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Abstract—Tracking multiple moving targets is known to be
challenged by the nonlinearity present in the measurement equa-
tion, and by the computationally burdensome data association
task. This paper introduces a grid-based model of target signal
strengths leading to linear state and measurement equations,
that can afford state estimation via sparsity-aware Kalman
filtering (KF), and bypasses data association. Leveraging the
sparsity inherent to the novel grid-based model, a sparsity-
cognizant KF tracker is developed that effects sparsity through
ℓ1-norm regularization. The proposed tracker does not require
knowledge of the number of targets or their signal strengths, and
exhibits considerably lower complexity than the hidden Markov
filter benchmark, especially as the number of targets increases.
Numerical simulations demonstrate that the sparsity-cognizant
tracker enjoys improved root mean-square error performance
at reduced complexity when compared to its sparsity-agnostic
counterparts.

Keywords: Multi-target tracking, Kalman filter, sparsity, com-

pressed sensing.

I. INTRODUCTION

The major importance and continuously expanding interest

in target tracking research and development are testified by the

gamut of traditional and emerging applications, which include

radar- and sonar-based systems, surveillance and habitat mon-

itoring using distributed wireless sensors, collision avoidance

modules envisioned for modern transportation systems, and

mobile robot localization and navigation in the presence of

static and dynamic obstacles, to name a few; see e.g., [3], [7],

and references thereon.

At the core of long-standing research issues even for single-

target tracking applications is the nonlinear dependence of the

measurements on the desired state estimates, which challenges

the performance of linearized Kalman filter (KF) trackers,

including the extended (E)KF, the unscented (U)KF, and their

iterative variants [3], [7]. This has motivated the development

of particle filters (PF), which can cope with nonlinearities

but tend to incur prohibitively high complexity in many crit-

ical applications. For multi-target tracking, data association

constitutes another formidable challenge, especially when the

ambient environment is cluttered, and the sensors deployed are

unreliable. This challenge amounts to determining the target

responsible for each measurement; see e.g., [7]. Once data

association is established, targets can be tracked separately

using the associated measurements, in conjunction with track

fusion for improved accuracy.

Recent multi-target tracking schemes aim at bypassing data

association at the price of tracking less informative estimates.

Two such representatives are the probability hypothesis density

(PHD) filter [19], and the Bayesian occupancy filter (BOF)

[10]. The PHD filter tracks the so-termed target intensity,

while the BOF adopts a grid-based model to describe target

occupancy, and tracks the probability of a grid point being

occupied by any target. PHD and BOF neither differentiate nor

label individual targets, but rather determine the probabilistic

presence of targets in space and thus bypass the more infor-

mative but also considerably complex task of data association.

The present paper develops a multi-target scheme for track-

ing target signal strengths. The latter are modeled using a

state vector with entries representing the strength of signals

emitted or reflected by targets located on (or close to) grid

points of known positions. This grid-based state-space model

bears resemblance to the BOF, and shares similar advantages

in terms of avoiding data association. The main difference here

is that state estimation becomes possible via KF applied to a

linear state and measurement model at considerably reduced

computational burden relative to the complexity incurred by

the BOF. This is because the novel grid-based tracker exploits

the sparsity present in the state vector, and leverages efficient

solvers of (weighted) least-squares (LS) minimization prob-

lems regularized by the ℓ1-norm of the desired state estimate.

Sparsity-aware estimators have been studied for variable

selection in static linear regression problems, and have re-

cently gained popularity in signal processing and various

other fields in the context of compressive sampling; see

e.g., [4], [8], [9], [14]. However, few results pertain to the

dynamic scenario encountered with target tracking. When

measurements arrive sequentially in time, a sparsity-aware

recursive least-squares scheme was reported in [1], but its

tracking capability is confined only to slow model variations;

see also [2] for a sparsity-cognizant smoothing scheme which

does not lend itself to filtering; and also [18], where a so-

called KF-CS-residual scheme is reported for tracking slowly

varying sparsity patterns. Different from existing alternatives,

the present paper develops a sparsity-aware Kalman tracker

along with its error covariance, without requiring knowledge
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of the number of (possibly fast-moving) targets or their signal

strengths. Alongside the sparsity-aware KF tracker proposed

here, a sparsity-cognizant iterated extended KF (IEKF) tracker

is developed in [12] which accommodates sparsity by viewing

it as an extra measurement. The IEKF tracker also allows for

the development of more accurate error covariance matrices.

