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ABSTRACT
Two novel cooperative localization algorithms for mobile wireless
networks are proposed. To continuously localize the mobile net-
work, given the pairwise distance measurements between different
wireless sensor nodes, we propose to use subspace tracking to track
the variations in signal eigenvectors and corresponding eigenvalues
of the double-centered distance matrix. We compare the compu-
tational complexity of the new algorithms with a recently devel-
oped algorithm exploiting the extended Kalman filter (EKF) and
show that our proposed algorithms are computationally efficient,
and hence, appropriate for practical implementations compared to
the EKF. Simulation results further illustrate that the proposed al-
gorithms are more accurate when the distance errors are small (low
noise scenarios) in comparison with the EKF, while being more ro-
bust to the sampling period in high noise scenarios.

Index Terms— Wireless sensor networks, cooperative mobile
localization, multidimensional scaling, subspace tracking.

1. INTRODUCTION

Cooperative localization in mobile networks has recently received a
large amount of attention due to its practical importance in wireless
sensor networks (WSNs). To accomplish cooperative localization in
static networks, pairwise distance measurements based on received
signal strength are taken between the nodes of the network while
other measurements like angle or time of arrival measurements have
also been employed. One popular solution to find the relative loca-
tions of the nodes based on distance measurements is to use multi-
dimensional scaling (MDS) or its distributed version for large scale
networks [1].

Surprisingly, the problem of cooperative localization for com-
pletely mobile sensor networks has not been efficiently solved yet.
In [2], an anchorless localization scheme for mobile (dynamic) net-
works called SPAWN is proposed based on the theory of factor
graphs. In this scheme, each node requires knowledge about its
own movement model as a probability distribution in order to do
predictions, which is not so simple to be acquired in a real applica-
tion and additionally increases the computational complexity signif-
icantly. Moreover, [2] does not provide a computational complexity
analysis of the proposed scheme. In [3], an EKF based method is
developed to incorporate the nodes’ locations as well as their ve-
locities in a state-space model. Although velocity measurements of
the nodes aid cooperative network localization, it requires the use
of Doppler sensors, which increases the implementation cost, and
hence, we avoid using them.

Inspired by the simplicity and robustness of classical MDS local-
ization in static WSNs, we propose MDS based cooperative network
localization for a mobile network. However, for a mobile network,
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computationally intensive eigenvalue decomposition (EVD) calcu-
lations should be conducted in each snapshot of the network. To
avoid this problem, we propose to use two novel subspace track-
ing algorithms to track the variations in the signal eigenvectors and
corresponding eigenvalues due to variations in the double-centered
distance matrix. We show that this can enable us to estimate the next
location of the moving nodes in the network given their previous lo-
cation estimates, if the variations are small. The main advantages
of the proposed algorithms can be described as follows. First, the
proposed algorithms are computationally efficient, and hence, are
suitable choices for practical implementations. Besides, they have
a good positioning accuracy in low noise conditions. Finally, they
do not rely on the movement model of the nodes (i.e., they are non-
parametric) and can be applied to many practical scenarios.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the system model underlying our analysis and
evaluations. Section 3 describes the proposed cooperative localiza-
tion algorithms based on subspace tracking. Section 4 compares the
computational complexity of the algorithms under consideration in
this paper. Section 5 provides simulation results for mobile sensor
networks with different network parameters. Concluding remarks
are presented in Section 6.

2. SYSTEM MODEL

We consider a network of N mobile wireless sensor nodes, living
in a D-dimensional space (D < N ). Let {xi,k}

N
i=1 be the actual

vector coordinates of the sensor nodes, or equivalently, let Xk =
[x1,k, . . . ,xN,k] be the matrix of coordinates at snapshot k. By col-
lecting the squared pairwise distance measurements d2i,j,k between
the nodes in a distance matrix Dk, i.e. [Dk]i,j = d2i,j,k, the double-
centered distance matrix can be calculated as Bk = −1/2ΥDkΥ,
where Υ is the centering operator [1]. In case of a network with fixed
nodes, Bk can be used in the classical MDS to recover the locations
of the nodes Xk (up to a translation and orthogonal transformation)
by means of the EVD as described in [1].

