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Abstract—This paper focuses on the reconstruction of second
order statistics of signals under a compressive sensing frame-
work, which can be useful in many detection problems. More
specifically, the focus is on general cyclostationary signals that
are compressed using random linear projections, and using
those compressive measurements, the cyclic power spectrum is
retrieved. Subsequently, this can for instance be used to detect the
occupation of specific frequency bands, which has applications
in cognitive radio. Surprisingly, if the span of the random linear
projections is larger than the period of the cyclostationary signals,
the cyclic power spectrum can be recovered without putting any
sparsity constraints on it, which allows for simple least squares
reconstruction methods. This result indicates that significant com-
pression can be realized by directly reconstructing the second-
order statistics rather than the random signals themselves.

I. INTRODUCTION

In recent years, there have been considerable efforts devoted
to the theory and algorithms for compressive sensing [1],
[2]. Most efforts focus on deterministic and sparse signals
in linear systems, such as sampling and reconstruction of the
frequency spectrum of a signal waveform. In such systems, the
compressive measurements are linearly related to the sparse
unknowns to be recovered. This linear relationship is essential
for effective sparse signal recovery, which is the cornerstone
for those well-known sparse linear regression techniques such
as Basis Pursuit (BP) based on �1-norm minimization and
Matching Pursuit (MP) based on signal-basis correlation [2],
[3].
On the other hand, many signal processing problems deal

with random processes. In this case, it is not meaningful to
reconstruct the random signal itself; rather, the goal is to
extract its (second-order or even higher-order) statistics such
as the power spectrum and cyclic power spectrum. It has been
well recognized that second-order statistics contain reliable in-
formation for random processes and are rich in useful features
[4], [5], [6]. For wideband random processes, compressive
measurements can be obtained via random linear projections
at a sub-Nyquist rate to reduce the signal acquisition costs [7],
[8]. Unfortunately, second-order statistics do not have a direct
linear relationship with the compressive measurements, which
renders existing linear regression algorithms inapplicable.
This paper develops a new compressive sensing framework

for reconstruction of second-order statistics from compressive
measurements. The focus is to reconstruct the two-dimensional
cyclic power spectrum of a cyclostationary random process,
while treating the problem of power spectrum recovery as a

special case. As a key step, this paper establishes a transformed
linear system that connects the time-varying cross-correlations
of compressive measurements to the desired second-order
statistics. As long as the span of the random linear projections
is larger than the period of the cyclostationary signals, the
cyclic power spectrum can be recovered from the trans-
formed linear system using simple least squares reconstruction
methods, even when the random process is non-sparse. This
surprising result is owing to the fact that we directly recover
the second-order statistics which has less degrees of freedom
than the random signal itself.
Notation: Upper (lower) boldface letters are used to denote

matrices (column vectors); (·)T represents the transpose; (·)∗

the complex conjugate; (·)H the complex conjugate transpose
or Hermitian; (·)† the matrix pseudo-inverse; ⊗ the Kronecker
product; vec{·} the column-wise matrix vectorization; ‖ · ‖p

the �p norm; [f(k, l)]k,l the matrix with the (k, l)th entry given
by f(k, l) which can be any scalar function of k and l (the
first entry is indicated by the index 0); and E{·} the expected
value.

II. RELATED WORK

Existing approaches mainly focus on the reconstruction of
the power spectrum of stationary signals. For instance, the
work in [9] estimates the power spectrum of the original
stationary signal from the power spectra of the outputs of the
linear projections constituting the compressive sampler, but it
does not exploit the cross power spectra among those outputs.
As a result, the reconstruction problem is underdetermined and
requires the adoption of a sparsity constraint on the power
spectrum in order to estimate it. On the other hand, [10]
recovers the autocorrelation function of the signal for a limited
span of lags based on the cross-correlation functions among
the linear projection outputs at lag zero. The major break-
through of this work is that an overdetermined problem can
be obtained, even with significant compression, and as such, no
sparsity constraints are required to solve this problem. For im-
proved reconstruction accuracy, generalizations are considered
in [11], [12], where all significant lags of the autocorrelation
function of the signal are retrieved from all significant lags
of the cross-correlation functions among the linear projection
outputs, leading to satisfying power spectrum estimates. This
again yields an overdetermined problem, provided that the
number of linear projection outputs is larger than the square
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root of the span of the linear projections (measured in Nyquist-
rate samples).
The only work up to date recovering the cyclic power