The rest of the paper is organized as follows. Section

II develops the novel grid-based sparse model, for which a

sparsity-agnostic KF tracker is introduced in Section III. The

sparsity-cognizant KF tracker is presented in Section IV for

a single-target setup. The multi-target scenario is treated in

Section V. Numerical results are presented in Section VI,

followed by concluding remarks in Section VII.

II. GRID-BASED STATE SPACE MODEL

Consider the problem of tracking M moving targets using N
active (e.g., radar) or passive (e.g., acoustic) sensors deployed

to provide situational awareness over a geographical area.

Associated with each target, say the mth one per time k, is its

position vector p
(m)
k , and the signal of strength s

(m)
k that the

target reflects or emits. Sensor n measures the superposition

of received target signals, namely

yn,k =
M
∑

m=1

h(d
(m,n)
k )s

(m)
k + νn,k , n = 1, . . . , N (1)

where h(·) denotes the distance-dependent propagation func-

tion; d
(m,n)
k := ‖p

(m)
k − qn‖2 is the distance between the

known position qn of sensor n and the unknown position

vector p
(m)
k of target m; and, νn,k is zero-mean Gaussian

noise at sensor n. Function h(·) satisfies h(0) = 1, is non-

negative, decreasing, and is either assumed known from the

physics of propagation or it is acquired through training [14].

At each time k, a centralized processor has available the

measurement vector yk := [y1,k, y2,k, . . . , yN,k]
T

, based on

which the target positions {p
(m)
k }M

m=1 are to be tracked. For

clarity in exposition, consider first the single-target scenario

(M = 1), and drop the superscript (m) until Section V, where

the multi-target extension is discussed.

The major challenge in tracking and localization problems

is that the measurements in (1) are nonlinear functions of the

wanted target position vectors. A neat approach to arrive at a

linear measurement model is to adopt a set of G (possibly

regularly spaced) grid points at known positions {gi}
G
i=1,

where target(s) could be potentially located; see also e.g., [10],

[9], and [4]. Using a sufficiently dense grid, it is possible to

capture the target location at a prescribed spatial resolution

using a G×1 vector xk having all entries equal to zero except

for the ik-th entry, x
(ik)
k , which is equal to the target signal

strength at time k if and only if the target is located at the

ik-th grid point, that is pk = gik
. Note that if the target

is located exactly on a grid point ik, then x
(ik)
k ≡ sk 6= 0

will be the only nonzero entry of xk. However, to account

for target presence off the preselected grid points, it will be

allowed for the unknown target signal strength sk to “spill

over” grid points around ik and thus render nonzero a few

neighboring entries of xk. For M = 1, these considerations

lead to a measurement equation given by [cf. (1)]

yn,k =
∑G

i=1 h(d(i,n))x
(i)
k + vn,k = hT

nxk + vn,k (2)

where hT
n := [h(d(1,n)), h(d(2,n)), . . . , h(d(G,n))]T ; d(i,n) :=

‖qn − gi‖2 now denotes the known time-invariant distance

between the nth sensor and the ith grid point; and the noise

vn,k replacing νn,k in (1) captures the unmodeled dynamics

in the aforementioned “spill over” effect. Notwithstanding, the

measurements are here linear functions of the unknown xk

whose nonzero entries reveal the grid point(s) where target

signal strength is present at time k.

The next step is to model the evolution of xk in time as the

target moves across the grid. To this end, consider expressing

each entry of xk as x
(j)
k = s·p(x

(j)
k 6= 0), where s ≥ 0 denotes

a nonnegative proportionality constant, and p(x
(j)
k 6= 0) stands

for the probability of the target signal strength to be present on

grid point j at time k. Invoking a total probability argument

yields p(x
(j)
k 6= 0) =

∑G

i=1 p(x
(j)
k 6= 0, x

(i)
k−1 6= 0), which

after employing Bayes’ rule leads to

p(x
(j)
k 6= 0) =

G
∑

i=1

f
(ij)
k p(x

(i)
k−1 6= 0) (3)

where f
(ij)
k := p(x

(j)
k 6= 0|x

(i)
k−1 6= 0) denotes the probability

that the target moves from grid point i at time k − 1 to

grid point j at time k. Since each xk entry is proportional

to the probability of the target located at the corresponding

grid point, (3) implies the following Gauss-Markov recursion

x
(j)
k =

∑G

i=1 f
(ij)
k x

(i)
k−1, j = 1, . . . , G . (4)