One trivial solution for a mobile scenario is to perform these
computationally intensive EVD calculations for every snapshot of
the mobile network. Instead, we propose two low-complexity local-
ization algorithms. The proposed algorithms are anchorless in the
sense that the relative positions of the mobile nodes can continuously
be calculated without requiring information about the anchor nodes.
Although, determining the exact location of the nodes (removing the
unknown translation and orthogonal transformation) requires a coor-
dinate system consisting of at least D+1 anchor nodes with known
locations. It is assumed that these anchor nodes are equipped with
long distance transmission devices to continuously localize them-
selves with respect to (w.r.t) a central coordinate system. Since the
number of anchors is generally small compared to the total number
of nodes in a network, this requirement is not intensive from a com-
putational and power consumption point of view.
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3. PROPOSED SUBSPACE TRACKING ALGORITHMS

We start by considering the noiseless case. In that case, the double-
centered distance matrix Bk will be a symmetric N × N matrix
of rank D. For the k-th snapshot of the mobile network, the trivial
approach is to find the locations by means of the EVD as the solution

to min ‖Bk−X̃
T
X̃‖2, where the minimum is taken over all D×D

matrices X̃ . The EVD of Bk can be expressed in the following form

Bk =
[
U1,k U2,k

] [Σ1,k 0

0 0

] [
UT

1,k

UT
2,k

]
= U1,kΣ1,kU

T
1,k. (1)

Now, the location matrix up to a translation and orthogonal transfor-
mation can be written as

X̃k = Σ

1

2

1,kU
T
1,k. (2)

Although the above procedure can be done for every snapshot of a
mobile network, the complexity of computing the EVD in (1) can be
quite intensive for large N [4]. The idea behind the proposed sub-
space tracking algorithms is that in order to calculate the location
of the nodes using (2), we only need to update the D signal eigen-
vectors in U1,k and their corresponding eigenvalues in Σ1,k. This
can be done by more efficient iterative approaches as proposed in the
following.

3.1. Perturbation Expansion-Based Subspace Tracking

In this section, we will explain the idea behind the perturbation
expansion-based subspace tracking (PEST). If the movement of the
nodes satisfies the property that the invariant subspace of the next
(perturbed) double-centered distance matrix (Bk = Bk−1 +ΔBk)
does not contain any vectors that are orthogonal to the invariant sub-
space of the current double-centered distance matrix (Bk−1), the
two bases respectively spanning the signal and noise subspace of the
next double-centered distance matrix follow the expressions [5]

Ũ
u
1,k = Ũ1,k−1 + Ũ2,k−1P k, (3)

Ũ
u
2,k =−Ũ1,k−1P

T
k + Ũ2,k−1, (4)

where P k is a coefficient matrix, Ũ i,k represents an orthonormal ba-
sis spanning the same subspace as the matrix of eigenvectors U i,k,
and Ũ

u
i,k is an unorthonormalized version of Ũ i,k. To compute P k

in (3) and (4), we will resort to a first-order approximation. How-
ever, since we will continuously use first-order approximations, we
can not assume that Ũ1,k−1 and Ũ2,k−1 in (3) and (4) are exact
orthonormal bases spanning respectively the signal and noise sub-
spaces of Bk−1. And thus, the first-order approximation of P k in
[5] does not hold anymore, and we need to derive a new P k. The
value of P k should satisfy the necessary and sufficient condition for
Ũ

u
1,k and Ũ

u
2,k to be new bases for the new perturbed signal and

noise subspaces, and thus we need

(Ũ
u
2,k)

T
BkŨ

u
1,k = 0. (5)

We can expand (5) by substituting (3) and (4) as follows

(−Ũ1,k−1P
T
k +Ũ2,k−1)

T
Bk×(Ũ1,k−1+Ũ2,k−1P k) = 0. (6)

After neglecting the second-order terms, we obtain

− P kŨ
T
1,k−1Bk−1Ũ1,k−1 + Ũ

T
2,k−1ΔBkŨ1,k−1

+ Ũ
T
2,k−1Bk−1Ũ1,k−1︸ ︷︷ ︸

�=0

+ Ũ
T
2,k−1Bk−1Ũ2,k−1︸ ︷︷ ︸

�=0

P k = 0. (7)

Different from the derivations in [5], the third and fourth terms in (7)
are not equal to zero and also the value of their elements increases
with each iteration due to the fact that we are using first-order ap-
proximations in each snapshot. It is notable that (7) is linear in the

elements of P k and can easily be solved w.r.t P k. However, this re-
quires a DN ×DN matrix inverse calculation which is undesirable
due to its high complexity. Therefore, we confine our approximation
of P k to the first three terms in (7). By defining

