
Energy Detection of (Ultra-)Wideband PPM

Shahzad Gishkori∗ Geert Leus∗ Hakan Deliç†
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Abstract

In this paper, energy detectors are developed for wideband and ultra-wideband
(UWB) pulse position modulation (PPM). Exact bit error probability (BEP) ex-
pressions are presented under different assumptions about the channel. More
specifically, we present an expression for the instantaneous BEP for a specific
channel realization as well as an expression for the average BEP for an i.i.d.
zero-mean Gaussian channel. Simulation results corroborate the precision of the
expressions.

1 Introduction

Pulse position modulation (PPM) is an M -ary orthogonal modulation scheme that has
enjoyed great interest with the advent of ultra-wideband (UWB) communications [1, 2].
Different symbols are realized by shifting a pulse to distinct positions in time within
the specified symbol duration. PPM is advantageous because of its simplicity and
the ease of controlling delays [1] but the disadvantage is the relatively large bandwidth
associated with it. This large bandwidth causes a large number of multipaths [3]. Thus
channel estimation becomes a very important but complicated process. A number of
solutions have been provided to circumvent this issue, e.g., as proposed in [4, 5, 6]. In
order to reduce the overall system complexity and power consumption, we concentrate
on noncoherent reception of PPM signals through energy detection [7, 8]. The resulting
detection procedure is akin to a generalized maximum likelihood (GML) detector.
The symbol decision is determined by the pulse position that contains more energy
than the rest of the positions. We derive the optimal energy detectors for wideband
and UWB PPM reception, and provide the corresponding bit error probability (BEP)
expressions. We obtain expressions for different assumptions on the channel, and verify
them through simulations. First of all, we consider a deterministic channel and present
the instantaneous BEP for a specific channel realization. Next, we consider a stochastic
channel and present the average BEP for an i.i.d. zero-mean Gaussian channel. We
finally point out that the UWB PPM detector proposed in [7], whose performance
degrades with an increasing spreading factor, is suboptimal, and we show that the
performance of the optimal UWB PPM detector does not depend on the spreading
factor.

2 Signal Model

Define the pulse position modulated transmitted signal sk(t) of length T for the kth
information symbol ak ∈ {0, 1, . . . ,M − 1} as sk(t) = g(t − kT − akT/M) where g(t)
is the unit-energy pulse waveform with support [0, Tg]. If p(t) represents the impulse
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response of the physical communication channel, then the received signal corresponding
to the kth information symbol is given by

xk(t) = sk(t) ∗ p(t) + nk(t) = h(t− kT − akT/M) + nk(t)

where nk(t) is the additive noise corresponding to the kth information symbol, and
h(t) = g(t) ∗ p(t) is the received pulse waveform with support [0, Th]. Following
Nyquist-rate sampling at rate N/T , the sampled received signal corresponding to the
kth information symbol is given by

xk,i = xk(iT/N) = hi−kN−akN/M + nk,i,

for i = 0, 1, . . . , N − 1, where hi = h(iT/N) and nk,i = nk(iT/N), and where we
have assumed that N/M is an integer. The support of hi is given by [0, L− 1], where
L = ⌈NTh/T ⌉. Since we want to make the detection process separable in the different
symbols, we do not want the symbols to overlap and we thus require Th ≤ T/M or
L ≤ N/M .

3 Energy Detection of PPM

In order to reduce the overall system complexity and power consumption, we concen-
trate on noncoherent reception of PPM signals [7], which is akin to a GML detector.
The symbol decision is based on finding the pulse position that contains the maximum
energy. The symbol-by-symbol detection process does not require the estimation of the
channel parameters. The energy of the multipath components is collected to increase
the detection probability of the actual transmitted pulse. Let us focus on 2-PPM for
simplicity (M = 2) and let us assume that we have knowledge of L (in practice this
can be an overestimate of L). In that case, the detector can be built by incorporating
only those samples in xk,i that contain symbol information, and we obtain

uk,1 =
L−1
∑

i=0

x2
k,i

0

≷
1
uk,2 =

N/2+L−1
∑

i=N/2

x2
k,i. (1)

In the following, we present the theoretical performance of the above detector. We
consider two different situations. First of all, we consider a deterministic channel hi and
present the instantaneous BEP given a specific channel realization. The average BEP
for a certain channel distribution can then be estimated in simulations by averaging the
BEP over different channel realizations drawn from the channel distribution. For one
specific channel distribution, we can present the average BEP in closed form, namely
when the channel hi is i.i.d. zero-mean Gaussian distributed. This is discussed in the
second part. Note that since all symbols are treated separately, we can simply consider
k = 0 and drop the subscript k in the sequel of this section whenever it offers notational
convenience.

