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ABSTRACT

For multi-user cognitive networks, joint dynamic resourceal-
location (DRA) and waveform adaptation techniques have been
developed that effectively represent, manipulate and utilize
the physical-layer radio resources by synthesizing both trans-
mitter and receiver waveforms from generalized signal ex-
pansion functions. To effect distributed DRA games, this pa-
per discusses the intertwined sensing task and develops com-
pressed sensing techniques that simultaneously estimate all
the channel and interference links using only a small number
of samples collected from a sparse set of expansion functions.
By properly identifying and utilizing the sparsity properties of
a wideband environment, the proposed schemes considerably
reduce both sensing time and implementation costs.

1. INTRODUCTION

In wireless cognitive networks adopting open spectrum ac-
cess, radio users dynamically decide the allocation of avail-
able radio resources to improve the overall spectrum utiliza-
tion efficiency, also known as dynamic resource allocation
(DRA) [1]. In the absence of a centralized spectrum con-
troller, DRA can be carried out in a distributed fashion using
multiuser games [2, 3].With the exception of orthogonal fre-
quency division multiplexing (OFDM) systems, most works
treat DRA and waveform adaptation as two separate tasks:
DRA deals with frequency band allocation and power control
on the allocated bands, while waveform design aims for rapid
adjustment of the transmitted waveform spectra in order to
comply with the dynamically allocated spectrum and power.
Because it can be difficult or costly to generate a transmitted
waveform that perfectly matches the allocated spectra of any
flexible shape, the separate treatment may not offer desired
DRA solutions for practical radios.

In a preceding work [4], we have developed a joint DRA
and waveform adaptation framework for efficient spectrum
utilization in multi-user CR networks. Therein, physical-layer
radio resources over a very wide spectrum are represented
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by transmitter and receiver signal-expansion functions, which
can be judiciously chosen to enable various agile platforms,
such as frequency, time, or code division multiplexing (FDM,
TDM, CDM). Based on such a radio-resource representation,
distributed multi-user DRA games have been developed that
iteratively adjust the usage of the expansion functions based
on available resources [4]. Clearly, knowledge of the dynam-
ically available resources needs to be acquired via sensing.

To fulfill DRA needs, this paper develops efficient sens-
ing algorithms for both channel estimation of the desired links
and interference sensing of the aggregate effects from multiple-
access channels. Because of the signal-expansion framework
adopted for wideband processing, each CR faces a large num-
ber of channel links arising from all the transmitter-receiver
function pairs. To reduce the sensing complexity, this pa-
per proposes compressive sampling techniques that simulta-
neously estimate all the channel and interference links using
only a small number of samples collected from a sparse set
of expansion functions, with the aid of an auxiliary wideband
filter. The sparseness of both the wideband channels and the
interferences on a certain domain is identified and then uti-
lized for sparse signal recovery, which considerably reduce
both sensing time and implementation costs.

Notations. (·)∗ denotes conjugate,(·)H denotes conjugate
transpose,(·)† denotes pseudoinverse,⊗ denotes Kronecker
product,⋆ stands for convolution, diag(·) converts anN × 1
vector into anN×N diagonal matrix, andE(·) is expectation.

2. SIGNAL MODEL

Consider a wireless network consisting ofQ active CR users,
where each CR refers to a pair of one transmitter and one re-
ceiver. Adopting a block transmission structure, theq-th CR
transmits aK×1 coded data vectoruq = Fqsq in each block,

wheresq
∆

= [sq,0, . . . , sq,K−1]
T consists ofK i.i.d. informa-

tion symbols{sq,k}
K−1
k=0 andFq is aK × K linear precod-

ing matrix. The symboluq,k is modulated onto the transmit-
ter functionψk(t), ∀k ∈ [0,K − 1], yielding the transmitted
waveformuq(t) =

∑

k uq,kψk(t). The CR sendsuq(t) over
a dispersive channel with impulse responsegq(t), and pre-
processes it at the receiver using the functions{ϕl(t)}

K−1
l=0 to



collect a block ofK data samplesxq
∆

= [xq,0, . . . , xq,K−1]
T .

The transmitter functions include a cyclic prefix that is then
removed by the receiver functions, which avoids any inter-
block interference [4]. The receiver is inflicted with an addi-
tive noise signalνq(t), which accounts for the aggregate in-
terference from other CRs, primary users and ambient noise.