spectrum of a cyclostationary signal from compressive mea-
surements can be found in [13], [14]. This paper considers
a compressive sampler with linear projections that span one
period of the cyclostationary signal. As in [10], only the cross-
correlation functions of the linear projection outputs at lag
zero are used, and thus the cyclic autocorrelation function of
the signal can only be reconstructed for a limited span of
lags, leading to an inaccurate cyclic power spectrum estimate.
In this paper, we extend this approach, and estimate all
significant lags of the cyclic autocorrelation function of the
signal based on all significant lags of the cross-correlation
functions of the linear projection outputs. However, even
with this extension, an underdetermined system is obtained
when the signal is compressed. The only way to realize an
overdetermined system under compression is by increasing the
span of the compressive sampler beyond one period of the
cyclostationary signal. This is the topic of the current paper.

III. PROBLEM STATEMENT

Consider a wide-sense cyclostationary signal x[t],
which means that the autocorrelation sequence
rx[t, τ ] = E{x[t]x∗[t − τ ]} is periodic in t with some
period T . The corresponding cyclic autocorrelation sequence
is given by

r̃x[f, τ ] =
1

T

T−1∑
t=0

rx[t, τ ]e−j2πf(t−τ/2)/T , (1)

and the cyclic power spectrum by

sx[f, φ) =

∞∑
τ=−∞

r̃x[f, τ ]e−j2πφτ , (2)

where f ∈ {0, 1, . . . , T − 1} is the cyclic frequency and φ ∈
[0, 1) is the frequency. If x[t] is obtained by sampling at a rate
of fs Hz, then the variable f corresponds to an actual cyclic
frequency of ffs/T Hz and the variable φ corresponds to an
actual frequency of φfs Hz.
Equivalently, we can also stack T successive samples x[t]

in x[n] = [x[nT ], . . . , x[nT + T − 1]]T , which is a stationary
vector sequence with autocorrelation matrix sequenceRx[ν] =
E{x[n]xH [n − ν]} = [rx[t, νT + t − τ ]]t,τ . Hence, rx[t, τ ]
uniquely determines Rx[ν] and vice versa.
For wideband signals, the signal acquisition costs can be re-

duced by compressive sensing. More specifically, we consider
a reduced-rate sampler of the form

⎡
⎢⎣

y1[k]
...

yM [k]

⎤
⎥⎦ =

⎡
⎢⎣

c
T
1,1 . . . c

T
1,N

...
...

c
T
M,1 . . . c

T
M,N

⎤
⎥⎦

⎡
⎢⎣

x[kN ]
...

x[kN + N − 1]

⎤
⎥⎦ , (3)

where the vectors ci,j ∈ CT×1 are random sampling vectors
with i = 1, . . . , M and j = 1, . . . , N . In other words, we take
M random linear pojections with a total span of NT , i.e., N
times the period of the cyclostationary signal. Compression is

achieved by taking M ≤ NT . These compressive measure-
ments allow us to compute ryi,yj

[κ] = E{yi[k]y∗
j [k − κ]},

for i, j = 1, . . . , M . Thus, the problem we tackle in this
paper is the reconstruction of rx[t, τ ] (Rx[ν]) or sx[f, φ) from
ryi,yj

[κ], for i, j = 1, . . . , M .

