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ABSTRACT

This paper focuses on solving sparse reconstruction problems where
we have noise in both the observations and the dictionary. Such
problems appear for instance in compressive sampling applications
where the compression matrix is not exactly known due to hardware
non-idealities. But it also has merits in sensing applications, where
the atoms of the dictionary are used to describe a continuous field
(frequency, space, angle, ...). Since there are only a finite number
of atoms, they can only approximately represent the field, unless we
allow the atoms to move, which can be done by modeling them as
noisy. In most works on sparse reconstruction, only the observations
are considered noisy, leading to problems of the least squares (LS)
type with some kind of sparse regularization. In this paper, we also
assume a noisy dictionary and we try to combat both noise terms
by casting the problem into a sparse regularized total least squares
(SRTLS) framework. To solve it, we derive an alternating descent
algorithm that converges to a stationary point at least. Our algorithm
is tested on some illustrative sensing problems.

Index Terms— Total least squares (TLS), sparsity, spectrum
sensing, direction-of-arrival estimation.

1. INTRODUCTION

Although sparse reconstruction algorithms have been around for a
while, there has been a renewed interest in this field inspired by the
results obtained in compressive sampling [1, 2]. The basic problem
in sparse reconstruction is to model an observation using only a few
atoms of a large dictionary. A dictionary can be represented by a ma-
trix, whose columns are the atoms of the dictionary. In compressive
sampling applications for instance, the dictionary matrix is the prod-
uct of a compression matrix with a basis matrix, whereas in sensing
applications the atoms of the dictionary basically represent a dense
grid of points in some continuous field such as frequency, space, an-
gle, ..., or any combination thereof. In most sparse reconstruction
applications, such as the ones discussed above, the dictionary matrix
can be considered fat, making the reconstruction problem underde-
termined. However, the knowledge that the solution is sparse can
help us out by including a sparse regularization.

Generally, only the observations are considered noisy. The
sparse reconstruction problem is then typically solved by formulat-
ing it as a least squares (LS) problem with sparse regularization, such
as the least-absolute shrinkage and selection operator (LASSO) [3].
Little efforts have been made to tackle the case when both the obser-
vations and the dictionary are noisy. A noisy dictionary can occur in
compressive sampling, where the compression actually takes place
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in the analog domain, and as a result the compression matrix is only
approximately known due to non-idealities of the analog compo-
nents. In this paper, on the other hand, we mainly address sensing
applications where the atoms of the dictionary can be viewed as can-
didate grid points where sources could be active. Since in practice
the actual sources will not be exactly on the grid, we can take that
into account by modeling the grid points as noisy. We consider two
sensing applications in this paper: spectrum sensing for cognitive
radio and direction estimation in array processing. In spectrum
sensing, every grid point corresponds to a specific location where a
specific waveform (basis function) is transmitted [4, 5, 6], whereas
in direction estimation, we use an angular grid, where every grid
point represents a different direction-of-arrival (DoA) [7, 8]. An
important benefit of assuming noisy grid points is that the estimated
disturbance of these points provides a correction of the grid, leading
to an improved accuracy of the model fitting.

In [9], it has been shown how the solution of an LS problem
with sparse regularization is affected by noise in the dictionary, but
no methods have been devised that take this noise into account. In
this paper we develop an approach that is robust against noise in both
the observations and the dictionary. We formulate this problem as a
sparse regularized total least squares (SRTLS) problem, and we de-
velop an alternating descent algorithm to solve this problem, where
we alternate between the unknown coefficients and the unknown er-
ror on the dictionary. The problem can be shown to converge to a
stationary point at least. We apply this algorithm to both sensing ap-
plications discussed earlier, illustrating the benefits of SRTLS over
LASSO. Finally, note that the setup considered here is different from
the one in [10], where a seemingly related problem was considered
but for dictionary learning instead of sparse reconstruction.

Notations: Upper (lower) bold face letters will be used for ma-
trices (column vectors); (·)T denotes transposition; (·)T Hermitian
transpose; 1m×n the m× n matrix of all ones; ‖ · ‖F the Frobenius
norm; and ‖ · ‖p the vector p−norm for p ≥ 1.

