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ABSTRACT by transmitter and receiver signal-expansion functiofsciv
can be judiciously chosen to enable various agile platforms
such as frequency, time, or code division multiplexing (FDM
DM, CDM). Based on such a radio-resource representation,
. . . distributed multi-user DRA games have been developed that
th_e physmal-lay_er radio resources by synthes!zmg b_anmst-r iteratively adjust the usage of the expansion functiongthas
mitter and receiver waveforms from generalized S'gn‘?‘l ©Xon available resources [4]. Clearly, knowledge of the dynam
pansion func'uons.. To eff(_ect d|str|bgted DRA games, this paically available resources needs to be acquired via sensing
per discusses the intertwined sensing task and develops com To fulfill DRA needs, this paper develops efficient sens-

pressed sensing techniques t_hat smultaneously estiate %g algorithms for both channel estimation of the desirekdi
the channel and interference links using only a small numbe,

And interference sensing of the aggregate effects fronipteslt
of samples collected from a sparse set of expansion furgction g goreg pre

B v identifvi d utilizing th " ok of access channels. Because of the signal-expansion frafewor
y properly identifying and utilizing the sparsity propesto aldopted for wideband processing, each CR faces a large num-

a wideband enwrgnm_ent, the proposed sch_emes con&deral&gr of channel links arising from all the transmitter-reeei

reduce both sensing time and implementation costs. function pairs. To reduce the sensing complexity, this pa-
per proposes compressive sampling techniques that simulta

1. INTRODUCTION neously estimate all the channel and interference linksgusi

only a small number of samples collected from a sparse set

In wireless cognitive networks adopting open spectrum acef expansion functions, with the aid of an auxiliary widetlan

cess, radio users dynamically decide the allocation ofl-avaifilter. The sparseness of both the wideband channels and the

able radio resources to improve the overall spectrum atiliz interferences on a certain domain is identified and then uti-

tion efficiency, also known as dynamic resource allocatiodized for sparse signal recovery, which considerably reduc

(DRA) [1]. In the absence of a centralized spectrum conboth sensing time and implementation costs.

troller, DRA can be carried out in a distributed fashion gsin Notations (-)* denotes conjugaté,)’’ denotes conjugate

multiuser games [2, 3].With the exception of orthogonal fre transpose(-)’ denotes pseudoinverse, denotes Kronecker

quency division multiplexing (OFDM) systems, most works product,x stands for convolution, didg converts anV x 1

treat DRA and waveform adaptation as two separate tasksector into anV x NV diagonal matrix, and(-) is expectation.

DRA deals with frequency band allocation and power control

on.the allocated bands, While waveform design aims for rapid 2 SIGNAL MODEL

adjustment of the transmitted waveform spectra in order to

comply with the dynamically allocated spectrum and powerconsider a wireless network consisting@#ctive CR users,

Because it can be difficult or costly to generate a transthitte,; yere each CR refers to a pair of one transmitter and one re-

Wav_eform that perfectly matches the allocated spectra pf aceiver. Adopting a block transmission structure, g CR

flexible shape, the separate treatment may not offer desirgf, nsmits a x 1 coded data vectar, = F,s, in each block,

DRA solutions for practical radios. wheres, 2 [s s T consists ofk i.i.d. informa-
In a preceding work [4], we have developed a joint DRA g — 124,00 o P K1 .

d ¢ daptation f K for efficient ¢ tion symbols{s, x}; ;' andF, is aK x K linear precod-
and wavetorm adaptation framework for €flicient Spec run]ng matrix. The symbol, ;, is modulated onto the transmit-
utilization in multi-user CR networks. Therein, physidayer ’

di i ¢ tte functionyy (t), Yk € [0, K — 1], yielding the transmitted
radio resources over a very wide spectrum are represen veformu,(t) = 3", ugi (). The CR sends,(t) over

Z. Tian is supported in part by the US NSF grant ECS-0925881eGs & dispersivg channel With imPUISe respo%@)i a?(d 1pre-
is supported in part by NWO-STW under the VICI program (profe0382).  processes it at the receiver using the functippgt)};> " to