Concatenating (4) for j = 1, . . . , G, and (2) for n = 1, . . . , N ,

one arrives at the grid-based model

xk = Fkxk−1 (5a)

yk = Hxk + vk (5b)

where the G × G state transition matrix Fk has entry

(i, j) given by f
(ji)
k ; the measurement matrix is defined

as H := [h1, . . . ,hn]
T

; and likewise for the noise vector

vk := [v1,k, . . . , vN,k].
A distinct feature of model (5) is that the unknown xk is

sparse ∀k, since only a few out of the G entries are nonzero

(in fact exactly one if the target is located on the grid). This

sparsity attribute will prove to be instrumental for enhancing

tracking performance. Given y1:k := {yT
1 , . . . ,yT

k }
T , the goal

of this paper is to track xk using a sparsity-aware Kalman

filter (KF).

Having available x̂
(j)
k estimates, and recalling that x

(j)
k :=

s · p(x
(j)
k 6= 0), one can estimate the constant capturing the

target’s signal strength at time k as [cf. (3)]

ŝk =
∑G

j=1 x̂
(j)
k

and the target’s position vector at time k as

p̂k = (1/ŝk)
∑G

j=1 gj x̂
(j)
k . (6)



In addition to reduced complexity, an attractive feature of

the present formulation relative to e.g., [10] is that even for

finite G, there is no need to assume that the target is located

on grid points since (6) allows for interpolating the target

position vectors regardless. The following remark is useful

to appreciate this point.

Remark 1. Given measurements y1:k and supposing that the

target signal strength s is known, the maximum a posteriori

probability (MAP) optimal tracker of p(xk|y1:k) is a hidden

Markov model (HMM) filter implementing the following re-

cursions

p
(

x
(j)
k 6= 0|y1:k−1

)

=
∑G

i=1 f
(ij)
k p

(

x
(i)
k−1 6= 0|y1:k−1

)

p
(

x
(j)
k 6= 0|y1:k

)

=
p(yk|x

(j)
k 6= 0)p(x

(j)
k 6= 0|y1:k−1)

∑

i p(yk|x
(i)
k 6= 0)p(x

(i)
k 6= 0|y1:k−1)

where f
(ij)
k is the transition probability as in (3). Knowing

f
(ij)
k specifies a Markov chain (MC) with the position of the

nonzero entry in xk determining the current state of the MC.

While complexity of these HMM recursions may be affordable

for M = 1, it becomes prohibitive for multiple targets because

the number of MC states, G!/(G−M)!, grows combinatorially

in M . Even for a single target though, a large G increases

grid density and hence spatial resolution at the expense of

increasing complexity. In addition to these challenges, the

BOF in [10] entails approximations to arrive at related HMM

recursions, and requires s and M to be known beforehand.

One more remark is now in order.

Remark 2. Although the measurement vector in (5b) com-

prises scalar measurements from N geographically distributed

sensors per time k, it is possible to form yk with samples of

the continuous-time signal received at a single (e.g., a radar

or sonar) sensor by over-sampling at a rate faster than the rate

xk changes, so long as the state-space model (5) is guaranteed

to be observable (and thus xk is ensured to be identifiable).

III. KF FOR TRACKING TARGET SIGNAL STRENGTH

If the non-negativity constraints for xk were absent, the

optimal state estimator for (5) in the MAP, mean-square (MS),

or least-squares (LS) error sense would be the KF. The same

direction is pursued here in the presence of non-negativity

constraints. Suppose that an estimate x̂k−1|k−1 and error

covariance matrix Pk−1|k−1 are available from the previous

time step. At time k, the KF state predictor and its error

covariance are obtained as

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k + Qk

(7)

where Qk is a regularizing matrix added to ensure that Pk|k−1

remains positive definite. Typically, Qk = ǫIG where IG is the

identity matrix of size G and ǫ > 0 is small.

