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ABSTRACT 

Power spectrum blind sampling (PSBS) consists of a sam­
pling procedure and a reconstruction method that is able to 
recover the unknown power spectrum of a random signal from 
the obtained sub-Nyquist-rate samples. It differs from spec­
trum blind sampling (SBS) that aims to recover the spectrum 
instead of the power spectrum of the signal. In this paper, a 
PSBS solution is first presented based on a periodic sampling 
procedure. Then, a multi-coset implementation for this sam­
pling procedure is developed by solving the so-called minimal 
sparse ruler problem, and the coprime sampling technique is 
tailored to fit into the PSBS framework as well. It is shown 
that the proposed multi-coset implementation based on mini­
mal sparse rulers offers advantages over coprime sampling in 
terms of reduced sampling rates, increased flexibility and an 
extended range of estimated auto-correlation lags. These ben­
efits arise without putting any sparsity constraint on the power 
spectrum. Application to sparse power spectrum recovery is 
also illustrated. 

Index Terms- Multi-coset sampling, sparse ruler, co­
prime sampling 

1. INTRODUCTION 

In recent years, spectrum estimation has gained renewed in­
terest because of its significance in the field of cognitive radio 
networks, where unlicensed secondary users can opportunisti­
cally utilize licensed frequency bands when the licensed own­
ers are not active. For such networks, unlicensed users are 
required to sense the wireless environment over a broad fre­
quency band and identify spectrum holes in the licensed bands 
that can subsequently be exploited to establish a communica­
tion link. In general, a wide frequency range has to be sensed, 
which requires power-hungry high-rate analog-to-digital con­
verters (ADCs). This issue has spurred researchers to ex­
amine specific features of the licensed spectrum that can be 
exploited to alleviate the requirements of the ADCs. Spar­
sity of the spectrum or its derivative (the so-called edge spec­
trum), are often considered [1, 2, 3]. These features enable 

This work is supported in part by NWO-STW under the VICI program 

(project 10382) and US NSF grants #1017887 and #0925881. 

978-1-4577-0274-71111$26.00 ©2011 IEEE 

one to decrease the signal sampling rate below the Nyquist 
rate while maintaining perfect reconstruction in the noise-free 
case. Multi-coset sampling investigated in [2, 4] is one popu­
lar way to reduce the sampling rate for the case of multiband 
signals having a frequency support on a union of finite inter­
vals. Similarly, [3] evaluates sub-Nyquist sampling for sparse 
multi band analog signals by means of a so-called modulated 
wideband converter (MWC) consisting of multiple branches, 
each of which employs a different mixing function followed 
by low-pass filtering and low-rate uniform sampling. Both of 
the above approaches can be cast into a compressive sampling 
framework. The reconstruction process can be accomplished 
by using any sparse recovery methods such as the LASSO 
algorithm [5], or even using traditional methods such as mul­
tiple signal classification (MUSIC) [2] or the minimum vari­
ance distortionless response (MVDR) method [6]. The meth­
ods discussed in [2, 3] are known as spectrum blind sampling 
(SBS), where the objective is to sample the signal at mini­
mal rate and reconstruct the unknown spectrum from these 
samples, given that the spectrum is sparse. It has been found 
in these works that, for most signals, the minimum average 
sampling rate is given by the Landau lower bound (as studied 
in [4 D, which is equal to the Nyquist rate multiplied with the 
frequency occupancy ratio. Nevertheless, in the worst sce­
nario, the minimum average sampling rate increases and it is 
given by the minimum of twice the Landau lower bound and 
the Nyquist rate. 