For multi-user cognitive networks, joint dynamic resouate
location (DRA) and waveform adaptation techniques hava b
developed that effectively represent, manipulate andzatil




collect a block ofK” data sampleg, = [z,.0,...,74x-1]7.  Toshowthis, letS,(f;a,, F,) denote the power spectral den-

The transmitter functions include a cyclic prefix that isrthe sity (PSD) of the transmitted signa, (¢), which depends on

removed by the receiver functions, which avoids any inter{a,, F,). In the CR scenario, the spectral shape of each trans-

block interference [4]. The receiver is inflicted with an add mitted waveform has to comply with a spectral matK )

tive noise signaly, (t), which accounts for the aggregate in- that depends on both policy-based long-term regulatory is-

terference from other CRs, primary users and ambient noisesues and cognition-based dynamic frequency notch masks for
Assume that each CR pair is synchronized. For(Ce interference control and protection of primary users, that

link gains among all the transmitter and receiver functiemes )

organized into & x K channel matrixt,, whose(k,)-th Salfa0,Fq) < Se(f), ¥F. 3)

element is given by, i 2 [9¢ () * Vi (t) * 0} (—1)]],_o- Meanwhile, the average poweél, of the ¢g-th CR has to be

Meanwhile, the filtered noise sample vector at the recesver iconfined below a predefined upper linfi .., as follows:
Vg = (V4,05 -5 Vg 1] T With vgr 2 [vg(8) % o7 (—1)]] g

whose covariance matrix iR, = E(v,v). Hence, the Pylag, Fy) = /SQ(f;aq’Fq)df < FPymax: )

. . . . q
discrete-time data model is given by To solve the DRA problem, let us keep in mind the fol-

xg=Hyu,+vy q=1,...,Q. (1) lowing two basic remarks.
1. Due tothe huge complexity arising from a centralized op-

A few remarks on the above model are in order. it . . O—
timization of the collective action§(a,, F,)},—, max-

1. Different CRs do not have to be synchronized amongone "4 :
another, namely, the CR network is non-cooperative. imizing the sum-rate of all users subject to (3)-(4), a de-

2. The sets of (bandlimited) transmitter and receiver filter  Céntralized approach to DRA is motivated.
{¥r(0)}YE ! and{pr (£)} 1, the same for all CRs, rep- 2. Since transmission opportunities in wideband networks
resent the physical-layer radio resources that the CRs can  are typically searched by active CRs over a large spec-
manipulate. The siz& is chosen large enough on the or- trum range, the actual resources needed for reliable trans-
der of the time-bandwidth product of the wideband sys- mission are sparse compared to the total available ones.
tem, in order to adequately represent available resourceshe above facts suggest a distributed noncooperative game

3. A proper choice of the transmitter and receiver functiongramework for joint DRA and waveform adaptation [4], wherei
enables well-known multiple access scenarios, in the ger@ach CRg acts as a game player and seeks to maximize the
eral form of carriers, pulses, codes, wavelets, and so offer-user capacity utility in (2) by taking allocation actgon
Exemplary sets of transmitter and receiver functions aréaq, F4) from its own set of permissible strategies. Actions
illustrated in [4], for FDM, TDM and CDM systems. ©OnN (a4, F) directly shape the transmitted waveform spectra,
Also, redundant sets of non-orthogonal functions are sug¥hich in turn define the action space via (3) and (4). Fur-
gested [4, 7], e.g., using combinations of the functiongher, some sparsity constraints are imposed to confine the ac
used in FDM, TDM and/or CDM, which are useful for tion space to a few (unknown) effective expansion functions

exploring thesparsity propertyf CR networks. rather than on the entire function space representing tak to
opportunities. Through an iterative game implementatios,
3. SPARSITY-CONSTRAINED DRA GAMES above design principle boils down to solving the following
per-user formulation at each game iteratign < [1, Q:
This section briefly reviews the formulation of distribuieRBA max  C(a,, F,) (5a)
games as introduced in [4]. This framework integrates DRA, a4z0.F,
waveform adaptation and dynamic sensing to give rise to a st. (3) and (4) (5b)
truly distributed implementation, which also motivates tfe- llag | < Lélinax- (5¢c)
velopment in Section 4 on efficient sensing and acquisitfon o ’ .
the channel and interference paramelysandR,,. In (5¢), thel-norm |a,||; measures the sparsity ordersgf,