For the KF corrector update, consider the LS formulation of

the KF; see e.g., [16]. The predictor updates (7) can be derived

based on LS too, and as will be seen later on, a regularized

form of LS will be useful to effect sparsity-awareness. Viewing

x̂k|k−1 as a noisy measurement of xk, it follows readily from

(7) that x̂k|k−1 = xk + ek|k−1, where ek|k−1 has covariance

matrix Pk|k−1. Stacking x̂k|k−1 and yk to form an augmented

measurement vector, the following linear regression arises
[

x̂k|k−1

yk

]

=

[

IG

H

]

xk +

[

ek|k−1

vk

]

where the augmented noise vector has block diagonal co-

variance matrix denoted as diag(Pk|k−1,Rk). The weighted

(W)LS estimator for this linear regression problem is given by

x̂k|k = arg min
xk≥0

‖x̂k|k−1−xk‖
2
P

−1
k|k−1

+ ‖yk−Hxk‖
2
R

−1
k

(8)

where ‖x‖2
A

:= xT Ax. In the absence of non-negativity

constraints, the optimal state corrector x̂k|k can be found in

closed form as the cost is quadratic, and likewise its error

covariance can be updated as

Pk|k = Pk|k−1−Pk|k−1H
T (HPk|k−1H

T +Rk)−1HPk|k−1.
(9)

To solve (8) with non-negativity constraints, a gradient pro-

jection algorithm will be developed in Section IV. However,

(9) will still be used bearing in mind that this update is

approximate now. The KF tracker implemented by (7)-(9) is

sparsity-agnostic, as it does not explicitly utilize the prior

knowledge that xk is sparse.

IV. SPARSITY-AWARE KF TRACKERS

Taking into account sparsity, this section develops sparsity-

cognizant trackers. To this end, the degree of sparsity quanti-

fied by the number of nonzero entries of xk , namely the ℓ0-

norm ‖xk‖0, is used to regularize the LS cost of the previous

section. Unfortunately, such a regularization results in a non-

convex optimization problem that is NP-hard to solve, and

motivates relaxing the ℓ0-norm with its closest convex ap-

proximation, namely the ℓ1-norm. Thus, the proposed sparsity-

cognizant tracker is based on the state corrector minimizing

the following ℓ1-regularized WLS cost function

x̂k|k = arg min
xk≥0

J(xk) (10)

J(xk) :=‖x̂k|k−1 − xk‖
2
P

−1
k|k−1

+ ‖yk − Hxk‖
2
R

−1
k

+ 2λk‖xk‖1.

The state corrector minimizing (10), together with the co-

variance update1 in (9) and the prediction step in (7), form the

recursions of the sparsity-aware KF tracker. Relevant design

choices and algorithms for minimizing (10) are discussed next.

A. Parameter Selection

The scalar parameter λk in (10) controls the sparsity-bias

tradeoff [13]. The corrector x̂k|k becomes increasingly sparse

as λk increases, and eventually vanishes, i.e., x̂k|k = 0, when

λk exceeds an upper bound λ∗
k. There are two systematic

means of selecting λk . The first one popular for variable

selection in linear regressions is cross-validation [13, pp. 241-

249]. The second one is the so-termed absolute variance

deviation (AVD) based selection that has been advocated in

1A more accurate covariance update can be found in [12].



the context of outlier rejection setups [11]. Unfortunately,

both methods require solving (10) many times for different

trial values of λk. This can be acceptable for offline solvers

of a linear regression problem or a fixed-interval smoothing

scenario, but incurs large delays for real-time applications. For

the tracking problem at hand, the simple rule advocated is to

set λk = αλ∗
k , where α ∈ (0, 1) is a fixed scaling value to

avoid the trivial solution x̂k|k = 0. The bound λ∗
k is derived

below.

Proposition 1. The solution to (10) reduces to x̂k|k = 0 for

any scalar λk ≥ λ∗
k, where

λ∗
k = ‖P−1

k|k−1x̂k|k−1 + HTR−1
k yk‖∞. (11)

Proof: See [12].

B. Gradient Projection Algorithms

As (10) is a convex problem, convex optimization software

such as SeDuMi [15] can be utilized to solve it efficiently.

In addition to these solvers, low-complexity iterative methods

are developed here, by adopting the gradient projection (GP)

algorithms in [6, pp. 212-217]. Note that these can be used

to obtain the sparsity-agnostic tracker too, since the latter is

obtained by minimizing a special case of (10) corresponding

to λk = 0.

At each time k, the GP is initialized with x̂k|k(0) = x̂k|k−1

at iteration l = 0. Corrector iterates from l to (l + 1) are

obtained as follows

x̂k|k(l + 1) =
[

x̂k|k(l) − γ∇J
(

x̂k|k(l)
)]+

(12)

where [x]+ denotes the projection onto the non-negative

orthant, γ is the step size, and

∇J(x) = 2
(

−P−1
k|k−1(x̂k|k−1−x)−HTR−1

k (yk−Hx)+λk1
)

.

