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ABSTRACT

In this paper, we propose time-based localization approaches for
asynchronous wireless sensor networks (WSNs), where not only
clock skews but also clock offsets are present at all nodes. We first
propose a joint synchronization and localization approach using the
two-way ranging (TWR) protocol. Furthermore, a novel ranging
protocol, namely asymmetric trip ranging (ATR), is employed and
a two-step joint synchronization and localization approach is de-
veloped. As a result, we achieve efficient closed-form least-squares
(LS) estimators. We compare these two proposed approaches. More-
over, simulation results corroborate the efficiency of our time-based
localization schemes.

Index Terms— Localization, synchronization, clock skew,
clock offset, least squares, two-way ranging

1. INTRODUCTION

With the burgeoning of wireless sensor networks (WSNs) in impor-
tant applications, such as target tracking, environment monitoring,
and geographical routing, it is clear that localization-awareness [1] is
crucial for the successful deployment of WSNs. The unique proper-
ties of ultra-wideband impulse radio [1] facilitate localization based
on time-of-arrival (TOA) or time-difference-of-arrival (TDOA) with
high accuracy and potentially low cost. As the TOA or TDOA mea-
surements are time-based, clock synchronization [2] is tightly cou-
pled with localization.

Localization and synchronization are traditionally treated as
standalone problems. Only few research works [3, 4, 5, 6, 7] have
considered both recently. The two-way ranging (TWR) protocol
proposed in the IEEE 802.15.4a standard [8] is employed in [3, 4]
for asynchronous networks, where the relative clock skews are first
calibrated, and then the node positions are estimated in a distributed
way. The internal delay is further considered in [4]. The impact of
the clock skew is approximated as random noise in [5], and intrasen-
sor TDOAs are calculated to cancel the clock offset. A localization
approach based on triple-differences, which are the differences of
two differential TDOAs, is proposed in [6], where the corrupted
one-way TOA measurements due to the relative clock offset and
clock skew are corrected by several steps. Two-way message ex-
changes are used in [7] for a scenario, where all the anchors with
known positions are synchronized and the sensor node runs freely.
It jointly estimates the clock skew, the clock offset and the position
of the sensor node. Furthermore, it considers the uncertainties of
the anchors clocks and positions, and formulates a generalized total
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least-squares problem to cope with these uncertainties. However, it
is a big challenge to first synchronize all the anchors.

In this paper, we tackle asynchronous WSNs. We first propose
closed-form LS estimators for joint synchronization and localization
using the TWR protocol, which does not require the consecutive [3]
or periodic [4] transmission of ranging packets, and does not ignore
the clock drift during time of flight. Furthermore, we devise a novel
ranging protocol labeled asymmetric trip ranging (ATR), which is
an extension of the one proposed in [9]. The ATR protocol makes
all the other anchors listen to the ranging packets and record times-
tamps, when one anchor and the sensor node exchange their ranging
packets. It can obtain more information than the TWR protocol,
where all the other nodes are idle, when two nodes exchange their
ranging packets. By exploring this extra information, we can not
only estimate the sensor position, but also its processing time and
the clock parameters of all the anchors by closed-form least-squares
(LS) estimators. Moreover, we compare the approaches based on the
ATR and the TWR protocols. In future work, we would like to de-
velop distributed algorithms to cope with joint synchronization and
localization problems in asynchronous WSNs.

2. JOINT SYNCHRONIZATION AND LOCALIZATION
USING THE TWR PROTOCOL

2.1. System Model

Since the TWR protocol is proposed in the standard [8], we first
develop an approach based on this protocol to jointly synchronize
and localize asynchronous WSNs thereby overcoming some of the
drawbacks in [3, 4]. The consecutive [3] or periodic [4] transmis-
sion of ranging packets is required in order to make use of the prior
knowledge of the packet length for relative clock skew estimation.
Moreover, due to the fact that the relative clock skew is expressed in
ppm (10−6), [3, 4] ignores the clock drift during the time of flight,
which is in the order of tens of nanoseconds for an indoor environ-
ment, and thus [3, 4] introduces an approximation. In our proposed
scheme, we do not require a consecutive or periodic packet transmis-
sion, and do not ignore any clock drift. Furthermore, closed-form LS
estimators are developed with computational efficiency.