While all the above works focus on spectral estimation 
and intend to obtain perfect reconstruction of the original sig­
nal, only the power spectrum (aka the power spectral density), 
or equivalently, the auto-correlation function, needs to be re­
constructed for spectrum sensing applications. In [1, 7, 8], 
power spectrum estimation approaches have been developed 
by focusing on the auto-correlation function instead of the 
original signal itself. The wideband spectrum sensing method 
in [1] basically exploits the inherent sparsity feature of the 
edge spectrum. To directly perform compressive sampling 
on the received signal, [7] exploits the relationship between 
the auto-correlation function of the Nyquist-rate samples and 
that of the compressive measurements. However, the mea­
surements are assumed to be wide-sense stationary, which 
does not hold for most compressive sampling matrices. [8] 
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employs compressive sampling for power spectrum sensing 
by introducing K wideband filters in order to identify the oc­
cupancy of N available channels with K < N. However, [8] 
only exploits the energy at the output of each filter while more 
statistical properties could be exploited. Another method that 
aims to reconstruct the auto-correlation function using sub­
Nyquist sampling is provided by [9]. It is based on the use 
of two uniform sub-Nyquist samplers with sampling periods 
that are coprime multiples of the Nyquist period. 

This paper focuses on the efficient reconstruction of the 
signal power spectrum. The goal is to develop effective 
sampling procedures for the power spectrum blind sampling 
(PSBS) approach introduced in [10]. To this end, a multi­
coset implementation is devised by solving the minimal 
sparse ruler problem. The coprime sampling scheme in [9] is 
also considered, and tailored to fit into the PSBS framework 
as a special case of the ruler problem. These two schemes 
are compared via both analysis and simulations. In general, 
the developed multi-coset sampling procedures for PSBS can 
considerably reduce the sampling rate requirements by mak­
ing proper use of the spectral correlation property, without 
any sparsity constraints on the power spectrum. Further rate 
reduction is possible when the signal of interest is sparse, 
which is illustrated as well. 

2. PERIODIC SAMPLING 

Consider a spectrum sensing application, where the task is to 
sense the power spectrum of a wide-sense stationary signal 
x(t). The signal x(t) is assumed to be complex-valued (e.g., 
the complex envelope of the observed real-valued signal) and 
bandlimited with bandwidth liT, which also indicates the 
Nyquist rate. As depicted in Fig. 1, a practical sampling de­
vice with M branches is employed, where the ith branch mod­
ulates the signal x(t) with a possibly complex-valued periodic 
waveform Pi(t) of period NT followed by an integrate-and­
dump device with period NT (thus with rate equal to liN 
times the Nyquist rate). Consequently, the output of the ith 
branch at the kth sampling index can be written as 

l(k+l)NT 
pi(t)x(t)dt kNT l(k+l)NT 
Ci(t � kNT)x(t)dt kNT (1) 

where Ci(t) yields one period of Pi(t), i.e., Ci(t) = Pi(t) for 
o <::: t < NT and Ci (t) = 0 elsewhere. If Ci (t) is assumed 
to be a piecewise constant function with constant values in 
every interval of length T, i.e., cJt) = cd�n] for nT <::: t < 

x(t) 

I ( k+ l )J\�T 
� / dt �VT 

Fig. 1. The adopted sampling device consists of M branches, 
where each branch modulates the input signal with a periodic 
waveform followed by an integrate-and-dump process. 

(n + l)T with n = 0, 1, . . .  , N � 1, we can re-express (1) as N�l l(kN+n+1)T 
ydk] L cd�n] x(t)dt n=O (kN+n)T N�l 

L cd�n]x[kN + n] n=O 
o 

L cdn]x[kN � n] n=l�N (2) 

where x[n] can be perceived as the output of an integrate­
and-dump process with period T (thus with rate equal to the 
Nyquist rate) applied to x(t), which is not explicitly carried 
out due to the high complexity. The average sampling rate of 
this periodic sampler is equal to the Nyquist rate multiplied 
by MIN, and we will use M < N to reduce complexity. 

The sampler above is similar to the modulated wideband 
converter of [3], where the values of cdn] are randomly se­
lected, e.g., from a random binary set ±l. It is also possible 
to implement efficient multi-coset sampling using this sam­
pling device, which is the focus of Section 4. 