3.1 Instantaneous BEP

We assume that the channel hi is deterministic and that the noise ni is i.i.d. zero-
mean Gaussian distributed with variance σ2, i.e., ni ∼ N(0, σ2) for i = 0, 1, . . . , N − 1.
Assuming a zero has been transmitted, this results into xi = hi + ni ∼ N(hi, σ

2),
i = 0, 1, . . . , L− 1. From (1), we can write the instantaneous BEP for the case a zero
is transmitted as

Pe = P (u1 < u2),
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where u1 =
∑L−1

i=0 x
2
i =

∑L−1
i=0 (hi + ni)

2 and u2 =
∑N/2+L−1

i=N/2 x2
i =

∑N/2+L−1
i=N/2 n2

i . Since

xi = hi + ni ∼ N(hi, σ
2), i = 0, 1, . . . , L− 1, u1 is a non-central chi-square distributed

random variable where the noncentrality parameter equals the instantaneous channel
energy, s2 = Eh =

∑L−1
i=0 h2

i . The pdf of u1 is given by [9]

pU1
(u1) =

1

2σ2

(u1

s2

)(L−2)/4

exp

[−(s2 + u1)

2σ2

]

IL/2−1

(√
u1

s

σ2

)

, u1 > 0,

where Iν(z) is the modified Bessel function of the first kind [11, Eq. (8.445)]. Further,
u2 is a central chi-square distributed random variable since only the noise is involved.
The pdf of u2 is given by [9]

pU2
(u2) =

1

σL 2
L
2 Γ

(

L
2

)
u
(L−2)/2
2 exp

[−u2

2σ2

]

, u2 > 0.

The instantaneous BEP is

Pe = 1− 1

2σ2Γ(L
2
)s(L−2)/2

e
−s2

2σ2

∫ ∞

0

γ

(

L

2
,
u1

2σ2

)

u
(L−2)/4
1 e

−u1
2σ2 IL/2−1

(√
u1

s

σ2

)

du1 (2)

where γ(., .) is the lower incomplete gamma function given by γ(n, u) =
∫ u

0
tn−1e−tdt.

Details regarding the derivation of (2) can be found in [10]. (2) only contains a single
integral and can easily be computed numerically. Remark that Pe is the expression for
the instantaneous BEP given a specific channel realization hi. The average BEP P̄e

for a certain channel distribution can then be estimated in simulations by averaging
the instantaneous BEP Pe over different channel realizations drawn from the channel
distribution.

3.2 Average BEP for an i.i.d. zero-mean Gaussian Channel

In this subsection, we consider a specific channel distribution for which we can find an
expression of the average BEP P̄e in closed form. More specifically, we assume that the
channel hi is i.i.d. zero-mean Gaussian distributed with variance 1, i.e., hi ∼ N(0, 1)
for i = 0, 1, . . . , L − 1, and that the noise ni is i.i.d. zero-mean Gaussian distributed
with variance σ2, i.e., ni ∼ N(0, σ2) for i = 0, 1, . . . , N − 1. Assuming a zero has been
transmitted, this results into xi = hi + ni ∼ N(0, 1 + σ2), i = 0, 1, . . . , L− 1. Although
this might not be the most realistic channel model, it provides us the opportunity to
study the influence of certain channel and noise parameters on the average BEP P̄e.
From (1), we can write the average BEP for the case a zero is transmitted as

P̄e = P (u1 < u2),

where u1 =
∑L−1

i=0 x
2
i =

∑L−1
i=0 (hi + ni)

2 and u2 =
∑N/2+L−1

i=N/2 x2
i =

∑N/2+L−1
i=N/2 n2

i . Since

xi = hi+ni ∼ N(0, 1+σ2), i = 0, 1, . . . , L−1, u1 now is a central chi-square distributed
random variable instead of a non-central chi-square distributed random variable. The
pdf of u1 is given by [9]

pU1
(u1) =

u1
L
2
−1

σL
1 2

L
2 Γ

(

L
2

)
e

−u1

2σ2

1 , σ2
1 = 1 + σ2.
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Further, u2 is again a central chi-square distributed random variable. The pdf of
u2 is given by [9]

pU2
(u2) =

u
L
2
−1

2

σL
2 2

L
2 Γ

(

L
2

)
e

−u2

2σ2

2 , σ2
2 = σ2.