Assume that each CR pair is synchronized. For CRq, the
link gains among all the transmitter and receiver functionsare
organized into aK × K channel matrixHq, whose(k, l)-th
element is given byhq,k,l

∆

= [gq(t) ⋆ ψk(t) ⋆ ϕ∗
l (−t)]|t=0.

Meanwhile, the filtered noise sample vector at the receiver is
vq

∆

= [vq,0, . . . , vq,K−1]
T with vq,l

∆

= [νq(t) ⋆ ϕ
∗
l (−t)]|t=0,

whose covariance matrix isRq
∆

= E(vqv
H
q ). Hence, the

discrete-time data model is given by

xq = Hquq + vq, q = 1, . . . , Q. (1)

A few remarks on the above model are in order.
1. Different CRs do not have to be synchronized among one

another, namely, the CR network is non-cooperative.
2. The sets of (bandlimited) transmitter and receiver filters

{ψk(t)}K−1
k=0 and{ϕk(t)}K−1

k=0 , the same for all CRs, rep-
resent the physical-layer radio resources that the CRs can
manipulate. The sizeK is chosen large enough on the or-
der of the time-bandwidth product of the wideband sys-
tem, in order to adequately represent available resources.

3. A proper choice of the transmitter and receiver functions
enables well-known multiple access scenarios, in the gen-
eral form of carriers, pulses, codes, wavelets, and so on.
Exemplary sets of transmitter and receiver functions are
illustrated in [4], for FDM, TDM and CDM systems.
Also, redundant sets of non-orthogonal functions are sug-
gested [4, 7], e.g., using combinations of the functions
used in FDM, TDM and/or CDM, which are useful for
exploring thesparsity propertyof CR networks.

3. SPARSITY-CONSTRAINED DRA GAMES

This section briefly reviews the formulation of distributedDRA
games as introduced in [4]. This framework integrates DRA,
waveform adaptation and dynamic sensing to give rise to a
truly distributed implementation, which also motivates the de-
velopment in Section 4 on efficient sensing and acquisition of
the channel and interference parametersHq andRq.

The multi-user DRA problem aims to optimally design, at
the transmitter side of theqth CR, the linear precoderFq and
the length-K power loading vectoraq, whosek-th element is
aq,k =

√

E(|sq,k|2), such that the spectrum utilization effi-
ciency of the overall CR network is maximized. The network
spectral efficiency is closely related to the per-user capacity
C(aq,Fq), which, for a given channel realizationHq, is:

C(aq,Fq) =
1

K
log2

∣

∣IK + diag(aq)F
H
q BqFqdiag(aq)

∣

∣ (2)

with Bq
∆

= HH
q R−1

q Hq. As apparent from (2), the DRA
problem is intertwined with waveform design and adaptation.

To show this, letSq(f ;aq,Fq) denote the power spectral den-
sity (PSD) of the transmitted signaluq(t), which depends on
(aq,Fq). In the CR scenario, the spectral shape of each trans-
mitted waveform has to comply with a spectral maskSc(f)
that depends on both policy-based long-term regulatory is-
sues and cognition-based dynamic frequency notch masks for
interference control and protection of primary users, thatis,

Sq(f ;aq,Fq) ≤ Sc(f), ∀f. (3)

Meanwhile, the average powerPq of the q-th CR has to be
confined below a predefined upper limitPq,max, as follows:

Pq(aq,Fq) =

∫

Sq(f ;aq,Fq)df ≤Pq,max. (4)

To solve the DRA problem, let us keep in mind the fol-
lowing two basic remarks.
1. Due to the huge complexity arising from a centralized op-

timization of the collective actions{(aq,Fq)}
Q−1
q=0 max-

imizing the sum-rate of all users subject to (3)-(4), a de-
centralized approach to DRA is motivated.

2. Since transmission opportunities in wideband networks
are typically searched by active CRs over a large spec-
trum range, the actual resources needed for reliable trans-
mission are sparse compared to the total available ones.