It is worth noting that (2) can be interpreted as a digital 
filtering operation of x[n] by the filter cdn] of length N fol­
lowed by an N-fold decimation, i.e., ydk] = zdkN] , where 

o 
zdn] = cdn] * x[n] = L cdm]x[n � m] m=l�N 

with * representing the convolution operator. 
The objective of the PSBS problem is to estimate the 

power spectrum of x(t) based on the obtained samples 
{ydk]h,b which is equivalent to estimating the correspond­
ing power spectrum of x[n]. Clearly, the power spectrum or 
power spectral density of x[n] is given by 

00 

n=�oo 



where rx[n] denotes the auto-correlation function of x[n], 
given by rx[n] = E{x[m]x*[m � n]}. Hence, reconstruct­
ing the power spectrum Px (w ) amounts to reconstructing the 
auto-correlation function r x [n]. 

The contribution of this work is that we will exploit all 
the M2 different cross-spectra of ydk] with yj[k] for i,j = 
0,1, ... , M  � 1, which will allow rate-compression without 
imposing any sparsity constraint on x(t). The cross-spectrum 
or cross spectral density of ydk] with Yj [k] is defined as 

00 

Pyi,Yj (w ) = L ryi,Yj [k]e�jkw, 0:::; w < 21r 
k=�oo 

where ryi,Yj[k] = E{Yd1]yj[1 � k]} is the cross-correlation 
function of ydk] with yj[k]. These ensemble-mean quanti­
ties {r Yi ,Yj [k] h,j can be estimated by their sample-averages, 
which in turn yield the estimates of {PYi ,Yj (w ) h,j. 

3. RECONSTRUCTION APPROACH 

In this section, we introduce a method to recover r x [n] given 
ryi,Yj [k] for i,j = 0,1, ... , M � 1. Since ydk] = zdkN], 
the cross-correlation function of ydk] with Yj [k] can be writ­
ten as the N -fold decimated version of the cross-correlation 
function of zdn] with zj[n], as follows: 

E{yd1]yj[1 � k]} 
E{zd1N]zj[(1 � k)N]} = rZi,Zj [kN]. (3) 

It is straightforward to show that rZi,Zj [n] can be written as 

N�l 
rZi,Zj[n] =rCi,Cj[n]*rx[n] = L rCi,Cj[m]rx[n � m] 

m=�N+l 
(4) 

where rCi,Cj [n] is the "deterministic" cross-correlation func­
tion between cdn] and cj[n]: 

o 
rCi,Cj[n]=cdn]*c;[�n]= L cdm]cj[m � n]. (5) 

m=l�N 

From (3) and (4), it holds that 

N�l 
rZi,Zj [kN] = L rCi,Cj [m]rx[kN � m] 

m=�N+l 
1 

L r�,c)l]rx[k � I] (6) 
1=0 

which uses the following definitions: 

rCi,Cj [k] = [rCi,Cj [kN], rCi,Cj [kN � 1], ... , 
rCi,Cj [(k � I)N + IW 

rx[k] = [rx[kN], rx[kN + 1], ... , rx[(k + I)N � IW. 
(7) 

By cascading the M2 different cross-correlation functions 
ryi,Yj [kJ, we form the vector ry[k] = [ ... , ryi,Yj [k], ... ]T of 
length M2 for i, j = 0,1, ... , M  � 1, which can be derived 
from (6) as 

1 
ry[k] = LRc[l]rx[k � I] (8) 

1=0 
where Rc[k] is the M2 x N matrix given by Rc[k] = 
[ ... , rCi,Cj [k], ... ]T, for i,j = 0,1, ... , M � 1. 

