer, and hr,l(k) = ĥ(ar, lT/ar+k).
We further have R = �loga(αmax)� and L(r) = �arτmax/T �.

We generate the transmitted signal xk(t) for the kth layer as

xk(t) =
∑
n

sk,nψk,n(t), (4)

where the symbol sequence sk,n modulates the shaping pulses
ψk,n(t) at a symbol rate of ak/T . Substituting (4) into (3), we

then obtain

rk(t) =

R∑
r=0

L(r+k)∑
l=0

hr,l(k)a
r/2

∑
n

sk,nψk,n(a
rt− lT/ak)

=

R∑
r=0

L(r+k)∑
l=0

hr,l(k)
∑
n

sk,n

√
a(r+k)

T
ψ(

ar+kt

T
− l − n)

=

R∑
r=0

L(r+k)∑
l=0

hr,l(k)
∑
n

sk,nψr+k,l+n(t).

Transmitting data on multiple layers, our OWDM (multi-layer)
waveform can finally be described as

x(t) =
∑
k

∑
n

sk,nψk,n(t), (5)

Its corresponding received signal r(t) can be expressed as

r(t) =
∑
k

R∑
r=0

L(r+k)∑
l=0

hr,l(k)
∑
n

sk,nψr+k,l+n(t).

3.2. Block Transmission

We limit the number of layers to K, where K is related to the overall
available transmission bandwidth, i.e., K and T are selected such
that aK−1/T matches the overall bandwidth. Further, the data on
every layer in blocks of length N are separated by a cyclic prefix
(CP) of length Z, thus facilitating block processing. Focusing on the
first block of data, the transmitted signal can be written as

x(t) =

K−1∑
k=0

N+Z−1∑
n=0

sk,nψk,n(t),

and its related received signal can be written as

r(t) =

K−1∑
k=0

R∑
r=0

L(r+k)∑
l=0

hr,l(k)

N+Z−1∑
n=0

sk,nψr+k,l+n(t), (6)

where

sk,n =

{
bk,n−Z , for Z ≤ n < N
bk,N+n−Z , for 0 ≤ n < Z

. (7)

At the receiver, we will only consider the received data on the layers
for k ∈ {0, 1, . . . ,K−1}; To avoid interblock interference (IBI) on
these layers, we need Z ≥ L(k), for all k ∈ {0, 1, . . . ,K − 1}, or
in other words Z ≥ �aK−1τmax/T � = �aK−1L(0)�.

The multiple block transmission scheme is depicted in Fig. 1.
The shaded area here depicts the effective data while the blank area
represents the CPs. Fig. 1 shows that there is no IBI after CP re-
moval. As previously noted, the multi-layer OWDM transmission
offers improved spectral efficiency over a single-layered approach
as considered in [7, 1] at the expense of a more complex receiver
structure. If we assume K layers, our achieved spectral efficiency

is
∑K−1

k=0 akN/(NT ) = aK−1
(a−1)T

. In contrast, the single-layered

approach has a maximal efficiency of aK−1/T (on the (K − 1)th
layer) using the same overall bandwidth. Note that for a > 1, it is
clear that the OWDM approach achieves an increased efficiency.

4. WIDEBAND RECEIVER DESIGN

In this section, we develop the receiver for the proposed OWDM
transmission. The first part of the receiver is an extension of the
RAKE receiver concept proposed in [1] and consists of a matched
filter bank for the layers of k ∈ {0, 1, . . . ,K−1} as shown in Fig. 2.
One may compare the discarding of the layers for k ∈ {K, · · · ,K+
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Fig. 1. A schematic view of the proposed OWDM block transmis-
sion scheme
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Fig. 2. Implementation of the matched filter bank

R− 1} here with the removal of the OFDM edge null subcarriers at
an OFDM receiver.

More specifically, the matched filter bank related to the first
block computes the sufficient statistics

yk,n =

(N+Z−1)T/ak∫
ZT/ak

r(t)ψ∗
k,n+Z(t)dt, (8)

for k ∈ {0, 1, . . . ,K − 1} and n ∈ {0, 1, . . . , N − 1}. Note that
in (8) the CP is implicitly removed. Substituting (6) into the matched
filter output (8), ignoring the noise, we have

yk,n =

K−1∑
k′=0

R∑
r=0

L(r+k′)∑
l=0

hr,l(k
′)

N+Z−1∑
n′=0

sk′,n′δr+k′−kδl+n′−n−Z

=

R∑
r=0

L(k)∑
l=0

hr,l(k − r)bk−r,n−l, (9)

where we have used that sk,n+Z = bk,n for k ∈ {0, . . . ,K−1} and
n ∈ {0, . . . , N−1}. Due to the orthogonal properties of the wavelet
family, the additive noise v(t) passing through the filter bank, results
in white Gaussian noise with zero mean and variance σ2.