Σ̃1,k−1 = Ũ
T
1,k−1Bk−1Ũ1,k−1, (8)

this results in

P k = Ũ
T
2,k−1BkŨ1,k−1(Σ̃1,k−1)

−1. (9)

To avoid updating Ũ
u
2,k in (3), we use Ũ1,k−1Ũ

T
1,k−1 + Ũ2,k−1

Ũ
T
2,k−1 = I (I represents the identity matrix). Together with (9),

this allows us to rewrite (3) as

Ũ
u
1,k = Ũ1,k−1+(I− Ũ1,k−1Ũ

T
1,k−1)BkŨ1,k−1Σ̃

−1
1,k−1. (10)

Now, to be able to use the above formula in an iterative manner we
should normalize it using any possible orthonormalization process
like Gram-Schmidt (GS) factorization. We call the orthonormal-
ized result Ũ1,k. As described in [5] and as can be seen from the
above derivations, Ũ1,k is an approximation of the orthonormal ba-
sis which spans the same subspace as its corresponding signal eigen-
vectors in U1,k. However, to be able to calculate the relative loca-
tions using (2), we have to find U1,k. To this aim, we look for a
matrix Ak so that

Ũ1,k = U1,kAk. (11)

Note that since Ũ1,k and U1,k are isometries, Ak will be a unitary
matrix. To be able to estimate the locations according to (2), we also
need to calculate Σ1,k, which depends on the value of U1,k and Ak

as follows
Σ1,k = U

T
1,kBkU1,k.

From (8), and using (11), we finally obtain

Σ̃1,k = (U1,kAk)
T
Bk(U1,kAk),

=A
T
k U

T
1,kBkU1,kAk,

=A
T
k Σ1,kAk. (12)

From (12), Ak and Σ1,k can be calculated by an EVD of Σ̃1,k. Note
that, our main goal for using perturbation expansion was to avoid
computationally intensive EVD calculations, while here we require
it again. However, the point is that Σ̃1,k is a D×D matrix, which is
very small in size compared to the N ×N double-centered distance
matrix (Bk) for large scale sensor networks. The PEST algorithm is
summarized in Algorithm 1.

3.2. Power Iteration-Based Subspace Tracking

Power iterations can also be used to efficiently calculate an invariant
subspace of a diagonalizable matrix (like Bk) [4]. Power iterations
are normally used in an iterative manner to reach an acceptable accu-
racy. Depending on a random initial guess, the number of iterations
can be large, which in turn leads to a high computational complexity.
Additionally, an inappropriate choice of the initial guess can some-
times lead to instability and divergence problems [4]. To avoid both
problems (complexity and divergence) in mobile network localiza-
tion, we propose to do just one iteration in each snapshot of the mo-
bile network and use the previous estimate of the orthonormal basis
as the initial guess for the next estimate. This leads to a scheme that
tracks the desired invariant subspace in a similar fashion as PEST,
and we call it power iteration-based subspace tracking (PIST). Note
that this power iteration-based approach leads to a unique orthonor-
mal basis spanning the desired signal subspace. Thus, the same EVD
calculations as in (12) are required to obtain the matrix of eigenvec-
tors. The PIST algorithm is shown in Algorithm 2.
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Table 1. Computational Complexity
Algorithm Mult. Orthonorm. SQRT Matrix inverse EVD Total flops

PEST 4N2D + 3ND2 +ND 1(N ×D) 2 1 (D ×D) 1 (D ×D)
4DN2 + (5D2 + D)N +
2D3 + 6D2 + 24

PIST 2N2D + 2ND2 +ND 1 (N ×D) 2 - 1 (D ×D)
4DN2+(5D2+D)N+D3+
24

EKFT

(D/2)N5 + (5D2/2 −

D)N4 + (12D3
− 5D2/2 +

2D)N3 + (4D2
− D/2 +

2)N2
− 2N

- DN(N − 1)/2 2 (2DN × 2DN) -

(D/2)N5 + (5D2/2 −

D)N4 + (28D3
− 5D2/2 +

2D)N3+(52D2+11D/2+
2)N2 + (−6D − 2)N

3.3. Extended Kalman Filter Tracking

For the sake of comparison, we also consider cooperative mobile
network localization using the EKF proposed in [3]. However, as
we do not have velocity measurements in our setup, we simplify
the EKF model of [3]. The discrete-time state and measurement
equations can be written as

xk =Φxk−1 +wk, (13)
dk = h(xk) + vk, (14)

where xk = [xT
1,k, . . . ,x

T
N,k, ẋ

T
1,k, . . . , ẋ

T
N,k] is the column vector

of length 2DN containing the nodes’ locations and velocities at the
k-th snapshot, dk = [d1,2,k, d1,3,k, . . . , d(N−1),N,k]