2. DATA MODEL AND PROBLEM STATEMENT

Consider an underdetermined linear system for sensing an unknown
sparse signal vector x of length n, and the observation y ≈ Ax is
a vector of length m. Under the assumption that only y is corrupted
by an additive noise e in the form of

y + e = Ax, (1)

it is well known that a sparse solution can be obtained by solving an
LS problem with an `1 norm regularization, which is also known as



the LASSO [3]

x̂LASSO := arg min
x,e

‖e‖22 + λ‖x‖1
s.t. y + e = Ax, (2)

for some λ > 0. However, provided that both the observation y and
the dictionary A are given data, it is more reasonable to treat them
symmetrically by assuming that A is also corrupted by an additive
noise term E. Then the system model becomes

y + e = (A + E)x. (3)

The above model takes into account the (possible) noise, or sys-
tem mismatch, in the dictionary matrix A, and has been considered
extensively as the total least squares (TLS) problem, with applica-
tions as broad as image reconstruction, speech and audio processing,
modal and spectral analysis, system identification, and so on; see
e.g., [11]. However, as far as we know, TLS has not yet been studied
in combination with `1 regularization. In addition, TLS modeling of
(3) as well as all the TLS solvers so far, including the `2 regularized
ones, have not yet been applied for an underdetermined system.

Therefore, compared to the TLS problem, we consider a sys-
tem where the number of observations is less than the number of
unknown coefficients, i.e., m < n in (3). Then the objective be-
comes to obtain a parsimonious estimate of the signal x given y and
A, both noise-corrupted. Assuming the noise terms E and e in (3)
are uncorrelated with each other and across the entries, we are in-
terested in solving the sparsity regularized TLS (SRTLS) problem
formulated as

x̂SRTLS := arg min
x,e,E

‖ [E, e] ‖2F + λ‖x‖1
s.t. y + e = (A + E)x, (4)

for some λ > 0. Different from (2), the problem (4) looks for min-
imal (in the Frobenius norm sense) corrections E and e on both the
given data A and y that allows the corrected system to afford the so-
lution x̂SRTLS with a minimal `1 norm. Notice that the formulation
(4) treats the noise variance for each entry of [E, e] as equal, yet
disproportional or even structured noise models can also be allowed
but are omitted here for space consideration. A close look at the
optimization problem (4) reveals that it involves the product of the
optimization variables E and x. Thus it is generally a non-convex
problem and we will seek an iterative alternating-descent type al-
gorithm which converges to a stationary point at least in Section 3.
Before discussing the algorithmic implementation, it is useful to un-
derstand the importance of the noise term E. Next, we will look
at two sparse signal reconstruction applications, where the noise E
originates from errors due to the assumptions that are made about the
dictionary matrices. Including this noise term E in the data model
and the sparse system solver, a better system performance can be
obtained.

2.1. Spectrum Sensing in Cognitive Radio Networks

Spectrum sensing is a critical prerequisite in envisioned applications
of wireless cognitive radio (CR) networks which promise to resolve
the perceived bandwidth scarcity versus under-utilization dilemma.
The task is to estimate the transmitting source locations and identify
its (un)used frequency bands; see e.g., [4]. Specifically, consider
Ns sources (transmitters) located at position vectors {xs}Ns

s=1 and
Nr CRs at {xr}Nr

r=1. Relying on a virtual grid of candidate source
locations depicted in Fig. 1, vectors xs no longer describe the actual
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Fig. 1. Virtual CR network grid with Ns = 25 candidate locations,
1 transmitting source, and Nr = 4 receiving CRs.

positions of e.g., primary users but grid points with known spatial
coordinates where transmitting radios could be present. Under this
scenario, the power spectral density (PSD) Φs(f) is nonzero if there
is a transmitter present at xs, and zero otherwise.