Suppose that ry[k] has a support limited to �L :::; k :::; L. 
Accordingly, the support of r x [n] is limited to � LN :::; n :::; 
LN, which means that the support of rx [k] is also limited to 
� L :::; k :::; L. All these quantities are gathered into vectors, 
as follows: 

ry = [r�[O], r�[1], ... , r�[L], r�[�L], ... , r�[�IW (9) 

rx = [r�[O], r�[1], ... , r�[L], r�[�L], ... , r�[�IW. (10) 

Based on (8), and the fact that the first column of Rc [1] as 
well as the last N � 1 entries of r x [L] are zero, the relation 
between ry and rx can finally be expressed as 

(11 ) 

where Rc is the (2L + I)M2 x (2L + I)N matrix given by 

Rc[O] 
Rc[I] Rc[O] 

Rc = Rc[I] Rc[O] (12) 

If Rc has full column rank, it is possible to solve (11) using 
least-squares (LS). The necessary condition is M2 :;:. N. 

It is possible to simplify the inverse problem for (11). 
Note that Rc is a block circulant matrix with blocks of size 
M2 x N, and hence can easily be converted into a block di­
agonal matrix Qc with blocks of size M2 x N. This can be 
performed simply by using the (2L + I)-point (inverse) dis­
crete Fourier transform «I)DFT), that is, 

Rc = (F21+1 181 1M2 )Qc(F2L+l 181 IN) 

where F2L+1 is the (2L + 1) x (2L + 1) DFT matrix, and 
Qc = diag{Qc(0),Qc(21r 2L� 1 ),···,Qc(21r 2i�1 )} with 

Qc(w) being the M2 x N matrix spectrum of the M2 x N 
matrix filter Rc[k]: 

1 
Qc(W) = LRc[k]e�jkw. (13) 

k=O 
As a result, by defining the (2L + I)N x 1 vector qx and the 
(2L + I)M2 x 1 vector qy as 

qx = (F2L+1 181 IN )rx 
qy = (F2L+1 181 1M2 )ry 

(14) 

(15) 



we can re-write (11) as 

(16) 

From (9), (10), (14), and (15), it is also possible to interpret 

qx and qy as 

qx = [q� (0) , q� (27T 2L1+l)' ... ' q� (27T 2itl )]T 

qy = [q� (0) , q� (27T 2L1+l)' ... ' q� (27T 2itl )]T 

where qx (w) of length N and qy (w) of length M2 are the 
vector-form spectra of the cross-correlation sequences r x [k] 
and ry[k] respectively, as follows: 

L 
qy(w) = L ry[k]e-jkw 

k=-L 
L 

qx(w) = L rx[k]e-jkw. 
k=-L 

(17) 

Here, qy is available from the sample-averaging versions of 

ry[kl, while qx, and hence rx[kl, are to be estimated. With 
(17), (16) can be written as a set of 2L + 1 matrix equations: 

qy(27T 2Ll+l) = Qe(27T 2Ll+l )qx(27T 2Ll+l)' 1= 0, 1, ... , 2L. 
(18) 

By assuming that Qe(27T 2Ll+l) has full column rank for I = 
0, 1, ... ,2L, qx can be simply solved using LS from (18) for 
1= 0, 1, ... , 2L. 

Having estimated qx, rx can be reconstructed using (14), 
and the (2L + l)N x 1 power spectrum vector Px can be 
computed as 

Px = Frx (19) 

where F is the (2L + l)N x (2L + l)N DFT matrix. 

When the power spectrum Px in (19) is sparse, it is pos­
sible to utilize the sparsity knowledge in our approach to fur­
ther reduce the sampling rate requirements, that is, allow for 
M2 < N. To do so, we combine (14), (16), and (19) to yield 

(20) 

where <I> = Qe(F2L+l Q9 IN )F-l is of size (2L + 1)M2 x 

(2L+ l)N. Then, the LASSO technique in [5] can be applied, 
which regularizes the LS with an additional i\ -norm penalty 

term to induce a sparse solution to the power spectrum Px, as 

follows: 

(21) 

where the weight A ::::: 0 balances the sparsity-bias tradeoff. 