T is the column
vector of pairwise measurements of length N(N − 1)/2 at the k-th
snapshot. Φ = I + FTs, where Ts is the sampling period and F is

F =

[
0DN×DN IDN×DN

0DN×DN 0DN×DN

]
.

Further, we set wk = [0T , w̄T
k ]

T , where we assume that w̄k and
vk are uncorrelated zero-mean white Gaussian noise processes with
standard deviations σw and σv , respectively. To linearize the mea-
surement equations, we take the Jacobian matrix of h(xk) defined
by an N(N−1)/2×2DN matrix Hk = ∇h(xk). The EKF track-
ing (EKFT) algorithm is shown in Algorithm 3. In the algorithm, W
and V are respectively the Jacobian matrix of the partial derivatives
of the state and measurement functions w.r.t the process and mea-
surement noise. P , R and Q are the covariance matrix of the error
in the state estimate, the measurement noise, and the process noise,
respectively.

4. COMPUTATIONAL COMPLEXITY ANALYSIS

We define the computational complexity as the number of operations
required to create one estimate of the nodes’ locations. For the sake
of simplicity, we do not count the number of additions and subtrac-
tions as well as the number of multiplications by 1, −1 or powers
of 2, due to the negligible complexity in comparison with multipli-
cations. Also, we consider the same complexity for multiplications
and divisions, and hence, we present the sum of them as the number
of multiplications (Mult.). Also, we only focus on the steps which
are different in the three algorithms and relax the complexity cal-
culations for similar steps (e.g., initialization) in all the algorithms.
The results are summarized in Table 1.

The last column in the table presents the maximum number of
multiplications as the number of flops. To calculate this, we assume
that Gauss-Jordan elimination is used to calculate the matrix inverse
and N3 + 6N2 multiplications are required to calculate the inverse
of a N × N matrix. As well, we assume that the Newton method
is used to calculate a scalar square root (SQRT) and 12 multipli-
cations are required. Moreover, the GS orthonormalization process
(Orthonorm.) is considered which requires 2ND2 multiplications
for a N × D matrix. And, for a D × D matrix EVD computation,

Algorithm 1 PEST
1: Start with an initial location guess
2: for k = 1 to K do
3: Calculate Ũ

u
1,k using (10)

4: GS orthonormalization Ũ1,k = GS(Ũ
u
1,k)

5: Calculate Σ̃1,k, Ak and Σ1,k using (8) and (12)
6: Calculate U1,k using (11)
7: Location estimation using (2)
8: end for

Algorithm 2 PIST
1: Start with an initial location guess
2: for k = 1 to K do
3: Calculate Ũ

u
1,k = BkŨ1,k−1

4: GS orthonormalization Ũ1,k = GS(Ũ
u
1,k)

5: Calculate Σ̃1,k, Ak and Σ1,k using (8) and (12)
6: Calculate U1,k using (11)
7: Location estimation using (2)
8: end for

Algorithm 3 EKFT
1: Start with an initial location guess
2: for k = 1 to K do
3: Next state:

x̂−
k = Φx̂k−1

4: Next error covariance:
P−

k = ΦP k−1Φ
T +WQk−1W

5: Compute the Kalman gain:
Kk = P−

k H
T
k (HkP

−
k H

T
k + V RkV

T )−1

6: Update the state:
x̂k = x̂−

k +Kk

(
dk − h(x̂−

k )
)

7: Update the error covariance:
P k = (I −KkHk)P

−
k

8: end for

we consider a maximum number of D3 multiplications. As can be
seen in the table, both PEST and PIST have a quadratic complexity in
N while it is of order 5 in N (using the matrix inversion lemma) for
the EKFT. This results in a much higher complexity for the EKFT in
comparison with the proposed algorithms. Note that, including the
velocity and acceleration in the EKF process further increases the
complexity, and makes the implementation impractical.