For a sufficiently large number of bases Nb, the PSD of each
source can be well approximated by the basis expansion model

Φs(f) =

Nb∑
ν=1

θsνbν(f), s = 1, 2, . . . , Ns, (5)

where {bν(f)}Nb
ν=1 is a collection of known bases, and {θsν} denote

the expansion coefficients to be estimated. Furthermore, the channel
gain γsr from the source at xs to the CR at xr is assumed to follow a
known function of the source-receiver distance; e.g., the exponential
pathloss model where γsr = e−||xr−xs||2/δ2

, with δ a known con-
stant. Together with some other system specifications as detailed in
[4], the received PSD can be approximated as the linear combination
of the PSDs of all the sources and noise

Φr(f) ≈
Ns∑
s=1

γsrΦs(f) + σ2
r

≈
Ns∑
s=1

γsr

Nb∑
ν=1

θsνbν(f) + σ2
r

≈ bT
r (f)θ + σ2

r , (6)

where σ2
r stands for the noise power and the P := NbNs × 1 vector

θ is formed by stacking the columns of the matrix with entries θsν ,
and br(f) by concatenating the columns of the matrix with entries
γsrbν(f).

Stacking (6) across receivers and sampling frequencies leads to
a linear model for this specific spectrum sensing application, which
fits the SRTLS one (3) in the following three ways. Firstly, sparsity
in θ is manifested since the model (6) is parsimonious both in fre-
quency as well as in space. Secondly, the noise term e in (3) can
account for the imperfection of estimating the receiver PSD due to
the limited memory in practice. Last but most importantly, the dis-
turbance E in (3) is well motivated as (6) assumes that the sources



are located exactly on the grid. Notice that in (6) only the model
parameters corresponding to the candidate grid points are stacked
in the vector θ to be estimated. However, most likely in a real im-
plementation, the actual source locations differ from any of the grid
points, as shown in Fig. 1. This results in a mismatch between br(f)
in (6) which corresponds to only the grid points and the one to the
actual transmitter locations. Moreover, the estimated error E that is
obtained by solving the problem (4) can further be used to improve
the source location estimation, thereby increasing the spectrum sens-
ing accuracy over the spatial field, as explained in more details in
Section 4. Note that the error E could also be used to recover from
possible inaccuracies in the bases bν(f), but we will not consider
this here.

2.2. Direction Estimation in Array Processing

The goal of array source localization is to find the direction-of-arrival
(DoA) of sources of wavefields that impinge on an array consisting
of a number of antennas. For purposes of exposition, we only focus
on the narrowband scenario with a single snapshot. Similar to the
spectrum sensing problem where the parameters for all grid points
are to be estimated, under this setup we consider all possible source
DoAs {θs}Ns

s=1, usually taken from a uniform sampling. We repre-
sent the signal field by a vector z of length Ns, where the s-th entry
zs is nonzero and equal to its transmitting signal amplitude if there
exists a source from the angle θs and zero otherwise.

To this end, define the Nr × 1 array steering vector of a uniform
linear array (ULA) of Nr antennas corresponding to the source from
direction θs as

ψ(θs) := [1 e−jαs e−jαs(Nr−1)]T , (7)

where the array phase shift αs := 2π(d/λs) sin(θs) with d the dis-
tance between neighboring antennas and λs the signal wavelength
of the source from θs. Then the received signal at the ULA can be
written as an Nr × 1 vector ϕ of the form

ϕ = Ψz + w (8)

where w is the receiver additive noise and Ψ is the angle scanning
matrix taking the form Ψ = [ψ(θ1) . . . ψ(θNs)]. Similar to the
spectrum sensing example, this overcomplete representation in (8)
allows us to exchange the problem of parameter estimation of the
source signal for the problem of sparse estimation of the source scan-
ning vector z. However, the same issue also appears since the finite
sampling will fail to cover the sources from the angles other than
{θs}Ns

s=1, and equivalently an error in the angle scanning matrix Ψ
may result. Therefore, applying the SRTLS problem formulation
(4), which takes into account the error in Ψ , has the potential to
recover a more accurate estimate of z. What is more, the estimate of
the error in Ψ is also useful to improve the source angle inference,
as explained in Section 4.

In the next section, we will develop the alternating descent algo-
rithm used for solving the SRTLS problem (4).

3. SRTLS ALTERNATING DESCENT ALGORITHM

As mentioned earlier, the SRTLS problem (4) is non-convex, thus no
efficient convex solver can guarantee to achieve the global optimum.
To this end, we adopt an iterative approach where all the variables
are updated in turn per iteration. First notice that e follows a fixed
relationship with E and x from the constraint in (4). For a given E
matrix, the SRTLS problem (4) reduces to the LASSO formulation in

(2) so x can be solved efficiently; also by fixing x, the optimal E can
be obtained as the solution of a constrained LS problem. Therefore,
our alternating descent algorithm only needs to iterate between E
and x in turn per iteration.