4. MULTI-COSET SAMPLING IMPLEMENTATION 

This section presents some specific implementations for the 
sampling procedure of the developed PSBS approach. For 

the sampling device in Section 2, a novel multi-coset imple­

mentation is developed based on the so-called minimal sparse 
ruler problem, and the coprime sampling approach in [9] is 
presented as a special case of the ruler problem. 

4.1. Proposed Multi-Coset Sampling Approach 

As indicated in (2), multi-coset sampling can be implemented 
by simply setting for every branch i, one different entry of 

cdn] to one and the others to zero, i.e., cdn] = 1 if -n = ni 
and cdn] = 0 if -n i=- ni, where ni i=- nj whenever i i=- j .  
Concisely, cdn] = <5[-n - nil, where ni i=- nj, Vi i=- j .  Note 

that this is equivalent to selecting M different rows from the 

identity matrix IN. However, this row selection cannot be 
random, since we need to deterministically ensure full col­

umn rank of {Qe(27T 2Ll+l )}r!'o in (18) or equivalently of Re 
in (11). Since every row of Re only contains a single one, it 
is clear that the full rank conditions can be satisfied by ensur­
ing that Re has at least a single one in each of its columns. 
We can find from (5) and (7) that when Re[O] has a one at 

the column corresponding to lag -n, Re[l] has a one at the 
column corresponding to lag n. This means that if the first 

l If J + 1 columns of Re[O] all have at least a single one, we 

know that also the last l If J columns of Re[l] all have at least 
a single one, where l x J denotes the largest integer not greater 
than x. Our task to ensure that all columns of Re have at 
least a single one can thus be achieved by ensuring that the 

first l If J + 1 columns of Rc[O] all have at least a single one. 
Now, the problem becomes how to select an appropriate com­
bination of rows of IN to generate the coefficients of cdn] 
for i = 0, 1, ... , M  - 1, such that Re[O] has at least a single 

one in each of its first l If J + 1 columns. Further, it is de­
sired that the number of rows selected is minimal, in order to 
minimize the number of branches M and thus minimize the 
compression rate MIN. 

Because cdn] = <5[ -n - nil, it is clear from (5) that 

(22) 

which depends on the differences ni - nj. Let S denote a 
set of M indices selected from {O, 1, ... , N  - I}, represent­
ing the rows of IN that are to be selected by the multi-coset 
sampler. Let n denote the set of index-differences, given by 

(23) 

Then, the problem of constructing the sampler coefficients 
{ cd n]} f!o 1 becomes: 

mjn lSI s.t. n = { 0, 1, ... , l � J } (24) 

where lSI denotes the cardinality of the set S. While the best 
solution that minimizes lSI in (24) is still under investiga­

tion, one possible way to approximate the desired solution 



of (24) is by reformulating the problem as a so-called min­

imal length- l If J sparse ruler problem and solving it. This 
is done by defining S' as a set of M indices selected from 

{O, 1, ... , l If J} and solving: 

�i,nIS'1 s.t. n = { o,l,···, l�J } (25) 

A sparse ruler with length l If J can be considered as a ruler 

having k < l If J + 1 distance marks 0 = no < nl < ... < 
nk-l = l If J, but is still able to measure all integer dis­

tances from 0 up to l If J. Note that n in (25) represents the 
set of integer distances that can be measured by the length­

l If J sparse ruler with all marks ni E S'. The length- l If J 
sparse ruler with k distance marks is called minimal if there 
is no length- l If J sparse ruler with k - 1 marks. The minimal 

sparse ruler problem has been studied in literature, see for ex­
ample, [11]. Many exact and approximate solutions for this 
problem have been pre-calculated and tabulated. By making 
the connection between our multi-coset design problem and 
the sparse ruler problem, we are able to construct the sampler 
coefficients { cdn]h using any known sparse ruler, which en­
sures the full rank property of Rc and hence the uniqueness 
of the simple LS solution to power spectrum reconstruction. 