We deal with asynchronous networks, where not only clock off-
sets but also clock skews are present at all the anchors and the sen-
sor node. Without loss of generality, we consider M anchors and
one sensor node. Our localization target is the sensor node. We
assume that all the nodes are distributed in an l-dimensional space,
e.g., l = 2 or l = 3. The coordinates of the anchor nodes are
known and defined as Xa = [x1, . . . , xM ]l×M , where the vector
xi = [x1i, . . . , xli]

T indicates the coordinates of the ith anchor
node. A vector x of length l denotes the unknown coordinates of the
sensor node. Moreover, the model for the anchor clock [2] is given
by Ci(t) = αit + θi, i = 1, 2, . . . , M , where αi and θi denote the
unknown clock skew and clock offset of the ith anchor clock Ci(t)
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Fig. 1. Examples of different protocols for asynchronous WSNs

relative to the absolute clock. The sensor clock is modeled in the
same way using αs and θs instead.

The ranging packet proposed in the standard is composed of a
synchronization header preamble, a physical layer header (PHR) and
a data field. A so-called ranging bit, which is a bit in the PHR, is set
when the packet is used for ranging. Furthermore, the first pulse of
the PHR is called the ranging marker (RMARKER). The moment
when the RMARKER leaves or arrives at the antenna of a node is
recorded as a timestamp to facilitate ranging. Each anchor carries
out multiple iterations of the TWR protocol as shown in Fig. 1(a)
to measure its distance to the sensor node. As a result, the ith an-
chor measures its round trip time at the jth iteration of the TWR
protocol as Vij , which is obtained by making the difference of its
two timestamps recorded upon the departure and the arrival of the
RMARKERs of the ranging request and the ranging response, re-
spectively. The sensor correspondingly measures its processing time
Dij in the same way. The clock offset of the node is eliminated by
making the difference of its timestamps. However, the clock skews
of the nodes still remain. Thus the relation between Vij and Dij for
the jth iteration can be modeled as

c

2
(
Vij

αi

−
Dij

αs

) = di +
enij

αi

−
emij

αs

, i = 1, 2, . . . , M, (1)

where di = ‖xi − x‖ =
p

‖xi‖2 − 2xT
i x + ‖x‖2 is unknown,

and enij and emij are the distance error terms translated from the
measurement errors in Vij and Dij , which can be modeled as
zero mean Gaussian random variables. Once all the anchors exe-
cute the TWR protocol for one time, we obtain M equations, but
M + l + 1 unknowns in total. Hence, the TWR protocol is exe-
cuted N times by each anchor to obtain extra information. Defining
pi = c

2
[Vi1, Vi2, . . . , ViN ]T and qi = c

2
[Di1, Di2, . . . , DiN ]T

obtained by the ith anchor-sensor pair, we arrive at

1

αi

pi −
1

αs

qi = di1N +
1

αi

eni −
1

αs

emi, i = 1, 2, . . . , M. (2)

2.2. Algorithm

For simplicity, we ignore the noise terms from now on. We are not
interested in methods with a high computational complexity, such as
the maximum likelihood (ML) method which also requires the un-
known noise pdf. Because of the low cost and low power constraints
for a WSN, we would like to explore low-complexity closed-form
solutions. The equations (2) for different anchor-sensor pairs are
coupled through αs and x. They are nonlinear with respect to (w.r.t.)
x due to the nonlinear relation d � d = ψa − 2XT

a x + ‖x‖21M ,
where d = [d1, d2, . . . , dM ]T , � denotes element-wise product
and ψa = [‖x1‖

2, ‖x2‖
2, . . . , ‖xM‖2]T , but each of them is

linear w.r.t. 1/αi, 1/αs and di. Therefore, we can first estimate the
relative clock skew βi = αs/αi based on a set of equations modified
from (2):

βipi − qi = αsdi1N . (3)

Note that αs and di are coupled together. According to (3), N ≥ 2
in order to estimate both βi and αsdi. Since we are only interested
in βi, an orthogonal projection matrix PN = IN − 1