Here J(xk) is differentiable because ‖xk‖1 = xT
k 1 when

xk ≥ 0.

While (12) is a Jacobi-type algorithm updating all the entries

at once, one can also devise Gauss-Seidel variants, where

entries are updated one at a time [6, pp. 218-219]. This is

possible because the non-negative orthant is a constraint set

expressible as the Cartesian product of one-dimensional sets,

allowing entry-wise updates per iteration (l + 1) as

x̂
(j)
k|k(l + 1) = max

{

0, x̂
(j)
k|k(l) − γ∇jJ

(

x̃
(j)
k|k(l)

)}

(13)

where x̃
(j)
k|k(l) :=

{

x̂
(1:j−1)
k|k (l+1), x̂

(j:G)
k|k (l)

}

has its first j−1

entries already updated in the (l + 1)st iteration. Convergence

of the iterations in (13) to the optimum solution of (10) is

guaranteed under mild conditions by the result in [6, p. 219].

Specifically, J(xk) should be non-negative and its gradient

should be Lipschitz continuous, both of which hold for the

objective in (10).

Proposition 2. Any limit point of the sequence generated by

(13), with arbitrary initialization x̂
(0)
k|k , is an optimal solution

of (10) provided that γ is chosen small enough.

In practice, only a few gradient-projection iterations are

run per time step k to allow for real-time sparsity-aware KF

tracking.

V. EXTENSION TO MULTI-TARGET TRACKING

The target signal strength vector xk in (2) can be adjusted

to account for multiple targets. Suppose that the mth target

moves to the i
(m)
k -th grid point at time k, and let xk have M̄ ≥

M nonzero entries indexed by {i
(m)
k }M̄

m=1; that is, x
(i

(m)
k

)

k =

s
(m)
k , and the rest G − M̄ entries of xk are zero. Clearly, the

measurement model for xk in (2) still holds, and so does the

measurement equation in (5b). Using the same model for target

state transitions, the state vector xk has now entries given by

x
(j)
k := s(m) · p(x

(j)
k 6= 0). Assume now that all targets are

homogeneous, in the sense that their transition probabilities

are all equal to {f
(ij)
k }G

i,j=1 for every target m. Accordingly,

the state recursion in (3) holds, and so does the state equation

(5a); see [12] for a detailed derivation.

In a nutshell, the grid-based state space model (5) holds

for any M ≥ 1 under the assumption of homogeneous

target state transitions. Because xk represents superimposed

signal strengths rather than occupancy probabilities, the model

applies even when targets are located not necessarily on grid

points. The sparsity attribute of xk is also present in the multi-

target scenario because the combined spatial occupancy of all

targets, measured by ‖xk‖0, is still much smaller than the grid

size G. Therefore, the developed KF tracker applies directly

for M ≥ 1.

While xk is tracked, two additional steps are needed for

tracking multiple targets. First, the target positions per time

k must be calculated along with M for each k. This can be

accomplished via clustering techniques, such as the k-means

algorithm [13]. Suppose that an estimate M̂ is acquired and

x̂k|k has been separated into M̂ clusters. The mth cluster,

represented by G(m), contains indices i(m) ∈ G(m) with

estimated entries x̂
(i(m))
k|k corresponding to grid points located

at position vectors gi(m) . Similar to the single-target case in

(6), the target positions can be estimated as

p̂
(m)
k =

∑

i∈G(m) gix̂
(i)
k|k

∑

i∈G(m) x̂
(i)
k|k

, m = 1, 2, . . . , M̂ . (14)

Second, given {p̂
(m)
k }, track-to-track association and labeling

must be performed to produce target trajectories. This can

be done using known methods such as the simple nearest-

neighbor algorithm and optimization-based multiple hypothe-

ses testing [3], [7]. (The omitted details along with a joint

state-vector tracking and track association approach are pro-

vided in [12].)

Nevertheless, it is worth stressing that the developed KF

trackers are immune to error propagation caused by position

estimation errors, track association errors or even errors in

estimating the number of targets, simply because these errors

occur after x̂k|k vectors have been estimated.

Further elaboration on resolving track association issues,

enhancing performance using multi-resolution grids, and re-

laxation of the target homogeneity assumption are interesting

future research directions to be pursued.
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Figure 1. True target track on the grid.