The average BEP is

P̄e = 1− 2Γ(L)

L[Γ(L
2
)]2

[

σ1σ2

σ2
1 + σ2

2

]L

2F1

(

1, L;
L

2
+ 1;

σ2
1

σ2
1 + σ2

2

)

(3)

where 2F1(., .; .; .) is the Gaussian hypergeometric function that is defined by [11, Eq.
(9.14.2)]. Details regarding the derivation of (3) can be found in [10]. Hence, we have
obtained a closed form expression for the average BEP for an i.i.d. zero-mean Gaussian
channel hi.

3.3 Simulation Results

In this subsection, we will illustrate the above BEP expressions by means of some
simulation examples. We consider a 2-PPM system with samples taken at Nyquist
rate and a channel of length L = 3. Let us first focus on the instantaneous BEP
and make the same assumptions as in Section 3.1. The instantaneous BEP will be
plotted against the instantaneous SNR. Defining the instantaneous channel energy as
Eh =

∑L−1
i=0 h2

i , and the instantaneous SNR can be written as

η =
Eh

σ2
.

Note that the instantaneous BEP Pe only depends on this instantaneous SNR η, and
not on the distribution of the energy over the different channel taps. We compare our
exact expression (2) with the approximate expression derived in [7]

Pe ≈ Q





[

2
1

η
+ L

(

1

η2

)2
]−1/2



 , (4)

where Q(.) is the Q-function. Note that we have adapted the expression of [7] to our
context and notation. We will come back to this equation later on when we discuss
energy detection for UWB PPM signals. The results are plotted in Figure 1. We clearly
observe that the Gaussian approximation of the channel energy made in [7] does not
hold for this example since L is too small. That is why the approximate instantaneous
BEP of [7] severely underestimates the exact instantaneous BEP of (2). Let us next
focus on the average BEP for an i.i.d. zero-mean Gaussian channel and make the same
assumptions as in Section 3.2. The average BEP will be plotted against the average
SNR. Defining the average channel energy as Ēh = E{∑L−1

i=0 h2
i } = L and the average

SNR is defined as

η̄ =
Ēh

σ2
=

L

σ2
.

In Fig. 2, we compare our exact expression (3) with two other curves: the simulated
average BEP and the average BEP obtained by averaging (4) over different channel
realizations. We can clearly see that our exact expression matches the simulations,
whereas the result based on [7] again underestimates the exact average BEP.
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Figure 1: Instantaneous BEP of 2-PPM
with L = 3 taps.
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Figure 2: Average BER of 2-PPM with
L = 3 taps.

4 Energy Detection of UWB PPM Signals

In this section, we extend the analysis to single-user UWB systems employing PPM.
We follow the model presented in [7] and improve upon it. Every symbol now consists
of Nf frames, each with frame time Tf , so that the symbol time is given by T = NfTf .
The motivation for a multiple frame transmission has been attributed to the FCC limits
on the signal power spectral density. Repeating a pulse Nf times, reduces the energy of
an individual pulse for a constant symbol energy. The transmitted and received signal
for the kth information symbol can now respectively be written as

sk(t) =

Nf−1
∑

j=0

g(t− (j + kNf )Tf − akTf/M)

and

xk(t) = sk(t) ∗ p(t) + nk(t) =

Nf−1
∑

j=0

h(t− jTf − kT − akTf/M) + nk(t).

Following Nyquist-rate sampling at rate N/Tf , the sampled received signal correspond-
ing to the kth information symbol is now given by

xk,i = xk(iTf/N) =

Nf−1
∑

j=0

hi−jN−kNNf−akN/M + nk,i, (5)

for i = 0, 1, . . . , NfN − 1, using the same definitions and assumptions as before. Sepa-
rating the detection process in the different symbols now also means that the different
frames may not overlap, and thus we require Th ≤ Tf/M or L ≤ N/M . Stacking the
NNf received samples related to the kth symbol, xk = [xk,0, xk,1, . . . , xk,NNf

]T , we can
write (5) as

xk = u(ak,h) + nk

where h = [h0, h1, . . . , hL−1]
T and nk = [nk,0, nk,1, . . . , nk,NNf

]T . u(ak,h) is the useful
signal part. Assuming nk,i is i.i.d. zero-mean Gaussian distributed with variance σ2,

Thirty-first Symposium on Information Theory in the Benelux

55



the pdf of the received signal xk can be written as

p(xk|ak,h) = C exp

{

− 1

2σ2
‖xk − u(ak,h)‖22

}

(6)

where C is some positive constant. Using the generalized maximum likelihood criterion,
it is clear that in order to maximize (6), we need to minimize the squared 2-norm, which
can be written as

Λ(ak,h) = ‖xk − u(ak,h)‖22 =
Nf−1
∑

j=0

L−1
∑

l=0

(h2
l − 2hlxk,Pj,l

) (7)

where Pj,l = jN+akN/M+l for notational simplicity. Now taking the partial derivative
with respect to hl while keeping ak fixed, we obtain

∂Λ(ak,h)

∂hl

= 2Nfhl − 2

Nf−1
∑

j=0

xk,Pj,l
.