N
1N1T

N onto
the complement of 1N is constructed. Applying PN to both sides of
(3), we can estimate βi as

β̂i =
pT

i PNqi

pT
i PNpi

. (4)

We remark that a different processing time is required in each itera-
tion of the TWR protocol. Otherwise, pi and qi would be canceled
out by the projection in the noiseless case. Sequentially, we plug β̂i

into (3) and average it to mitigate the noise, which leads to

1

Nαs

1
T
N (β̂ipi − qi) = di, i = 1, 2, . . . , M. (5)

After element-wise multiplication of (5), moving knowns to one side
and unknowns to the other side, we achieve

ψa = Kz, (6)

where z = [xT , ‖x‖2, 1
α2

s

]T , K = [2XT
a , −1M , f ] and the ith

element of f is defined as [f ]i = 1
N2 (1T

N (β̂ipi−qi))�(1T
N (β̂ipi−

qi)). Consequently, the LS estimate of z is given by

ẑ = (KT
K)−1

K
T
ψa. (7)

We remark that the rank of K should be l + 2, thus M ≥ l + 2, e.g.,
M ≥ 4 for l = 2.

3. JOINT SYNCHRONIZATION AND LOCALIZATION
USING THE ATR PROTOCOL

3.1. System Model

We observe that all the other nodes are idle, when two nodes ex-
change their ranging packets using the TWR protocol. To make
full use of the broadcast property of wireless signals, we propose
the ATR protocol to make all the other anchors listen to the rang-
ing packets and record timestamps, when one anchor and the sensor
node exchange their ranging packets. It can obtain more information
than the TWR protocol and reduce the communication load.

The same packet structure as proposed in the standard is em-
ployed here. As illustrated in Fig. 1(b), the ATR protocol starts with
the jth anchor initiating a ranging request, and then the sensor node
responses. The ith anchor records the timestamps Tij and Rij upon
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the arrival of the RMARKERs of the ranging request from the jth
anchor and of the ranging response from the sensor, respectively.
Note that Tjj is recorded when the jth anchor initiates the ranging
request. Because we do not use any timestamps from the sensor
node, the clock parameters of the sensor node do not have any influ-
ence on our scheme. This is also one advantage of the ATR protocol
compared to the TWR protocol. By making differences of the times-
tamps from the same anchor, the clock offsets are canceled out. Thus
the relations between Tij and Rij for the jth anchor as the initiator
can be modeled as

c

αi

(Rij − Tij)=di + dj + Δj − dij +
nij

αi

−
mij

αi

, (8)

i = 1, 2, . . . , M

where Δj is the unknown distance corresponding to the processing
time of the sensor node formulating a response to the jth anchor,
di is unknown, and dij = ‖xi − xj‖ is known. Moreover, nij

and mij are the distance error terms translated from the measure-
ment errors in Rij and Tij , which can be modeled as zero mean
Gaussian random variables. Defining uj = c[R1j − T1j , R2j −
T2j , . . . , RMj − TMj ]

T , gj = [d1j , d2j , . . . , dMj ]
T , nj =

[n1j , n2j , . . . , nMj ]
T , and mj = [m1j , m2j , . . . , mMj ]

T , we
can now write (8) in vector form as

diag(uj)γ =d + (dj + Δj)1M − gj + diag(γ)(nj − mj), (9)

where γ = [1/α1, 1/α2, . . . , 1/αM ]T .
The unknown x, γ and Δj have to be estimated according to

(9). There are M + l + 1 unknowns but only M equations in (9).
Note that if an additional anchor plays the role of initiator, we obtain
M new equations and one extra unknown distance corresponding
to the processing time. Assuming that n anchors play the role of
initiator, we have to fulfill the condition nM ≥ M +l+n in order to
obtain enough equations to estimate all the parameters, where M ≥
n > 0. It is possible that only a subset of anchors plays the role of
initiator. However, since we are interested in the minimum number
of anchors required for this approach, we take n = M , which means
that all anchors participate. The minimum value of M is then given
by Mmin = min{M ∈ {1, 2, . . . }|M2 − 2M ≥ l}, for instance,
when l = 2, Mmin = 3. From now on, we ignore the error terms
for simplicity, and assume n = M . We then obtain in total M2

equations and can write them in vector form as follows

Aγ = (B + C)d + CΔ − g, (10)

where A = [diag(u1), diag(u2), . . . , diag(uM )]T , B = 1M ⊗
IM , C = IM ⊗ 1M , Δ = [Δ1, Δ2, . . . , ΔM ]T , g =
[gT