Specifically, let E(k) denote the iterate for E at iteration k; and
likewise for x(k). After initializing the algorithm at iteration k = 0
with E(0) = 0m×n, the update iterations follow. For any iteration
k ≥ 0, the signal iterate x(k) is obtained as the optimum of the
problem

x(k) = arg min
x,e

‖e‖22 + λ‖x‖1
s.t. y + e = [A + E(k)]x, (9)

using some convex optimization solver; e.g., the interior point solver
SeDuMi [12]. Substituting the constraint of (4) back into its cost
function for given x(k), the noise matrix E(k + 1) is further esti-
mated as

E(k + 1) = arg min
E
‖E‖2F + ‖y −Ax(k)−Ex(k)‖22 (10)

By setting the first-order derivative of its cost function to zero, the
optimal solution to the quadratic problem (10) is found in closed
form as

E(k + 1) = [y −Ax(k)]xT (k)[I + x(k)xT (k)]−1. (11)

This completes one update, and the algorithm will terminate once
the difference between two consecutive iterations becomes smaller
than a given threshold.

In this iterative algorithm, both updates (9) or (10) at iteration
k may either improve or maintain, but cannot worsen, the SRTLS
cost function. Thus, monotonous convergence of the (bounded, non-
negative) cost function is established. Also the alternating descent
algorithm will at least converge to a stationary point for the SRTLS
problem (4), while the limit point most likely depends on the initial-
ization. By setting E(0) = 0m×n, x(0) is equivalent to the LASSO
solution. This is a good starting point, since it was shown in [9] that
even with errors in both A and y, the stability of the recovered signal
of the regular compressive sensing techniques is still guaranteed.

4. NUMERICAL EXAMPLES

In this section, three simulated tests are presented to illustrate the
merits of the SRTLS approach. First, a general model is considered,
and then the specific sensing examples of Section 2 are studied.

Test Case 1: (General Model.) This test is based on a general setup
where in each trial a new matrix A of size 20 × 40 was randomly
generated with independent normally distributed entries of variance
1/20 (so that the expected `2 norm of each column was unity). The
entries of the noise terms E and e in (3) were also generated using a
Gaussian distribution with a standard deviation that is 5% of the one
of A, thus the equivalent entry-wise signal-to-noise ration (SNR) is
26dB. A vector x with 5 nonzero entries was then randomly gen-
erated with nonzero entries taken from a unit Gaussian distribution.
We compare the SRTLS solution with the LASSO one for 20 values
of λ uniformly distributed in the log-scale. The comparison is done
in terms of the `2, `1, and `0 errors with respect to (w.r.t.) the ac-
tual x value. (The `0 error is calculated by the percentage of entries
where the support of the two vectors is different.) There are 50 trials
in total.
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Fig. 2. Comparison between SRTLS and LASSO in terms of (a) `2
norm, (b) `1 norm, and (c) `0 norm of the estimation errors.

Fig. 2 depicts the improvement of the SRTLS results over the
LASSO ones, especially in the `0 norm. With a moderate λ value
range, the SRTLS solution is consistently better than the LASSO
one in recovering the right support for x, as shown in Fig. 2(c).
Nevertheless, when λ gets large, both estimates tend to prefer the
all-zero vector, so that the `0 norm becomes more or less the same,
although the LASSO solution has a smaller error in `2 and `1. How-
ever, for both these error norms, the SRTLS is still slightly preferred
with a moderate choice of λ.

Test Case 2: (Spectrum Sensing.) This simulation is performed with
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Fig. 3. Comparison between PSD maps estimated by (a) LASSO,
and (b) SRTLS for the CR network in Fig. 1.

reference to the CR network in the region [0 1]× [0 1] as depicted in
Fig. 1. The setup includes Nr = 4 CRs to estimate the PSD map in
space and frequency, generated by one source located at [0.4 0.6], in
the center of four neighboring candidate locations on the grid. The
CRs can scan 128 frequencies from 15MHz to 30MHz, and adopt the
basis expansion model in (5) over the considered band comprising
Nb = 16 rectangles of 1MHz width as frequency bases, and the
single source only transmits over the 6th band. The average gains
of the network links obey an exponential decaying model for γsr

with δ = 1/2. The received data are generated using the transmit
PSD described earlier, a regular Rayleigh fading channel model with
6 taps, and additive white Gaussian receiver noise with the SNR at
0dB. The receiver PSD is obtained using the exponentially weighted
moving average (EWMA) with exponent 0.99 of the periodogram
estimate across 1000 coherent blocks.

