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Abstract—In this paper, we propose a novel framework for field
estimation in a wireless sensor network (WSN). The fundamental problem
of estimating field values at locations where no WSN measurements are

available is tackled by including a physical field model in the form of
a partial differential equation (PDE). If the PDE is discretized in the
spatiotemporal domain by use of the finite element method (FEM), then

the physical field model reduces to a set of linear equations that can be
elegantly combined with the WSN field measurements in a constrained
optimization problem. In contrast to existing approaches, we do not
require the driving source function or the locations of point sources

to be known. Instead, we assume limited prior knowledge on the nature
of the field and/or source functions, such as a sparsity or nonnegativity
prior, for obtaining a unique solution of the otherwise underdetermined
problem of joint field and source estimation. Within the proposed

framework, we derive a cooperative estimation algorithm for static 2-
D fields governed by a Poisson PDE. Simulation results illustrate that
a significant improvement in field estimation accuracy can be obtained,
compared to the cases when only WSN measurements (without a physical

model) or only the FEM (without WSN measurements) are used.

I. INTRODUCTION

Many physical phenomena are understood to be governed by a

partial differential equation (PDE) that relates the spatiotemporal

variation of a field to the underlying driving source function. The

problem of field estimation is hence equivalent to the problem of

solving a PDE subject to certain initial and/or boundary condi-

tions. A particularly popular numerical method for solving such

initial/boundary value problems is the finite element method (FEM),

which has been extensively covered in literature, see, e.g., [1], [2].

In a nutshell, the FEM approximates the infinite-dimensional field

in a finite-dimensional subspace, obtained by a discretization of

the spatiotemporal domain. By enforcing the approximation error

to be orthogonal to this subspace, the FEM reduces the boundary

value problem to a square system of linear equations. Moreover,

by choosing a subspace basis with small spatiotemporal support,

the system of equations exhibits a high degree of sparsity and

hence can be efficiently solved. There are, however, a number of

drawbacks when considering the FEM for field estimation. First of

all, the right-hand side of the system of equations consists of a

subspace approximation of the source function, which makes the

FEM unsuitable for problems with limited or no knowledge about

the driving source. Second, the FEM approximation accuracy is

linearly related to the resolution of the mesh (that is, the domain

discretization) [1, Th. 1.10], which implies that a high accuracy can

only be attained at the cost of a high dimensionality.

The recent advent of wireless sensor networks (WSNs) offers

a significantly different yet attractive approach to field estimation.

Indeed, the dense deployment of sensor nodes inside a spatially

distributed field makes it possible to collect a large number of local

field estimates which can then be gathered in a fusion center for

global field reconstruction. However, a fundamental issue with this

approach is how to estimate field values at locations different from the

WSN sensor node locations. A naive approach would be to interpolate

the field values estimated at the sensor node locations to obtain field

values at arbitrary locations, yet the choice of the interpolant will

then carry an implicit assumption on the spatiotemporal variation

of the field. A more rigorous approach is to combine the WSN field

measurements with a PDE-based field model. In [3] and [4], the field

estimation problem is recast in a dynamic state estimation problem, in

which the state equation is derived from a discretization of the PDE

(using the FEM [3] or the finite difference method (FDM) [4]) while

only a subset of the states (i.e., the field values at the sensor node

locations) is propagated to the measurement equation. However, these

methods still require significant knowledge about the driving source:

in [3] it is assumed that a noisy observation of the (continuous) source

function is available, while in [4] the source function is assumed to

be composed solely of point source contributions at locations where

sensor nodes have been deployed. A different yet related problem

that has recently been considered concerns the estimation of the

(initial) driving source function from WSN field measurements. This

inverse problem has been tackled in [5]–[7] for the case of a source

function composed of one or more point sources, by fitting the field

measurements to a spatiotemporal discretization of the analytical PDE

solution.