IV. LINEAR RELATIONSHIPS

To simplify the reconstruction, we would benefit signifi-
cantly from some explicit linear relationships. First, we derive
a linear relationship between ryi,yj

[κ] and Rx[ν]. Then, we
will use the expressions (1) and (2) to relate sx[f, φ) in a
linear fashion to Rx[ν]. These simple linear equalities will
form the basis of the reconstruction process, which will be
discussed in Section V.

A. Relating ryi,yj
[κ] to Rx[ν]

Let us start by observing that the sampling procedure in (3)
can also be interpreted as a vector filtering operation on the
vector sequence x[n] followed by an N -fold decimation, or in
other words yi[k] = zi[kN ], where

zi[n] = c
T
i [n] � x[k] =

0∑
m=1−N

c
T
i [m]x[n − m],

with ci[n] = ci,−n+1 for n = 1 − N, . . . , 0. Using this
interpretation, it is easy to show that

ryi,yj
[κ] = E{yi[k]y∗

j [k − κ]}

= E{zi[kN ]z∗j [(k − κ)N ]} = rzi,zj
[κN ], (4)

where

rzi,zj
[ν] =

0∑
μ=1−N

μ−1+N∑
η=μ

c
T
i [μ]Rx[ν − η]c∗j [μ − η]. (5)

Using the property a
T
Xb

∗ = (bH ⊗a
T )vec{X} and defining

vec{Rx[ν]} = rx[ν], we can also rewrite (5) as

rzi,zj
[ν] = r

T
ci,cj

[ν] � rx[ν]

=
N−1∑

η=−N+1

r
T
ci,cj

[η]rx[ν − η], (6)

with

rci,cj
[η] =

min{0,η}∑
μ=max{1−N,1−N+η}

c
∗
j [μ − η] ⊗ ci[η].

From (4) and (6), we can thus write

ryi,yj
[κ] =

N−1∑
η=−N+1

r
T
ci,cj

[η]rx[κN − η]

=

1∑
λ=0

r̄
T
ci,cj

[λ]r̄x[κ − λ], (7)

where we have

r̄ci,cj
[κ] = [rT

ci,cj
[κN ], . . . , rT

ci,cj
[(κ − 1)N + 1]]T ,

r̄x[κ] = [rT
x
[κN ], . . . , rT

x
[(κ + 1)N − 1]]T .
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Stacking the M2 different cross-correlation functions
ryi,yj

[κ], i.e., ry[κ] = [. . . , rT
yi,yj

[κ], . . . ]T , for i, j =
1, . . . , M , we finally obtain

ry[κ] =
1∑

λ=0

R̄c[λ]r̄x[κ − λ], (8)

where R̄c[κ] is the M2 × NT 2 matrix given by R̄c[κ] =
[. . . , r̄ci,cj

[κ], . . . ]T , for i, j = 1, . . . , M .
Assuming ry[κ] has a support limited to −L ≤ κ ≤ L,

the support of rx[ν] should be limited to −LN ≤ ν ≤ LN ,
which means that the support of r̄x[κ] should be limited to
−L ≤ κ ≤ L. As a result, all the information can be gathered
into the vectors

ry = [rT
y [0], rT

y [1], . . . , rT
y [L], rT

y [−L], . . . , rT
y [−1]]T , (9)

r̄x = [r̄T
x
[0], r̄T

x
[1], . . . , r̄T

x
[L], r̄T

x
[−L], . . . , r̄T

x
[−1]]T . (10)

From (8), and the fact that the first T 2 columns of R̄c[1] as
well as the last (N−1)T 2 entries of r̄x[L] are zero, the relation
between ry and r̄x can finally be expressed as

ry = R̄cr̄x, (11)

where R̄c is the (2L + 1)M2 × (2L + 1)NT 2 matrix given
by

R̄c =

⎡
⎢⎢⎢⎢⎢⎣

R̄c[0] R̄c[1]
R̄c[1] R̄c[0]

R̄c[1] R̄c[0]
. . .

. . .
R̄c[1] R̄c[0]

⎤
⎥⎥⎥⎥⎥⎦

.