We apply both the LASSO and SRTLS algorithms to solve
the sparse reconstruction problem for the linear model (6). The
penalty parameter λ is chosen following [1], since here the atoms
are not orthogonal. Both algorithms identify the frequency band
correctly. The LASSO algorithm detects two transmitting sources
at the positions [0.5 0.5] and [0.5 0.7], which are among the four
nearest neighboring grid points of the actual source at [0.4 0.6].
The proposed SRTLS further refines the source fitting by iteratively
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Fig. 4. Angular spectrum of the LASSO algorithm and the proposed
SRTLS one, compared to the actual transmission pattern.

searching for a better sensing model and stacked source parame-
ters. This algorithm terminates with only one source at the location
[0.5 0.5] and also a refined estimate of the corresponding atom,
which is matched with all the atoms corresponding to 25 uniformly
spread candidate points in the region [0.3 0.7] × [0.3 0.7]. It is
shown that the one corresponding to the point [0.4 0.6] renders the
best match w.r.t. the refined estimate, and with this information this
algorithm recovers the source location exactly. In order to illustrate
this difference, the estimated maps of the spatial PSDs over the 6th
frequency band are plotted. This is done for the LASSO (Fig. 3 (a)),
and the SRTLS with the re-calibrated source location (Fig. 3 (b)),
where in both maps the marked point indicates the actual source
location [0.4 0.6]. Relative to the LASSO map, the SRTLS map is
more accurate and matches with the position of the source exactly.

Test Case 3: (DoA Estimation.) The ULA has Nr = 8 antenna
elements and the number of scanning angles is Ns = 90, searching
from −90◦ to 90◦ w.r.t. the array boresight. There is one single
source of unit amplitude with its DoA θ = 1◦, which is the mean of
the two scanning angles θ45 = 0◦ and θ46 = 2◦. The noise power
for each antenna is set to 0.01; i.e., the SNR is 20dB. The distance
between two neighboring antennas is set to d = (1/2)λs.

Selecting λ as done in Test Case 2, the LASSO solution yields
two nonzero entries at both θ45 = 0◦ and θ46 = 2◦, while the
SRTLS gives one nonzero entry at θ45 = 0◦. We further match the
estimated array steering vector ψ̂(θ45) to the ones corresponding to
20 uniformly sampled angles in the region [−2◦ 2◦], and this re-
fines the source DoA to be θ̂ = 0.5◦. We compare the estimated
angle spectrum using the LASSO algorithm and the SRTLS algo-
rithm with refinement in Fig. 4. The black arrow denotes the actual
source location from the direction 1◦ and serves as a benchmark to
the true angular spectrum. The proposed SRTLS solver can clearly
identify the single source and provides a good approximation to the
true source angle, while the LASSO solution achieves the peak at
two angles near the actual one.

5. CONCLUSIONS AND CURRENT RESEARCH

In this paper, we have looked at a problem that as far as we know
has not yet been considered in the sparse reconstruction literature.

More specifically, we have studied sparse reconstruction for appli-
cations where both the observations and the dictionary are noisy. A
local solution to this problem has been obtained by formulating it as
an SRTLS problem and applying an alternating descent algorithm.
First of all, we have shown by simulations that if the dictionary is
noisy, SRTLS is capable of reaching a better solution than LASSO,
especially in terms of the `1 and `0 norm. We have next applied our
SRTLS algorithm to some illustrative spectrum sensing and direction
estimation problems, leading to an improved spectrum (frequency or
angular) estimate compared to LASSO. The main reason for this is
that the SRTLS approach is capable of shifting the grid points to the
actual locations (in any domain) of the sources.

Currently, our research is aimed at analyzing the stationary point
that is reached by the proposed SRTLS algorithm, and comparing it
to the LASSO results. Further, we are studying methods to obtain
the global solution to the SRTLS problem.
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