1 , gT
2 , . . . , gT

M ]T , and ⊗ denotes Kronecker product. We
remark that the sensor node is again required to use different pro-
cessing times in response to different anchors. If Δi = Δj , we
obtain the relation (Rij − Tij)/(Rji − Tji) = αi/αj without error
terms, and it is only possible to estimate the relative clock skew.
In that case, the equations (10) are not independent. Therefore, we
assume that Δi �= Δj , i, j ∈ {1, 2, . . . , M}.

3.2. Algorithm

We would like to estimate x, γ and Δ, in total 2M + l unknown
parameters based on (10), which is a complicated nonlinear equa-
tion w.r.t. x. When we ignore the relations among the distances
in d and regard them as independent unknowns, (10) is linear w.r.t.
γ , d and Δ. Therefore, we propose a two-step approach. We first
jointly estimate γ , d and Δ, obtaining a unique estimate for γ but

ambiguous estimates of d and Δ. Secondly, we plug the estimate of
γ into (10), linearize the equation w.r.t x via mathematical manipu-
lations and then estimate x. We remark that although our approach
is accomplished in two steps, the first step is still a joint approach to
estimate γ , d and Δ, and in the second step the estimate of γ is used
and the relation between d and x is explored. Furthermore, we use
the same set of measurements to obtain all the estimates, and thus
our method yields a joint synchronization and localization approach.

In the first step, there are 3M unknowns (γ , d and Δ) and M2

equations. Thus, Mmin = 3 is still valid. However, we note that
[B + C, C] is rank deficient because of the common basis of B

and C. Therefore, we can only jointly estimate d and Δ with am-
biguities. Since we are only interested in the result for γ based on
(10), the subspace minimization method [10] is employed due to its
computational efficiency, which is equivalent to the joint estimation
of all the unknowns. Let us define D = [[B]:,1:M−1, C] of size
M2 × (2M − 1), and obtain an orthogonal projection matrix onto
the orthogonal complement of D as Pd = IM2 −D(DT D)−1DT ,
which fullfills the condition that PdB = PdC = 0M2×M . Premul-
tiplying Pd to both sides of (10), we arrive at

PdAγ = −Pdg. (11)

Consequently, the LS estimate of γ is given by

γ̂ = −(AT
PdA)−1

A
T
Pdg. (12)

We remark that in order to obtain the LS estimate of γ , the condition
M2 + 1 − 2M ≥ M has to be fullfilled taking the penalty of the
projection into account, which means Mmin = 3 is still valid.

In the second step, plugging γ̂ into (10), we achieve

Aγ̂ = (B + C)d + CΔ− g, (13)

where we would like to get rid of the nuisance parameter Δ, and
investigate the nonlinear relation between d and x in order to obtain
a unique estimate of x. Thus, the orthogonal projection matrix Pc

onto the orthogonal complement of C is used, which is given by
Pc = IM2 − 1

M
(IM ⊗ (1M1T

M )). Moreover, we find that PcBd =

Bd− d̄1M2 , where d̄ = 1
M

PM

i=1 di. Consequently, premultiplying
Pc to both sides of (13), we obtain

PcAγ̂ = Bd − d̄1M2 − Pcg. (14)

Due to the special structure of B, we have 1
M

BT B = IM . There-
fore, premultiplying 1

M
BT to both sides of (14), moving d to one

side, the other terms to the other side, and simplifying the equations,
we arrive at

d =
1

M
B

T
PcAγ̂ + d̄1M +

1

M
B

T
Pcg. (15)

After element-wise multiplication on both sides of the equation,
moving unknown parameters to one side, known terms to the other
side, we achieve

φ = Hy, (16)

where φ = ψa−
1

M2 (BT Pc(Aγ̂ +g))�(BT Pc(Aγ̂ +g)), H =

[2XT
a , 1M , 2

M
BT Pc(Aγ̂ + g)] and y = [xT , d̄2 − ‖x‖2, d̄]T .