B. Relating sx[f, φ) to Rx[ν]

Let us start by defining the T × T matrix Rν as

Rν =

⎡
⎢⎣

rx[0, νT ] . . . rx[0, (ν + 1)T − 1]
...

...
rx[T − 1, νT ] · · · rx[T − 1, (ν + 1)T − 1]

⎤
⎥⎦ ,

and the T × (2L + 1)NT matrix R as

R = [R0,R1, . . . ,R(L+1)N−1,R−LN , . . . ,R−1].

We may assume that only the first column of the matrix
R(L+1)N−1 is non-zero, and thus we could virtually assume
that the other entries of R(L+1)N−1 are filled with the entries
at the bottom corner of Rx[(L + 1)N − 1] and the top corner
of Rx[−LN ] (which are also all zero). In such a way, all the
entries of R can be linearly related to r̄x, and we can write

vec{R} = Pr̄x,

whereP is a specific (2L+1)NT 2×(2L+1)NT 2 permutation
matrix.
Let us next also define the T × T matrix R̃ν as

R̃ν =

⎡
⎢⎣

r̃x[0, νT ] . . . r̃x[0, (ν + 1)T − 1]
...

...
r̃x[T − 1, νT ] · · · r̃x[T − 1, (ν + 1)T − 1]

⎤
⎥⎦ ,

and the T × (2L + 1)NT matrix R̃ as

R̃ = [R̃0, R̃1, . . . , R̃(L+1)N−1, R̃−LN , . . . , R̃−1].

From (1), we can connect R̃ with R through

R̃ =
∑(L+1)NT−1

τ=−LNT GτRDτ , (12)

where Gτ is the T × T matrix given by Gτ =
1/T [e−j2πf(t−τ/2)/T ]f,t and Dτ is the (2L + 1)NT × (2L +
1)NT diagonal matrix with a one on the (τ mod (2L +
1)NT )th diagonal entry and zeros elsewhere.
Since r̃x[f, τ ] is limited to −LNT ≤ τ ≤ (L + 1)NT − 1,

the cyclic power spectrum sx[f, φ) is uniquely determined by
(2L+1)NT of its samples in φ, i.e, by sx[f, ϕ

(2L+1)NT ) with
0 ≤ ϕ ≤ (2L+1)NT − 1. These samples can be stacked into

S =

⎡
⎢⎢⎣

sx[0, 0) . . . sx[0, (2L+1)NT−1
(2L+1)NT )

...
...

sx[T − 1, 0) . . . sx[T − 1, (2L+1)NT−1
(2L+1)NT )

⎤
⎥⎥⎦ ,

which from (2) and (12) can be written as

S = R̃F =
∑(L+1)NT−1

τ=−LNT GτRFτ , (13)

where F is the (2L + 1)NT × (2L + 1)NT DFT matrix and
Fτ = DτF is the (2L + 1)NT × (2L + 1)NT matrix that
selects the (τ mod (2L+1)NT )th row out of F. Vectorizing
this expression, we obtain

sx = vec{S} =
∑(L+1)NT−1

τ=−LNT (FT
τ ⊗ Gτ )vec{R}

=
∑(L+1)NT−1

τ=−LNT (FT
τ ⊗ Gτ )Pr̄x = Tr̄x, (14)

where T is the (2L + 1)NT 2 × (2L + 1)NT 2 transformation
matrix given by T =

∑(L+1)NT−1
τ=−LNT (FT

τ ⊗Gτ )P. This matrix
T can be shown to be always full rank, and thus we can also
write

r̄x = T
−1

sx,

which combined with (11) also leads to

ry = R̄cT
−1

sx. (15)

V. RECONSTRUCTION

When R̄c has full column rank, we can directly solve (15)
for sx, leading to

ŝx = (R̄cT
−1)†ry. (16)

Alternatively, we can first solve (11) for r̄x using least
squares, leading to

ˆ̄rx = R̄
†
c
ry, (17)

and from (14) this gives us

ŝx = Tˆ̄rx. (18)