The multi-user DRA problem aims to optimally design, atWith 0 </ S 2 [6]. By confining it to be below a predefined
the transmitter side of thgth CR, the linear precod&, and thresholdL{ 1,.x, (5¢) induces a sparse solutiondg, in the
the length% power loading vectoa,, whosek-th elementis ~ Sense thatonly a f_ew entriesaf will be nonzero and the rest
aqr = /E([s4x]?), such that the spectrum utilization effi- of_the elements WI|! be zero. 'I_'hrough sparse power loading,
ciency of the overall CR network is maximized. The networkthis strategy effectively deactivates most transmittepagx
spectral efficiency is closely related to the per-user capac Sion functions to reduce implementation costs, with litlss

C(a,, F,), which, for a given channel realizatid#,, is: of attained utility [4]; see [4] for details of the implement
1 tions and characterization of the DRA games at steady state.
C(a,,Fy) = 7 logs Lk + diaga,)F, B,F,diaga,)| (2) The optimal solution to (5) has been derived in [4], which

hinges on the knowledge of the channel maliy and the
with B, = HYR,'H,. As apparent from (2), the DRA covariance matrisR, at each iteration, in order to obtal,
problem is intertwined with waveform design and adaptationin (2). Next section provides such dynamic sensing solstion



4. COMPRESSED SENSING FOR DRA

This section develops channel estimation and interfereecs-
ing methods for acquiringl, andR,, as required by iterative

DRA games. This task takes place during the training phaseherel’ is aK x (K V) matrix defined af =

Finally, (7) and (10) yield the channel matrix estimate as

H, =T (Ix®8,), (11)

[FO7 .. '7FK—1]1

by sending out training symbols,, so that the transmitted andI'; is a K x N matrix with its (k, n)-th element given by

symbolsu, = Fgs, are known. First, we will estimatkl,
by considering the interferenag, as nuisance noise. Then,
after removing the contribution dfi,u, from x,, we will
sense the interference and estimate its covariance madnx f
the sample average. In both steps, new compressed sampling
techniques will be developed to reduce the required number
of samples and hence improve computational efficiency.

4.1. Channel Estimation

Let us model the channel impulse respoggé) for the g-th
CR as a tapped delay line with impulse response

9q(t) = 300 ggnd(t —nT), (6)

whereN is the number of taps depending on the propagation
scenario and’ is the tap spacing corresponding to the inverse
of the essential bandwidth. As described in Section 2, the
channel coefficienk, ;,; can be re-written as

N—-1
q,kl qu, wk t nT)*(pl |t 0 — qu, 19klna
n=0
N (7
wheredy,;, = [V (t) * ¢ (—1t)]|,__, - From (7), thek?

composite channel coefficien{s, 1}, in H, can be ac-
quired by estimating theV x 1 multipath tap vectog, =
(949,05 - - 9q.n—1]T, whereN < K < K2 typically holds.

For complexity considerations during the training phase,
let us make use of a (small) numhernf transmitter and re-
ceiver functions with indices from the s6t= {ko, ..., krL_1},
with N < L <« K andkg < k; < --- < kr_1. With (7), the
data model in (1) can be written ag (€ K)

N1 4.2.
Tq,l = Z Ugq,k Z gq,nﬁk.,l,n‘i'vq,l = ﬁzﬂ@lgq—F’Uq,l, (8)
ke n=0

[I‘l]k,n = 19]6117”, Vil e [O, K — 1].
Some remarks about (10) now follow.
1. Inthe special case of OFDM signalling, the orthogonality

condition among the transmitter and receiver functions
yieldsdy; , = 0,Vk # [. Hence, (10) simplifies to