In this paper, we propose a novel framework for field estimation

based on the combination of WSN field measurements with a physical

model in the form of a PDE. We formulate the field estimation prob-

lem as a constrained optimization problem, in which the constraints

originate from a finite element model of the PDE and its initial

and/or boundary conditions, and the objective minimizes the misfit

between the estimated and measured field values at the sensor node

locations. In contrast to the approaches in [3], [4], we do not assume

the driving source function or the locations of point sources to be

known, however, the price we pay is that the optimization problem

is highly underdetermined. To alleviate this deficiency, we propose

to include additional constraints and/or regularization terms in the

optimization problem, which express any prior knowledge that may

be available on the nature of the field and/or source functions, such

as sparsity or nonnegativity.

The proposed framework is derived here for one particular type

of PDE, namely the two-dimensional (2-D) Poisson equation, which

has applications in gravitation, electrostatics, fluid mechanics, and

thermostatics, to name just a few. This restriction implies that we

discard the time variable and only consider the estimation of static 2-

D fields. We should stress, however, that the framework is believed to

be suitable also for the estimation of dynamic and 3-D fields, yet this

extension is postponed to future work. In addition, the field estimation

algorithms presented in this paper are cooperative algorithms, in the

sense that all processing is performed in a fusion center (FC) which
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gathers the available WSN field measurements. It will become clear,

however, that the structure of the constrained optimization problem

under consideration allows for an efficient distributed implementation

due to the sparsity of the finite element model.

II. PROBLEM STATEMENT

Consider the 2-D Poisson PDE (with ∇ = [∂/∂x, ∂/∂y])

−∇2u(x, y) = s(x, y) (1)

where the source function s(x, y) and the field function u(x, y) are

infinite-dimensional functions of the spatial variables (x, y) defined

on a 2-D domain Ω ⊂ R
2. The field u(x, y) is measured using a WSN

with sensor nodes at J discrete locations (xj , yj), j = 1, . . . , J .

Each of the J sensor nodes provides N field measurements (with

1N×1 = [1 . . . 1]T ),

vj =









v
(1)
j

...

v
(N)
j









= u(xj , yj)1N×1 +









w
(1)
j

...

w
(N)
j









, j = 1, . . . , J (2)

which are obtained by sensing the field at successive time instants

and/or equipping the WSN nodes with multiple sensors. The mea-

surement noise w
(n)
j at the jth sensor node is assumed to be i.i.d.

with variance σ2
j , and independent of the measurement noise at other

sensor nodes. Additionally, the field may be subject to boundary

conditions of the Dirichlet or Neumann type. Since the boundary

conditions appear as additional (and known) terms on the right-hand

side of the FEM system of equations [1, Ch. 1], we can assume zero

boundary conditions without loss of generality to simplify notation.

Our aim is to estimate the field u(x, y) at J+P distinct locations,

without assuming knowledge of the source function s(x, y). These

locations include the J sensor node locations (xj , yj), j = 1, . . . , J
as well as the locations (xJ+p, yJ+p), p = 1, . . . , P of P points of

interest (POIs) at which no sensor nodes have been deployed.

III. FEM FOR POISSON-TYPE BOUNDARY VALUE PROBLEMS

A. Derivation of the Galerkin equations

The FEM involves the approximation of the infinite-dimensional

field and source functions u(x, y) and s(x, y) in a finite-dimensional

subspace, i.e.,

ũ(x, y) =

KΩ
∑

k=1

ukφk(x, y), s̃(x, y) =

KΩ
∑

k=1

skφk(x, y). (3)

Here, KΩ denotes the subspace order, φk(x, y), k = 1, . . . ,KΩ is

a basis for the subspace, and {uk, sk}, k = 1, . . . ,KΩ represent

the basis expansion coefficients. Instead of directly substituting the

above subspace approximations in the PDE in (1), the boundary value

problem related to (1) is first transformed into its weak formulation.