The computational load and memory requirements for solving
(17) and (18) can be greatly reduced by noting that R̄c is a
block circulant matrix and thus can be converted into a block
diagonal matrix via inverse DFT. Then, {ˆ̄rx[l]}L

l=−L can be
recovered in a parallel fashion in frequency domain [11], [12].
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Note that these two approaches require M2 ≥ NT 2. When
N = 1, then M2 ≥ NT 2 only holds when M = T , which
means we have achieved no compression. When N > 1,
however, it is possible to obtain M2 ≥ NT 2 for M < NT .
Hence, when the span of the random linear projections NT
is larger than the period of the cyclostationary signal T , it
is possible to reconstruct the autocorrelation sequence of a
signal from its compressive measurements using a simple least
squares method, i.e., without taking any sparsity constraints
into account and even when the signal is non-sparse.
On the other hand, when R̄c does not have full rank,

which for instance occurs when M2 < NT 2, we can not
reconstruct the autocorrelation sequence without taking some
sparsity constraints into account, e.g., the sparsity of the cyclic
spectrum. Hence, in that case, we could formulate an �1-norm
constrained least squares problem to solve (15) for sx:

min
sx

‖ry − R̄cT
−1

sx‖
2
2 + λ‖sx‖1, (19)

where λ > 0 is a weighting factor that balances between
providing a small output error (through the first term) and
a sparse cyclic spectrum (through the second term). This
problem is well-known in the compressive sensing literature
and can be solved by a plethora of algorithms [2], [3].

VI. SPECIAL CASES

A first special case occurs when T = 1, which basically
means that we are dealing with a stationary signal. In that
case, many of the derivations simplify and then the proposed
approach reduces to the approach discussed in [11] (see
also [12] for earlier investigations for real-valued signals).
A second special case occurs when N = 1, which means

that the span of the random linear projections is the same as the
period of the cyclostationary signal. This case has also been
discussed in [13], [14], although the focus therein was limited
to reconstructing Rx[0] from ryi,yj

[0] for i, j = 1, . . . , M ,
whereas this paper aims at reconstructing all relevant Rx[ν]’s
from the related ryi,yj

[κ]’s for i, j = 1, . . . , M , allowing for a
higher-resolution estimate of the cyclic spectrum. As discussed
earlier, this case always requires some sparsity constraints.

VII. SIMULATIONS

Consider a pulse amplitude modulated (PAM) waveform
that is sampled T times per symbol period Ts to generate
the cyclostationary signal x[t] =

∑
n anp((t/T−n)Ts), where

{an} are binary-valued symbols and p(·) is the pulse shaper in
the form of a Ts-long rectangle. A Gaussian random sampler is
used to generate compressive samples yi[k], using parameters
T = 16, N = 4, L = 20, and various values of M . The com-
pression ratio is η = M/(NT ), where we choose M2 ≥ NT 2

to avoid any sparsity constraints. The cyclic power spectrum ŝx

estimated from (16) is compared with the true one sx in (2).
As Fig 1 illustrates, the normalized mean-square estimation
error decreases as the compression ratio η becomes large, and
stays low for a broad range of η < 1. Evidently, the proposed
technique effectively reconstructs the second-order statistics of
non-sparse signals, without any sparsity constraints.

0.3 0.4 0.5 0.6 0.7 0.8
10

−2

10
−1

Compression Ratio

M
S

E

Fig. 1. Performance of compressive cyclic spectrum estimation: normalized
mean square error (MSE) vs. compression ratio η = M/(NT ).

VIII. SUMMARY

This paper develops a compressive sensing technique for
extracting second-order (cyclic) statistics of random processes.
The proposed technique utilizes all significant lags of the
cross-correlation functions of the linear projection outputs,
such that significant compression is effected even for non-
sparse signals. Considering the rich features in second-order
statistics, it will open up opportunities for a gamut of new
techniques with enhanced capability in handling random pro-
cesses in the wideband regime.
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