5. SIMULATION RESULTS

In this section, we compare the performances of the explained algo-
rithms (PEST, PIST, and EKFT) in different mobile network local-
ization scenarios. We consider a network of N = 20 mobile sen-
sors, living in a two-dimensional space (D = 2). The mobile nodes
are considered to be initially deployed in an area of 100m ×100m.
To obtain a fair comparison, we consider the random walk process
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Fig. 1. CDF-MRE performance for Ts = 0.1sec, (a) low noise:
σv = 20cm, (b) high noise: σv = 20m

(with σw = 0.1) and measurement model as described for the EKFT
in Subsection 3.3. Further, we resolve the unknown translation and
orthogonal transformation of our obtained location estimates for all
three algorithms by considering 3 anchor nodes using Procrustes
analysis as explained in [6]. To be able to quantify the performances
of the three algorithms, we define the positioning root mean squared
error (PRMSE) as ( 1

M

∑M
m=1(

1
N

∑N
i=1 ei,m,k)

2)1/2, and the mean
radial error (MRE) as 1

M
1
N

∑M
m=1

∑N
i=1 ei,m,k, where ei,m,k rep-

resents the distance between the real location of the i-th node for
the m-th Monte Carlo (MC) trial at the k-th snapshot and its esti-
mated location. Further, M represents the number of independent
MC trials, which is M = 100 in our simulations.

Figs. 1a and b illustrate the cumulative density function of the
MRE (CDF-MRE) for the three algorithms in two different scenar-
ios with the same sampling period Ts = 0.1sec. The first scenario
(a) is a low noise scenario for which σv = 20cm, while σv = 20m
in the second high noise scenario (b). As is clear from Fig. 1a, more
than 90% of the estimated locations using PEST and PIST have an
MRE of about 15cm, which is about 22cm for the EKFT. This means
that under low noise conditions the proposed algorithms clearly out-
perform the EKFT. From Fig. 1b, we see that more than 90% of the
estimated locations using PEST, PIST and EKFT have an MRE of
about 15m, 18m and 7m, respectively. This means that under high
noise conditions the EKFT outperforms the proposed algorithms and
this can be explained by the sensitivity of MDS based localization
schemes to noise. However, as can be seen in this case, the PEST
outperforms the PIST, which makes it more suitable for high noise
scenarios. This is because in noisy scenarios the value of σ3 (third
eigenvalue of Bk) will be non-zero and can increase with the amount
of noise. Hence, following [4], we conclude that the asymptotic error
of the PIST (defined by (σ3/σ2)

2) will increase with noise.
Fig. 2 illustrates the same high noise scenario depicted as in

Fig. 1b but for a larger sampling period (Ts = 10sec). As is clear
from the CDF-MRE performance (Fig. 2a), if the sampling period in-
creases (decrease in the computational cost) the performance of the
EKFT degrades significantly while PIST and PEST are less sensitive
to this parameter. This makes the proposed algorithms more suitable
for practical implementations in comparison with the EKFT. A com-
parison between Fig. 2a and Fig. 1b reveals that the performance of
the PEST is also degraded, although much less than the EKFT. This
can be justified by the explanation given in Subsection 3.1 which in-
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Fig. 2. CDF-MRE (a) and PRMSE (b) performances for Ts = 10sec
and σv = 20m

dicates that the perturbations should be small and the fact that the
sampling period directly affects the amount of perturbation. The
PRMSE performance (Fig. 2b) depicts the convergence process for
the three algorithms. Again, this figure shows that the EKFT moves
toward divergence with an increase in the sampling period.

6. CONCLUSIONS

Classical MDS is a popular cooperative localization scheme in static
wireless networks. However, computing an EVD for each snapshot
of a mobile network is computationally intensive. To overcome this
problem, we have proposed two novel algorithms based on subspace
tracking to track the variations in the signal eigenvectors and corre-
sponding eigenvalues of the double-centered distance matrix. It has
been shown that the proposed algorithms have a low computational
complexity and outperform a comparable approach using the EKF in
terms of localization accuracy in low noise scenarios. Furthermore,
it has been illustrated that the proposed algorithms are less sensitive
to the sampling period of the measurements, which again leads to
cost-efficiency for practical implementations. Future work will be
conducted on the distributed realization of the proposed algorithms
thereby focusing on networks with partial connectivity.
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