Thus, the LS estimate of y is given by

ŷ = (HT
H)−1

H
T
φ. (17)

We remark that the rank of H should be l + 2, and thus M ≥ l + 2,
e.g., M ≥ 4 for l = 2. One more anchor is required due to the
linearization compared to Mmin = 3 mentioned before.
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Let us now compare the communication load of this approach
with the one of the approach in Section 2.2. In the worst case, the
ATR protocol is executed by every anchor in the network (in total M
anchors). Therefore, 2M ranging packets are transmitted, and 2M2

timestamps are recorded. On the other hand, if we run the minimum
number of iterations for each anchor-sensor pair in the TWR proto-
col, which is Nmin = 2, 2NminM ranging packets are transmitted,
and 4NminM timestamps are recorded. Obviously, using the ap-
proach based on the ATR protocol, we obtain more information and
have a smaller communication load. Moreover, the estimate of γ

is based on the whole set of measurements, but the estimate of βi

only depends on a subset of measurements. Furthermore, The com-
putational complexities of the estimator (17) for y and (7) for z are
similar, while the one of the estimator (4) for βi is less than the one
of (12) for γ .

4. SIMULATION RESULTS

We now evaluate the performance of the proposed approaches by
Monte Carlo simulations. We consider a simulation setup, where all
the anchors and the sensor node are randomly distributed inside a
40 m×40 m rectangular to mimic an indoor geometry scale (l = 2).
Furthermore, due to the broadcast property of the ATR protocol, we
assume that the noise variances are related to the distances accord-
ing to the path loss law. Hence, mij and mji, i, j ∈ {1, 2, . . . , M}
have the same variance σ2

ij = σ2
ji, while all nij , j ∈ {1, . . . , M}

have the same variance σ2
i . Sequentially, we define the average noise

power as σ̄2 = 1
M

PM

i=1 σ2
i , and choose σ2

ij and σ2
i to fulfill the

condition that all σ2
ij/d2

ij and σ2
i /d2

i are equal. Note that since dii =

0, i ∈ {1, 2, . . . , M}, we simply assume σ2
ii = 0 and mii = 0. For

the TWR protocol, all enij and emij , j ∈ {1, . . . , N} have the same
variance σ2

i , and the same σ̄2 is used. The processing time in the sen-
sor node is randomly generated, uniformly distributed in the range
of 2.5 ms to 7.5 ms. As a result, the corresponding distance Δi is in
the range of 7.5 × 105 m (3× 108 × 2.5 × 10−3) to 2.25 × 106 m.
The clock skews of the anchors and the sensor are randomly gener-
ated and uniformly distributed in the range of [1 − 100 ppm, 1 +
100 ppm]. The performance criterion is the root mean square error

(RMSE) of x̂, which is
q

1/Nexp

PNexp

j=1 ‖x̂(j) − x‖2, where x̂(j)

is the estimate obtained in the jth trial, and Nexp = 2000 is the
number of Monte Carlo trials.

Fig. 2(a) and Fig. 2(b) show the RMSE of x vs. 1/σ̄2 for both
protocols, respectively. We have tested different numbers of anchors.
As M = 5 is just one more than the minimum number of anchors
required by the approaches, the curves with M = 5 (the lines with
circle markers) are not as smooth as the ones with more anchors.
More anchors improve the accuracy of the estimates. In Fig. 2(a),
the performance gap between M = 5 and M = 7 (the line with +
markers) is larger than the one between M = 7 and M = 9 (the
line with rectangular markers). Thus the improvement reduces as
the number of anchors increases. In Fig. 2(b), we choose N = 3.
We observe that the improvement first increases and then reduces
along with the number of anchors. Although the approach based
on the TWR protocol transmits N − 1 times more packets than the
one based on the ATR protocol, we observe in general better perfor-
mance achieved by the latter one.
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