4.2. Coprime Sampling 

The coprime sampling technique in [9] can also be fit into the 

PSBS framework. Specifically, it utilizes two uniform sub­
Nyquist samplers of different rates 1/(AT) and 1/( BT) re­
spectively, where liT is the Nyquist rate, and A and B are 

coprime numbers with A < B. The idea is to collect B con­
secutive samples from the first sampler, at the positions bAT 
with 0 ::::: b ::::: B- 1, and 2A - 1 consecutive samples from 
the second sampler, at positions aBT with 1 ::::: a ::::: 2A - 1. 
When these two sets of samples are combined, it is possible 
to obtain all the auto-correlation lags from -ABT to ABT. 

In our framework, this approach can be viewed as using 
the sampling device in Section 2 with M = B + 2A - 1 
branches. The period of the modulation process as well as 
that of the integrate-and-dump device for each branch are then 
given by NT with N = 2AB. The coefficients cdn] for every 

branch i of this coprime sampler can be written as cdn] 
<5[-n -ni], for i = 0, 1, ... , M - 1, where 

{ ni = iA, 
ni = (i - B + l)B, 

for 0 ::::: i ::::: B- 1 
for B ::::: i ::::: B + 2A - 2 

The resulting Rc in (12) under this coprime sampling scheme 
has full column rank according to the discussion from the 
previous section. However, we decide to follow the pro­

cedure of [9] here by cascading all M2 vectors r Ci ,Cj = 
[rCi,Cj [0], ... , rCi,Cj [-AB], rCi,Cj [AB], ... , rCi,Cj [l ]f, i.e., 
Rc,II = [ ... ,rCi,Cj' ... ]T for 0 ::::: i, j ::::: M - 1. The recon-
struction problem for the coprime sampling case can then be 

expressed in terms of r y [0] in (8) as 

ry[O] = Rc,IIrx,II , (26) 

where rx,II = [rx[O], ... , rx[AB], rx[-AB], ... , rx[-l]]T. 
Since the M2 x ( 2AB + 1) matrix Rc,II has at least a single 

one in all of its columns, it has full column rank, allowing 
us to reconstruct rx,II using LS. Finally, the power spectrum 
vector Px can be computed based on (19) by simply replacing 

rx with a zero-padded version of rx,II. 

N 
2 

11 

18 

39 

78 

84 

127 

Length I % I 
1 

5 

9 

19 

39 

42 

63 

Nr. of marks M MIN 
2 1 

4 0.3636 

5 0.2778 

8 0.2051 

11 0.1410 

11 0.1310 

14 0.1102 

Table 1. Examples of minimal sparse rulers 

5. DISCUSSION 

To compare the developed sampler implementations, we can 

cast the coprime sampling solution of Section 4.2 as a ruler 
problem as well. Specifically, the ruler has 2A + B- 1 dis­
tance marks 0 = no < nl < ... < n2A+B-2 = 2AB - B. 
However, this ruler should be considered as an incomplete 
ruler instead of a sparse ruler, since it can only measure all 
integer distances from 0 up to AB instead of from 0 up to 
2AB - B. Based on this ruler problem perspective, it is triv­

ial to show that our proposed multi-coset sampler offers a bet­
ter compression rate MIN than that offered by coprime sam­

pling for the same value of N. For example, Table 1 shows 
that for N = 84 at least M = 11 marks are required to ob­
tain a length-42 sparse ruler, leading to a compression rate of 

MIN = 0.1310. The comparable coprime sampling scenario 
with N = 84 is obtained by setting either A = 6 and B = 7, 
or A = 3 and B = 14, or A = 2 and B = 21. The best choice 

is given by A = 6 and B = 7 leading to MIN = 0.2143, 
which is higher than the optimal compression rate produced 
by our scheme. It is also interesting to note that coprime sam­
pling in this current scheme can only estimate a small range 

of correlation lags if N is fixed, whereas the proposed multi­
coset sampler can estimate any number of lags since we have 
the option to set L in (9) and (10) to any number. 