Now minimizing the cost function with respect to h would mean setting every gradient
with respect to hl to zero, which yields the following optimal estimate for hl:

ĥl =
1

Nf

Nf−1
∑

j=0

xk,Pj,l
. (8)

Defining ĥ = [ĥ0, ĥ1, . . . , ĥL−1]
T and substituting (8) in (7), we finally obtain Λ(ak, ĥ) =

−Nf

∑L−1
l=0 ĥ2

l . As a result, the symbol ak can be found by solving the following problem

min
ak

Λ(ak, ĥ) = max
ak

L−1
∑

l=0

ĥ2
l . (9)

Let us at this point define the instantaneous SNR as

η =
NfEh

σ2
.

From (9) and (8), it can then be observed that the decision result will be independent
of the number of frames Nf for the same instantaneous SNR η. We can explain this
as follows. The estimate of hl in (8) is obtained by averaging samples over different
frames, which on one hand decreases the noise energy by a factor of Nf but on the
other hand also decreases the signal energy by a factor of Nf due to the fact that the
instantaneous SNR η is kept constant. Hence, the performance of the estimate of hl

does not change with Nf and thus also the solution to (9) does not change with Nf

since it only involves the estimate of hl. Replacing ĥl in (9) by the value obtained from
(8), we can write

min
ak

Λ(ak, ĥ) = max
ak

L−1
∑

l=0





1

Nf

Nf−1
∑

j=0

xk,Pj,l





2

= max
ak

L−1
∑

l=0





1

Nf

Nf−1
∑

j=0

xk,jN+akN/M+l





2

.

(10)
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So we can see that the optimal procedure consists of first averaging and then squar-
ing, and the related performance is independent of the number of frames Nf if the
instantaneous SNR η is kept constant. The instantaneous BEP Pe can thus be com-
puted using (2). This is in contrast to the procedure proposed in [7], consisting of first
squaring and then averaging:

âk = argmax
ak

1

Nf

Nf−1
∑

j=0

L−1
∑

l=0

x2
k,jN+akN/M+l. (11)

The related instantaneous BEP can be approximated by [7]

Pe ≈ Q





[

2

(

1

η

)

+NfL

(

1

η

)2
]−1/2



 , (12)

which increases significantly with Nf . Hence, we can conclude that the approach in [7]
is clearly suboptimal. Note that for Nf = 1 both approaches are equivalent and that is
why we could use (12) with Nf = 1 as a performance benchmark for the instantaneous
BEP in Section 3.3.

4.1 Simulation Results

Let us consider the pulse waveform g(t) given by the second derivative of a Gaussian
pulse with unit energy and a duration of 1 nsec. Further, let us generate a channel
p(t) using the IEEE 802.15.3a CM1 channel model [3], which is a line-of-sight channel
model. We focus on a bandwidth of 1 GHz, corresponding to a sample rate of N/T =
0.5 ns. Since the CM1 channel model has a delay spread of about 20 ns, we take
L = 40. Figure 3 shows the simulated instantaneous BEP for the proposed method (10)
and compares this with (12) which is an approximation of the instantaneous BEP for
the method of [7]. We observe that the performance of the proposed method does
not change with Nf , whereas the method of [7] is severely influenced by Nf . Fig. 4
finally compares the simulated instantaneous BEP of the proposed method (10) with
the exact expression of (2) and the approximated expression of (4) for L = 20 and
L = 40. Clearly, the exact expression corresponds to the simulated results, whereas
the approximated expression slightly deviates (the deviation decreases as L increases).
In this case, the difference between (2) and (4) is smaller as in Fig. 1 because we are
dealing with larger values of L here. Further, we notice that decreasing L below the
delay spread (from L = 40 to L = 20) can have a positive effect on the performance,
since we are capturing less noise energy in the considered intervals.

5 Conclusion

We have presented PPM signal models for wideband and UWB signals along with their
theoretical expressions for the BEP. We have looked at the instantaneous BEP for a
specific channel realization as well as the average BEP for an i.i.d. zero-mean Gaussian
channel. Our theoretical analysis portrays the exact behavior of the signal models. We
have also presented an UWB PPM detector along with its theoretical BEP expression
which outperforms an existing detector.
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