— [diagn,)®]" %,,
where® isanL x N matrix with its (m, n)-th element
given by[e]m,n = ﬁkm,km,n-

(12)

. The channel tap vectgy, is often sparse for a wideband

multipath channel. The sparsity feature can be incorpo-
rated as prior knowledge to enhance the estimation accu-
racy, via the following/; -regularized LS formulation:

g, = argmin { lg,[|, + A%~ (Lo u]) Og, [}
q

(13)
where thel;-norm term imposes sparsity on the recov-
ered channel vector, and the positive weightalances
the bias-variance tradeoff in the channel estimate [6].

3. Under the assumption of zero-mean white Gaussian in-

terference, itis known from [9] that minimum mean square
error (MMSE) training is based on usidgequi-powered

and equi-spaced training symbols. In practice, however,
whenever the interference covariance matrix is available
after interference sensing, the channel estimate can be
further improved, for instance following the method in
[10], and possibly, by iterating between the channel and
interference sensing steps. For briefness, details of this
enhancement technique are skipped.

Interference Sensing

For sensing the interference covariance ma®jat low com-

wherett, = [ugro, - - - Ugk,_,) ", and®; is a knownl x
N matrix with its (m,n)-th element given by®,],, , =
Ig,..1.n. Upon stacking the. outputs{z, 1, },Ln;lo into the

vectorg, = we obtain

[qukov S qukL—l]T’

(IL®u )G)gq—i—vq, 9
wherev, = [Ugkos-- -,k ,]7 and® is anL? x N ma-
trix defined as® = [©F,...,©7 ||”. Since the interfer-
ence vectof, is unknown within the channel estimation step
(as well as its statistics), we solve fgy resorting to a least-
squares (LS) approach, thus getting

_ t_
- [ oul)e]',

g (10)

plexity, we develop a compressive sampling mechanism that
only requires a small number of samples.
Let us adopt the expansion model for describing):

va(t) = Y 5so varr(t)

wherev, = [v,0,...,vq.x-1)" i the vector representation
of v4(t). Accordingly, the filtered interference samplg; is:

K—1
t)”t:o = Zk:o Vq,kgl,kv

or equivalently in vector-matrix form: v, = Ev,,

whereE is a K x K matrix with its (I, k)-th element; ;, 2
[or(t) * o7 (—t)]|,_, known. The sensing task of acquiring
v, IS now equivalent to estimating, .

(14)

K—1 *
Vgl = Zk:o Vi [or(t) * o] (—



The rationale of our sensing mechanism hinges on the Finally, after estimating;, = 22, on a number of sub-
observation that the signaIJ( ) is sparse in the large space sequent blocks, the interference covariance m&rjcan be
spanned by alf oy (¢ ) . This means that, is a sparse evaluated by its sample average.
vector with only a smaII number of nonzero elements (mea- As a final remark on the implementation costs, we note
sured by thé,-norm||v,||o), whose locations are clearly un- that, after having estimateH,, it would be p035|ble to re-
known. The sparse nature of, results from both the CR  cover the filtered interference vectoy asv, = x, — H,u,
context of interest and the sparsity-constrained DRA @bl directly. This is a conceptually simple approach, but itsma
that we have formalized in (5). Specificalli):the set of ex-  drawback is the use of alt” receiver functions in order to ac-
pansion functiong oy (t) } we adopt at the receiver can be a quirex,. Sensing the interference through compressive sam-
redundant non-orthogonal set or a combination of sets of opling, instead, requires a small number of samples per block
thogonal functions tailored for communication signalg..e. that can be made significantly smaller thigpwhich can con-

a combination of the functions used in FDM and TDM; ac-siderably reduce hardware-related implementation costs.
cordingly, it provides an over-complete representatiothef
signal spaceii) sparsity constraints are imposed to limit the
number of transmitter functions, which results in sparse re