Another drawback of the coprime sampling approach is 
that it cannot be implemented for arbitrary values of N with­
out invoking Nyquist-rate sampling. As an example, consider 
the case where N = 122 leading to AB = 61. Since 61 is a 
prime number, we have to select A and B equal to 1 and 61, 
respectively, since A is assumed to be smaller than B. How­

ever, this means we have to sample the signal at the Nyquist 



rate, which is exactly what we want to avoid. On the other 

hand, our proposed multi-coset approach based on the mini­
mal sparse ruler design can be used for arbitrary values of N 
without having to sample the signal at the Nyquist rate. 

6. SIMULATIONS 

This section presents some simulation results that illustrate 
the effectiveness of our proposed approach. First, we com­
pare our proposed multi-coset sampling based on the mini­

mal sparse ruler with coprime sampling, both using an LS ap­
proach. Next, we assume a sparse spectrum and compare the 

sparsity-agnostic approach (e.g., LS) with the sparsity-aware 
approach (e.g., LASSO). 

6.1. Minimal Sparse Ruler versus Coprime Sampling 

In this part, we consider a complex baseband representation of 
an OFDM signal with 16-QAM data symbols, 8192 frequency 
tones that span a frequency band from -7r to 7r, and a cyclic 
prefix length of 1024. We only activate 3072 frequency tones 

in the bands [-7r, -0.757r], [0, 0.257r], and [0.57r, 0. 757r]. The 
transmitted signal x(t) has a power of 10 dB. We set N to 
N = 84 and vary the compression rate MIN. Two dif­
ferent approaches are examined, namely our proposed multi­
coset sampling based on the minimal sparse ruler and the one 
based on coprime sampling, which are respectively discussed 
in Sections 4.1 and 4.2. Both estimates are computed using 

LS. 
In the first approach, we set L in (9) equal to L = 1 and 

generate the coefficients of Ci [n] for i = 0, 1, ... , M - 1  based 
on the length-42 minimum sparse ruler having M = 11 dis­
tance marks. This is equivalent to selecting the corresponding 
M = 11 rows from the first 43 rows of the identity matrix 184 
leading to M = 11 branches in our sampling device. This 
leads to matrices Rc[O] and Rc[l] of size 121 x 84 in (8). 
The larger MIN cases are then realized by randomly adding 
additional rows of 184 to the already selected 11 rows. 

In the second approach, the coefficients of Ci [n] are gener­
ated based on coprime sampling. We select two coprime num­
bers, namely A = 6 and B = 7 leading to M = 18 branches. 
This leads to a matrix Rc,I I of size 324 x 85 in (26). Again, 
the larger MIN cases are realized by randomly adding addi­
tional rows Ofl84 to the already selected 18 filters cdn]. 

In Figs. 2 and 3, the normalized mean squared error 

(MSE) between the estimated power spectrum and the the­
oretical one is computed for both the sparse ruler based 
multi-coset sampling and coprime sampling. While no noise 
is considered in Fig. 2, random Gaussian noise with unit 
variance is introduced in Fig. 3. The normalized MSE is 
calculated according to: 

(27) 

where Px represents the theoretical power spectrum vector. 
The normalized MSE is computed for different numbers of 
measurement vectors (MVs) as an attempt to represent dif­

ferent sensing times. The normalized MSE between the es­
timated power spectrum produced by Nyquist-rate sampling 
and the theoretical one for different sensing times is also plot­
ted as a reference. Note that the Nyquist-rate based estimated 
power spectrum is obtained from our proposed LS approach 
by setting M = N. It is clear from the figures that the quality 

of the estimation improves as MIN increases and it slowly 
converges towards that of the Nyquist rate. We can also no­

tice that the normalized MSE improves as the sensing time 
increases, which is to be expected. It is also found that the 
proposed sparse ruler based multi-coset sampling generally 