The output of the matched filter bank (9) yields the input of a
subsequent equalization step. If we define yk = F[yk,0, . . . , yk,N−1]

T ,
bk = F[bk,0, · · · , bk,N−1]

T , vk = F[vk,0, · · · , vk,N−1]
T , and

[F]n,m = 1√
N
e2πj nm

N is the discrete Fourier Transform (DFT) ma-

trix, we can write the relationship between yk and bk as

yk =
R∑

r=0

Hr(k − r)bk−r + vk,

Table 1. Parameters for the adopted wideband channels

Channel L(0) R

I 1 0

II 1 1

III 2 1

where Hr(k − r) = diag([h̃r,0(k − r), . . . , h̃r,N−1(k − r)]) is
an N × N diagonal matrix for k ∈ {0, 1, . . . ,K − 1} and r ∈
{0, 1, . . . , R}, and h̃r,p(k − r) =

∑L(k)
l=0 hr,l(k − r)ej2π

pl
N for

p ∈ {0, 1, . . . , N − 1}. Thus, within a single layer, we can orthog-
onalize the channel as occurs in OFDM and linear time-invariant
channels; however, there is inter-scale interference, as will be seen
in the sequel. If we stack all the yk’s into y = [yT

0 , · · · ,yT
K−1]

T , all

the bk’s into b = [bT
0 , · · · ,bT

K−1]
T and v = [vT

0 , · · · ,vT
K−1]

T ,
we obtain the following relationship

y = Hb+ v, (10)

where H is a KN ×KN matrix specified as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0(0)
H1(0) H0(1) 0

...
. . .

. . .

HR(0)
. . .

. . .
. . .

. . .
. . .

. . .

0 HR(K −R− 1) · · ·H0(K − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us now define M = KN and introduce the M × M
permutation matrix P, which only contains 1’s in the positions{(

i+ 1, �i/M�+Nimod/M + 1
)}M−1

i=0
and 0’s elsewhere. We

can then use P to convert H into H̄ = PHPT , which is a com-
pactly banded matrix with its bandwidth given by R + 1 – we ob-
serve that the bandwidth is determined by the time variation of the
wideband LTV channel. Then, (10) can be rewritten as

ȳ = H̄b̄+ v̄, (11)

where ȳ = Py and b̄ = Pb are the permuted version of the re-
ceived and transmitted data, respectively, and v̄ = Pv is similarly
defined. Thus, the structure of H̄ is the same as that of the frequency-
domain channel matrices of [9, 10] which examine OFDM trans-
mission over narrowband LTV channels. Therefore, we can adapt
the low-complexity LMMSE equalizer of [9] or the low-complexity
turbo equalizer of [10] for our current equalization problem.

We observe that due to a similar structure, one could employ
the methods of [14] to design a coding scheme for our wideband
system to exploit the maximal scale-lag diversity afforded by the
wideband channels as [1, 2] but with a higher data rate due to the
block structure. Such methods are topics for future study.

5. COMPUTER SIMULATIONS AND DISCUSSIONS

In this section, we perform a number of computer simulations to
demonstrate the performance of the proposed wideband system.
A wideband channel is simulated according to (6) wherein each
channel coefficient hr,l(k) is modeled as identically and indepen-
dently distributed Rayleigh. These coefficients are modeled as time-
invariant and known at the receiver. Other channel parameters are
specified in Table 1. We consider a Shannon mother wavelet for
ψ(t), i.e., ψ(t) = sinc(t/2) cos(1.5πt) whose base time is 1 and
base scale is a. This wavelet is much better localized in the fre-
quency domain than the Haar wavelet considered in [1], while its
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support in the Mellin domain is more or less the same, i.e., a ≈ 2.
We further choose QPSK for the data constellation, N = 128,
K = 3, and Z = 8, which satisfies the constraints K > R and
N > Z ≥ �aK−1L(0)�.

Fig. 3 shows the bit-error-rate (BER) performance of our sys-
tem without any bit coding using the LMMSE equalizer from [9]
adapted to (11). The receiver performs best for Channel I which has
no Doppler effects, while a slight drop in BER performance can be
witnessed when the delay or scale spread increases. A similar ob-
servation can be made for an OFDM system over three narrowband
LTV channels modeled by a CE-BEM [15] (ignoring its modeling er-
ror), with the same Doppler shift order R and delay order L(0). One
may argue that the BER performance herein is much better than that
in [9] even when the same Doppler shift order R is adopted. The
reason for this is because we assume (6) is well-matched without
any error, while [9] considers the modeling errors of the CE-BEM
and thus has a performance drop compared with Fig. 3. This fig-
ure also compares the BER performance of our proposed wideband
receiver with that of the matched filter without equalization. As ex-
pected, the inter-scale interference severely affects system perfor-
mance. Fig. 4 shows the BER performance using the Turbo-I/II/III
equalizers from [10] adapted to (11) for Channel II and Channel III
(without coding). The performance curves behave similarly to those
in [10], and it is known that with more iterations, the BER perfor-
mance can be further improved.

6. CONCLUSIONS

A block transmission scheme based on multi-scale OWDM over
wideband LTV channels is proposed. Our proposed signaling of-
fers higher spectral efficiency over previously proposed methods for
such channels. An associated equalizer which employs a matched
filter bank coupled with a frequency-domain equalizer is presented.
The output effective channel has strong similarities to that seen for
narrowband LTV systems employing OFDM and thus, equalizers for
such systems can be adapted to the current scenario resulting in good
performance.
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