Source occupancy by CR users efter DRA optimizatian; We simulate aQ-user peer-to-peer CR network. There are
the sparsity oi/, induced byi) andii) can be further reduced 2 channel links, wher€) of them are desired links and the

by using a sparsifying basi, for v, suchthal, = T;'v,  others are interferences. Each link experiences frequemcy
has a low sparsity order. With the use®f, v, = (ET¢)v;  |ective fading modelled by aiv-tap tapped delay line, where
has a sparse representatiop on the transformed receiver each tap coefficient is independently generated as zero-mea
waveformsET,. We focus on recovering,, while o, can  and unit variance complex Gaussian. The link power gain is
be recovered similarly when stronger sparsity is desired.  expressed by the scalgr, > 0, Vr,q € [1,Q], which cap-
Thanks to its sparseness, can be recovered fromasmall tyres both the path loss and the fading power. The noise vari-
numberC' of measurements, withvy|lo < C' < K, inline  anceis set to be unitary. As case study, we focus on an OFDM
with the recent results in compressive sampling [5], [6]eBV  pjatform consisting oK’ = 32 subcarriers as signal expan-
all, a compressive sampler can be implemented as follows. sjon functions. Given the literature on channel estimatiea
e The received signak(t) is processed by aauxm?ry_ focus on testifying the effectiveness of the compresseat-int
W|deb§1nd filtexs(¢) of bandwidthl /T (chosento be “uni- - forence sensing technique in Section 4.2, assuming that cha
versal’ regardless of the signal structure) to ggt). nels have been accurately acquired. The auxiliary wideband
o After channel estimation dfg,, }, the signal component jjier 5(1) is chosen to be a rectangular pulse of time-span
yés)(t) = ugq(t) * gq(t) » s(—t) can be removed from
yq(t), yielding (,;(t) = v4(t) * s(—t). Specifically in
digital form, yés)( t)ata given sampling poirit= t. is

5. SIMULATIONS RESULTS

5.1. Performance of Interference Sensing

The CR scenario is based gh= 3 users transmitting the av-
( c) = D) Ugk Zn —0 Yan [Ur(t—nT) % s(=1)[i=¢.], erage power$;, = 5, P, = P; = 10, respectively, with prop-
Wh|ch can be removed from the received filtered samplé@gation channels having gaipg; = 1, Vq € [1,Q], prg = 5
Yq(t)x5(~t)|i=. to Obtain the mterference sampﬂg{t for vVr # ¢ € [1,Q], andN = 8 tap coefficients. Taking
o (,(t)is sampled af' time |nstance$t W|th|n each Userg =1 as an example, the snapshots of the recovered in-

block after skipping the cyclic prefix, y|eId|ng samples terferencev, versus the function index are depicted in Fig. 1,
for various compression ratidgs/ K = 45%, 70% and90%

Care = Galte) = 3420 va [on(t) % s(D)]],—, respectively. The case of full-rate sampling/(x = 100%)
or, in vector-matrix form, results in perfect recovery, and hence is not shown. It is ap-
¢, = Av, (15) parent that even with a moderate compression 1@ji& =
’ 45%, the compressed sensing scheme can reliably recover the
where¢, = (g0, - -, Co-1]T andAisaC x K known  instantaneous interference, without having to coll§csam-

measurement matrix with itg:, k)-th element given by ples per block by activating all th& receiver functions.
[Alck = [pr(t) * s(t)][,—,,. Compressive sampling the-
ory suggests several choices for both the filtgn and
the sampling instance,.}¢ o 0 , which enable effective
recovery of the sparse unknowns; see, e.g., [5], [6], [11]The impact of interference sensing errors on the capacity pe
Having acquired the compressive measuremegptshe formance of DRA is now addressed when the actions of the
sparse signak, can be recovered by solving &nnormreg- ~ active CR users are decided based on imperfect interference
ularized LS problem similar to (13), as followsié a weight): ~ estimates{v,},. We assume for simplicity thgtv, }, devi-

L . _ 2 ate from the true valuev, }, element-by-element by a zero-
Ya= arg,,?nn{quHl +li¢, AVqHQ}' (16) mean random component with standard deviatipnwhose