A weak solution of the above boundary value problem is a solution

that obeys the boundary conditions and moreover satisfies
∫

Ω

[

∇2u(x, y) + s(x, y)
]

g(x, y)dxdy = 0 (4)

for an appropriate set of so-called test functions g(x, y). By applying

integration by parts and making use of the assumption of zero

boundary conditions, (4) can be rewritten as follows,
∫

Ω

∇u(x, y) · ∇g(x, y)dxdy =

∫

Ω

s(x, y)g(x, y)dxdy (5)

where · denotes the dot product. The main motivation for considering

the weak formulation (5) instead of the original boundary value

problem is that the differentiability requirements on the subspace

basis functions can be relaxed from second-order to first-order dif-

ferentiability, which in particular allows the use of piecewise linear

basis functions (see Section III-B).

The so-called Galerkin equations are obtained by enforcing the

field approximation error to be orthogonal to the chosen subspace,

which is equivalent to evaluating the weak formulation with the test

function equal to each of the subspace basis functions. This results

in a square system of linear equations,

Au = Bs (6)

where the so-called stiffness and mass matrices are defined by

[A]
ij

=

∫

Ω

∇φj(x, y) · ∇φi(x, y)dxdy (7)

[B]
ij

=

∫

Ω

φj(x, y)φi(x, y)dxdy (8)

and the field and source vectors contain the corresponding basis

expansion coefficients, i.e.,

u =
[

u1 . . . uKΩ

]

, s =
[

s1 . . . sKΩ

]

. (9)

For a more profound treatment of the FEM, we refer to [1],[2].

B. Implementation issues

The practical implementation of the FEM requires the determina-

tion of three ingredients that are intimately related: nodes, elements,

and basis functions. FEM nodes (not to be confused with sensor

nodes) are points inside the domain Ω and on its boundary ∂Ω
that are used in the definition of the basis functions. The elements

are relatively small subdivisions of the domain Ω whose size and

geometry is determined by the node locations (e.g., such that nodes

coincide with element vertices or lie in the center of gravity of an

element). The FEM basis functions are usually chosen to be piecewise

polynomial functions possessing two particular properties. First of

all, by ensuring that φi(xk, yk) = δ(i − k), i = 1, . . . ,KΩ at all

FEM node locations (xk, yk), k = 1, . . . ,KΩ, the basis expansion

coefficients in the FEM subspace approximation are equal to the

field/source values at these locations, i.e., uk = u(xk, yk), sk =
s(xk, yk). The FEM thus provides a spatial sampling of the field and

source functions. Second, the basis functions are typically chosen to

have small spatial support, in the sense that the kth basis function is

non-zero only in the area covered by the elements containing the kth

node. Consequently, the stiffness and mass matrices defined in (7)

and (8) have a highly sparse structure, which is desirable in terms

of computational efficiency and moreover facilitates a distributed

implementation for solving the Galerkin equations (6). Different

choices for these three ingredients are extensively discussed in [2,

Ch. 3]. We will resort to the simplest combination, often referred to

as the linear Lagrange element [2, Ch. 3] or the P1 element [1, Ch.

1], which consists of triangular elements with vertices at the node

positions and piecewise linear “tent-shaped” basis functions.

It is important to point out that the FEM node locations cannot

be chosen arbitrarily. In order to obtain a well-conditioned system

of equations in (6), we need to define a high-quality “mesh” (which

refers to the joint collection of nodes and triangles). FEM mesh gener-

ation software will typically attempt to produce uniformly distributed

nodes with a density that varies according to the source function, and

elements that maximally resemble equilateral triangles. However, for

the field estimation problem considered in this paper, slightly different

mesh properties are required. First of all, we need a mesh generator

that does not require the specification of a source function, which is
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indeed considered unknown in our problem statement. Second, we

must enforce the FEM node locations to include the sensor node and

POI locations, which is crucial for allowing field estimation at these

particular locations. The mesh generation algorithm developed in [8]

possesses both these properties and will be used in the sequel.