performs better than coprime sampling. The way rC"Cj [k] 
in (7) is arranged in Rc (see (11)) allows us to get a better 
error averaging when we reconstruct r x. This error appears 
due to the finite length effect of the received signal x( t). The 
same trend is also observed in Fig. 4 depicting the estimated 

power spectrum (for both the sparse ruler based multi-coset 

sampling and coprime sampling) as well as the theoretical one 
for MIN = 0.5. 
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Fig. 2. The normalized MSE between the estimated power 
spectrum (coprime and sparse ruler based multi-coset sam­
pling) and the theoretical one for a noiseless signal and vari­
ous numbers ofMVs (K). 

6.2. Sparsity-Agnostic versus Sparsity-Aware 

In this section, we generate a sparse discrete-time real­
valued signal x[n] having a frequency support [0.27r,0.267r], 
[0.57r,0.567r], and [0.77r,0.767r]. We set N to N = 78 and 
limit L to L = 1. The number of branches M is varied 
between M = 15 and M = 39. The coefficients of cdn] 
are generated as in Section 6.1. We then test a sparsity-aware 

power spectrum estimator that solves (21) using coordinate­
descent LASSO, and compare it with the sparsity-agnostic 
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Fig. 3. The normalized MSE between the estimated power 
spectrum (coprime and sparse ruler based multi-coset sam­
pling) and the theoretical one for a noisy signal and various 

numbers of MVs (K). The signal to noise ratio (SNR) is set 
to 10 dB. 

LS estimator which amounts to solving (21) in closed form 
with A = O. 

In Fig. 5, the normalized MSE between the estimated 
power spectrum and the theoretical one is computed for a 
noise-free scenario. The normalized MSE is calculated ac­
cording to (27) for different numbers of MV s. It is clear 

that the coordinate-descent LASSO generally performs better 
than the LS approach due to the additional .e1-norm penalty, 
which induces a sparse solution. This is true even if the LS 
approach is computed based on samples that are obtained 

from Nyquist-rate sampling (M = N case). A similar trend 
can be observed in Fig. 6 depicting a realization of the esti­
mated power spectrum (for both coordinate-descent LASSO 
and LS) and the theoretical one for MIN = 0.5 and differ­
ent sensing times. Note that our approach using any of the 
two reconstruction methods is generally able to locate the 
presence of the active bands. 

7. CONCLUSIONS 

This paper has developed a multi-coset sampling version of 
power spectrum blind sampling (PSBS), which is used to es­

timate the power spectrum of wide-sense stationary signals 
based on samples obtained from a sub-Nyquist sampling de­
vice without any sparsity constraint. The design of the multi­

coset sampling device is cast as a minimal sparse ruler prob­
lem. It is shown that any sparse ruler can produce a multi­
coset sampling design that guarantees the full rank condition 
of the formulated sampling problem, and hence ensures the 
uniqueness of the power spectrum estimates as solutions to a 

set of simple least-squares problems. Further, when minimal 
sparse rulers are used, the resulting samplers approximate the 
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Fig. 4. Estimated power spectrum for MIN = 0.5 (coprime 
and sparse ruler based multi-coset sampling) and the theoret­
ical power spectrum; (a) noise-free; (b) noisy (SNR=10 dB) 

minimum sampling rates and hence the strong compression 
under the PSBS framework. The coprime sampler turns out to 
be an efficient ruler as well, but it is an incomplete ruler. It has 
been shown that the proposed minimal sparse ruler solution 
to multi-coset sampler design offers better compression rates 
and a larger range of estimated correlation lags than coprime 
sampling, for the same signal size N; further, it is more flexi­
ble and can be employed for arbitrary values of signal size N. 
These advantages are corroborated by simulations. When the 
power spectrum of interest is sparse, the PSBS framework can 
also incorporate the sparsity knowledge straightforwardly, re­
sulting in even more compression. 
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