5.2. Sensitivity of DRA Efficiency to Sensing Errors
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Fig. 2. Average sum capacity vs. SNR budget (decided™pyiax)
value is chosen as a SNR-independent upper bound derivést both sparsity constrained and unconstrained DRA gamksn
from trials similar to that in Section 5.1. Further, we assum sensing errors are zere(=0) or moderately larges(, =0.1).
that the DRA optimization problem is solved only under the
average power constraint (4), dropping the mask constraint
(3) for simplicity. As performance metric, we consider the
average sum capacity of all users (averaged dversets of
independent channel realizations) versus SNR for DRA under
four scenariosa) sparsity-constrained DRA via (5) with=
1 in thel-norm constraint (5¢), and no sensing errars &

0); b) sparsity-constrained DRA with= 1, and moderately
large sensing errorss( = 0.1); c) sparsity-unconstrained
DRA via (5) in the absence of tHenorm constraint (5c), and
no sensing errorss{, = 0); d) sparsity-unconstrained DRA
and moderately large sensing errars & 0.1). adaptation games in multiuser communicatioh&EE Signal
Fig. 2 depicts the values of sum capacity attained by the ~ Processing Mag.vol. 26, no. 5, pp. 64-76, Sept. 2009.
above DRA strategies. As expected, sparsity-unconstiaine [4] Z. Tian, G. Leus, and V. Lottici, “Joint dynamic resourako-
DRA outperforms the sparsity-constrained counterpart, bu cation and waveform adaptation in cognitive radio netwgrks
the performance gaps are rather small. This means that the Proc. of IEEE ICASSPApril 2008. , ,
sparsity-constrained DRA design can dynamically select ac [°] E- ¢andes, J. Romberg and T. Tao, “Robust Uncertainty-Pri
tive expansion functions where the effective resourcesrie lcz'rpelez:eEé(afé?:g:;?'g?ég?;rfaﬁfr:):?:goﬂﬂg Inglo r;; let
thus offering a noticeable saving in complexity yet at a tol- pp.c3189-5g9, Feb. 2006. ' ' Yo% 5%
erable cost of small performance loss. Regarding the impact[6]

- ) o D. L. Donoho, “Compressed SensindEEE Trans. on Inf.
of sensing errors, the capacity performance of the dig&tbu Theory vol. 52, pp. 1289-1306, April 2006.

DRA games reveals to be quite robust against imperfect (sta-m D. Donoho and X. Huo, “Uncertainty principles and ideal

tistical) knowledge of interference. Such robustnessnalo atomic decompositionJEEE Trans. on Information Theoyy

for strong compression during sensing, which helps to keep 47 (7): 2845-2862, Nov. 2001.

the computational load at affordable levels. [8] D. Fudenberg, and J. Tirol&§ame TheoryMIT Press, Cam-
bridge, MA, 1991.

[9] R. Negi and J. Cioffi, “Pilot tone selection for channeties
mation in a mobile OFDM system|EEE Trans. on Consum.

. .. . . . . Electron, vol. 44, pp. 1122-1128, Aug. 1998.
Focusing on cognitive radios with multiple transmitter and s .
. ; . . 10] N. N. Tran, H. D. Tuan, and H. H. Nguyen, “Training Signal
receiver expansion functions, this paper has developed co

. . . and Precoder Designs for OFDM Under Colored NoieEE
pressed sensing techniques that estimate all the chanshel an  , 11ans. Veh. Technolol. 44, pp. 1122-1128, August 1998.

interference links using only a smgll numbgr of samples col 11] S. Kirolos, T. Ragheb, J. Laska, M. Duarte, Y. Massoud,
lected from a sparse set of expansion functions. The prapose  5ng R. Baraniuk, “Practical issues in implementing analogt
sensing schemes effectively fuffill the sensing needs fiot jo information converterdnternational Workshop on System-on-
DRA and waveform adaptation, resulting in a truly distraulit Chip for Real-Time Applicationp. 141-146, Dec. 2006.
implementation for spectral-efficient multiuser CR nethksor
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