Once the FEM mesh has been generated, the stiffness and mass

matrices can be efficiently calculated as outlined in [1, Ch. 1]. A final

step in the FEM implementation consists in reducing the dimension of

the Galerkin system of equations from KΩ to K, which corresponds

to the number of interior nodes in the mesh. Since the coefficients in

u and s corresponding to the FEM nodes on the domain boundary

are known to be zero, the corresponding columns in A and B can be

deleted. The squareness of the Galerkin system can then be restored

by also removing the corresponding basis functions from the set of

test functions, which comes down to deleting the appropriate rows in

A and B [1, Ch. 1].

IV. FEM-CONSTRAINED COOPERATIVE FIELD ESTIMATION

We can now combine the WSN measurement model in (2) and the

FEM system of equations in (6) into a single estimation problem. A

rather straightforward approach is to minimize the sum of squared

WSN measurement errors subject to the Galerkin equations,

min
u,s

J
∑

j=1

‖vj − uj1N×1‖
2
2 s. t. Au = Bs (10)

However, this approach is not capable of producing an accurate field

estimate at the POIs. This can be understood by examining the

Karush-Kuhn-Tucker (KKT) optimality conditions for the problem

in (10), which can be reduced to

us =
1

N







v
T
1

...

v
T
J






1N×1 and

[

−An B
]

[

un

s

]

= Asus (11)

where u
T = [uT

s u
T
n ] and A = [As An] have been partitioned

such as to separate columns related to sensor nodes and non-sensor

nodes. The field estimation at the sensor node locations consists of

a simple measurement averaging, while the field estimation at the

non-sensor nodes (including the POIs) requires the solution of an

underdetermined system of equations.

The underdetermined nature requires the inclusion of additional

objective functions or constraints in the optimization problem (10).

In many signal processing applications, it makes sense to assume

that the source function s(x, y) is composed solely of point source

contributions (which is indeed an assumption that is also exploited

in [4]-[7]). This assumption naturally leads to the inclusion of a

sparsity-inducing regularization term on the source vector s, since

the dimension K of the Galerkin system of equations will typically

be much larger than the number of point sources. Moreover, a static

point source is inherently positive-valued (otherwise it would be a

sink), and consequently the Poisson PDE generates a nonnegative

field if the boundary conditions are also nonnegative. Appending a

sparsity-inducing regularization term and appropriate nonnegativity

constraints to the optimization problem (10), results in the following

constrained optimization problem,

min
u,s

J
∑

j=1

‖vj − uj1N×1‖
2
2 + λ‖s‖1 (12)

s. t. Au = Bs, u ≥ 0K×1, s ≥ 0K×1 (13)

This is a convex problem, which can be readily solved using convex

optimization software such as CVX [9].
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Fig. 1. Contour plot of the simulated field showing a FEM mesh generated
for one realization of the random sensor node and POI deployment. A fixed
subset of the FEM nodes consists of WSN sensor nodes (o), POIs (∗), and
domain corners (�).

V. SIMULATION RESULTS

We simulate a static 2-D field governed by the Poisson PDE on a

square domain of 200 x 200 m, with zero boundary conditions. The

field is driven by a single point source with coordinates (13, 25) m

and unit amplitude. A WSN with J = 20 sensor nodes is randomly

deployed in a square area of 180 x 180 m, maintaining a margin of

20 m to the domain boundary with the aim of avoiding ill-shaped

boundary elements. Similarly, P = 20 POIs are randomly chosen

in the area where the WSN sensor nodes are located. Each WSN

sensor node provides N = 10 field measurements, corrupted by i.i.d.

measurement noise with a variance that yields a local 0 dB signal-to-

noise ratio (SNR). The mesh generation algorithm [8] is initialized

by appending a set of equally spaced nodes at a mutual distance of

h0 = 20 m to the fixed subset of FEM nodes consisting of the sensor

nodes, POIs, and domain corners. The resulting mesh is shown on a

contour plot of the simulated field in Fig. 1.

The FEM-constrained cooperative field estimation (FCE) algorithm

proposed in Section IV is evaluated with only a nonnegativity con-

straint (FCE-NN, λ = 0) and with both a nonnegativity constraint

and a sparsity-inducing regularization term (FCE-ℓ1-NN, λ = 1).