VI. NUMERICAL TESTS

Consider a 300 × 300 plane, in which N = 10 sensors are

randomly placed. A 10 × 10 rectangular grid is adopted with

equally-spaced grid points. Simulations are performed for both

single- and multi-target scenarios.

A single target setup is considered first. The target starts at

the center of the grid at time k = 1, and moves according to

the following model: it stays on the current grid point with

probability 1/3, and moves to one of the four adjacent cells

with probability 2/3, which means moving up, down, right or

left with equal probability of 1/6 each. Whenever the target

moves outside the boundaries, it is assumed remaining at its

latest position during that time step. One random realization

of this movement model is considered for Kmax = 30 time

steps. In Fig. 1, the grid-point indices for the target positions

are plotted along the x- and y-directions over time. The target

signal strength is s = 10, and the measurement noise v
(n)
k is

zero-mean, independent identically distributed (i.i.d.) Gaussian

with unit variance. The propagation function h(x) in (1) is

given by h(x) = c/(c+x2), where c is chosen so that h(60) =
0.5. Note that h(x) decreases from h(0) = 1, as x increases.

The proposed sparsity-agnostic and sparsity-aware KF

trackers in Sections III-IV are employed to estimate the target

signal strengths and position vectors. The position estimation

accuracy in terms of the average root mean square error

(RMSE) is illustrated in Fig. 2, where the average RMSE =
√

1
Kmax

∑Kmax

k=1 ‖p̂k − pk‖2
2. The position estimates are ob-

tained by picking the center of the grid point corresponding

to the peak of the estimated target signal strength profile. The

x-axis in Fig. 2 is the weighting coefficient λk as a fraction of

λ∗
k in (11). The sparsity-agnostic tracker corresponds to setting

λ = 0 in (10), and results in constant RMSE. Matrix Qk in

(7) was set equal to IG. The sparsity-aware tracker performs

much better than the sparsity-agnostic one for all λk 6= 0.

The value of λk = 0.1λ∗
k appears to be the best value, The

optimal HMM filter exhibits the best performance, but requires
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Figure 2. RMSE for sparsity-agnostic and sparsity-aware KF trackers.
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Figure 3. The nonzero support of the estimated target energy profiles over
time, alone with true and estimated target trajectories (y-direction only).

knowledge of target signal strength.

Fig. 3 demonstrates the dynamic behavior of the sparsity-

aware estimator in (10) with λk = 0.9λ∗
k. The estimated state

vectors are depicted over time, with a circle representing a

nonzero target signal strength at the corresponding grid point.

The true target trajectory and the estimated one are plotted

as well. For clarity, only the projection of the target track

on the y-direction is depicted. It is seen that the “cloud” of

nonzero target signal strengths follow the true track trajectory.

The estimated target profile is spatially sparse. The size of the

nonzero support indicates the uncertainty in target position

estimates, which apparently does not grow over time, even

when using a simple linear KF tracker to follow the state

transition pattern.

In the multi-target setup, two targets are located on north-

west and south-east positions on the grid at time k = 1. They

start moving according to the same movement model used for

the single-target case. In addition, if the model decides that the
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Figure 4. True target tracks and target position estimates (N = 40).

target should move into an occupied grid point, then the target

does not move for that time step. This avoids target collisions,

but still allows targets to get close, on adjacent grid points.

Simulations are performed on a sample trajectory obtained

from these two moving targets. For the sparsity-aware KF

tracker with λk = 0.1λ∗
k, its position estimation accuracy in

the multi-target case is tested. The k-means algorithm is used

to find clusters in the nonzero target strength profile estimates,

and the peak of each cluster is selected to estimate the target

position. These position estimates are plotted as circles in Fig.

4, for the x- and y-directions, respectively, along with the true

target trajectories. The position estimation performance for the

N = 40 sensors used here is more accurate than that with

N = 10.

VII. CONCLUSIONS

The problem of tracking multiple targets on a plane has been

investigated. A grid-based state space model was introduced

to describe the dynamic behavior of target signal strengths.

This model not only renders the nonlinear estimation problem

linear, but also facilitates incorporation and exploitation of the

sparsity present. A sparsity-aware Kalman tracker promoting

sparsity of the state estimates through ℓ1-norm minimization

was developed. The proposed tracker does not require knowl-

edge of the number of targets or their signal strengths, and

incurs markedly lower complexity than the optimal hidden

Markov model filter. It offers improved tracking performance

at reduced sensing cost, especially when compared to sparsity-

agnostic trackers.
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