Two benchmark algorithms are also evaluated for comparison with

the proposed algorithm: a FEM with known source vector that

does not employ WSN measurements, and a measurement averaging

and interpolation (MAI) method that produces local field estimates

by measurement averaging at the WSN sensor nodes and linear

interpolation at the POIs. The algorithms are compared in terms of

the mean squared relative field estimation error (MSE) at the sensor

nodes and at the POIs, which is calculated by averaging the squared

relative error over NMC = 100 Monte Carlo trials,

MSE (sensors) =

NMC
∑

i=1

J
∑

j=1

(

u(x
(i)
j , y

(i)
j )− u

(i)
j

u(x
(i)
j , y

(i)
j )

)2

(14)

MSE (POIs) =

NMC
∑

i=1

P
∑

p=1

(

u(x
(i)
J+p, y

(i)
J+p)− u

(i)
J+p

u(x
(i)
J+p, y

(i)
J+p)

)2

. (15)

Fig. 2 diplays the MSE behavior when one of the simulation

parameters (SNR, initial FEM node distance h0, or number of
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Fig. 2. Comparison of field estimation MSE at sensor node locations (- -) and POI locations (–) for different estimation algorithms, plotted vs. (a) SNR of
WSN measurements, (b) initial node distance h0 in mesh generation, (c) ratio P/J of number of POIs and sensor nodes.

POIs P ) is varied while the other parameters are kept fixed at the

values given earlier. A first observation is that the proposed FCE

algorithm consistently performs better than the MAI algorithm, both

at sensor node and POI locations. This confirms our intuition that

the use of a physical model is indeed beneficial for field estimation

at sensor nodes providing noisy field measurements, and moreover

offers a decent alternative to “naive” field interpolation at POIs. A

second important observation is that the FCE algorithm behaves very

differently from the FEM for varying simulation parameters. While

the FEM performance is seen to deteriorate for a decreasing mesh

quality (i.e., both for an increasing initial node distance h0 and

for an increasing number of fixed mesh points P + J), the FCE

performance appears to be independent of the mesh properties. On

the other hand, the WSN measurement SNR is the only parameter

that has a fundamental influence on the FCE performance (note

that a behavior similar to Fig. 2(a) is obtained when fixing the

SNR and varying the number of measurements N per sensor node).

Remarkably, under certain conditions the FCE algorithm outperforms

the FEM, although the latter requires full knowledge of the source

vector while the former does not. This observation holds either when

high SNR measurements are available, when using a coarse mesh, or

for a large number of POIs. A final overall observation is that the

inclusion of a sparsity-inducing regularization term slightly improves

the performance of the FCE algorithm with nonnegativity constraints.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new framework for field es-

timation in which WSN measurements are combined with a FEM-

based physical field model. This framework provides an appealing

solution to the fundamental problem of estimating field values at

locations where no WSN measurements are available. By formulating

the discretized field estimation problem on a mesh that includes

these sensorless locations, and by appending an appropriate sparsity-

inducing regularization term and nonnegativity constraints, we end up

with a well-determined and convex optimization problem that can be

readily solved in a cooperative fashion. Simulations for the case of a

static 2-D field governed by a Poisson PDE illustrate that the proposed

FEM-constrained estimation algorithm consistently outperforms an

estimation method based on WSN measurements only, and under

certain conditions even performs better than a FEM that assumes full

knowledge of the driving source function.

In our future work we will focus on two particular research

challenges that have not been dealt with in this paper. First of all, the

proposed framework needs to be generalized to the case of dynamic

fields governed by PDEs that also include time derivatives. The

FEM-constrained optimization problem will then feature evolutionary

constraints, which naturally leads to the use of a Kalman filter for

dynamic field estimation. A second challenge is to convert the coop-

erative FEM-constrained field estimation algorithm into a distributed

estimation algorithm. As pointed out earlier, the sparse structure of

the Galerkin system of equations is expected to facilitate an efficient

distributed implementation.
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