The above facts suggest a distributed noncooperative game
framework for joint DRA and waveform adaptation [4], wherein
each CRq acts as a game player and seeks to maximize the
per-user capacity utility in (2) by taking allocation actions on
(aq,Fq) from its own set of permissible strategies. Actions
on (aq,Fq) directly shape the transmitted waveform spectra,
which in turn define the action space via (3) and (4). Fur-
ther, some sparsity constraints are imposed to confine the ac-
tion space to a few (unknown) effective expansion functions,
rather than on the entire function space representing the total
opportunities. Through an iterative game implementation,the
above design principle boils down to solving the following
per-user formulation at each game iteration,∀q ∈ [1, Q]:

max
aq�0,Fq

C(aq,Fq) (5a)

s.t. (3) and (4) (5b)

||aq||l ≤ L(l)
q,max. (5c)

In (5c), thel-norm ||aq||l measures the sparsity order ofaq ,
with 0 ≤ l < 2 [6]. By confining it to be below a predefined
thresholdL(l)

q,max, (5c) induces a sparse solution toaq, in the
sense that only a few entries ofaq will be nonzero and the rest
of the elements will be zero. Through sparse power loading,
this strategy effectively deactivates most transmitter expan-
sion functions to reduce implementation costs, with littleloss
of attained utility [4]; see [4] for details of the implementa-
tions and characterization of the DRA games at steady state.

The optimal solution to (5) has been derived in [4], which
hinges on the knowledge of the channel matrixHq and the
covariance matrixRq at each iteration, in order to obtainBq

in (2). Next section provides such dynamic sensing solutions.



4. COMPRESSED SENSING FOR DRA

This section develops channel estimation and interferencesens-
ing methods for acquiringHq andRq, as required by iterative
DRA games. This task takes place during the training phase
by sending out training symbolssq, so that the transmitted
symbolsuq = Fqsq are known. First, we will estimateHq

by considering the interferencevq as nuisance noise. Then,
after removing the contribution ofHquq from xq, we will
sense the interference and estimate its covariance matrix from
the sample average. In both steps, new compressed sampling
techniques will be developed to reduce the required number
of samples and hence improve computational efficiency.

4.1. Channel Estimation

Let us model the channel impulse responsegq(t) for theq-th
CR as a tapped delay line with impulse response

gq(t) =
∑N−1

n=0 gq,nδ(t− nT ), (6)

whereN is the number of taps depending on the propagation
scenario andT is the tap spacing corresponding to the inverse
of the essential bandwidth. As described in Section 2, the
channel coefficienthq,k,l can be re-written as

hq,k,l =
N−1
∑

n=0

gq,n [ψk(t−nT ) ⋆ ϕ∗
l (−t)]|t=0 =

N−1
∑

n=0

gq,nϑk,l,n,

(7)
whereϑk,l,n

∆

= [ψk(t) ⋆ ϕ∗
l (−t)]|t=−nT

. From (7), theK2

composite channel coefficients{hq,k,l}k,l in Hq can be ac-
quired by estimating theN × 1 multipath tap vectorgq =
[gq,0, . . . , gq,N−1]

T , whereN≤K≪K2 typically holds.
For complexity considerations during the training phase,

let us make use of a (small) numberL of transmitter and re-
ceiver functions with indices from the setK = {k0, . . . , kL−1},
with N ≤ L ≪ K andk0 < k1 < · · · < kL−1. With (7), the
data model in (1) can be written as (∀l ∈ K)

xq,l =
∑

k∈K

uq,k

N−1
∑

n=0

gq,nϑk,l,n +vq,l = ūT
q Θlgq +vq,l, (8)

whereūq
∆

= [uq,k0
, . . . , uq,kL−1

]T , andΘl is a knownL ×
N matrix with its (m,n)-th element given by[Θl]m,n =
ϑkm,l,n. Upon stacking theL outputs{xq,km

}L−1
m=0 into the

vectorx̄q
∆

= [xq,k0
, . . . , xq,kL−1

]T , we obtain

x̄q =
(

IL ⊗ ūT
q

)

Θgq + v̄q, (9)

wherev̄q
∆

= [vq,k0
, . . . , vq,kL−1

]T andΘ is anL2 × N ma-

trix defined asΘ
∆

= [ΘT
0 , . . . ,Θ

T
L−1]

T . Since the interfer-
ence vector̄vq is unknown within the channel estimation step
(as well as its statistics), we solve forgq resorting to a least-
squares (LS) approach, thus getting

ĝq =
[(

IL ⊗ ūT
q

)

Θ
]†

x̄q. (10)

Finally, (7) and (10) yield the channel matrix estimate as

Ĥq = Γ (IK ⊗ ĝq) , (11)

whereΓ is aK×(KN) matrix defined asΓ
∆

= [Γ0, . . . ,ΓK−1],
andΓl is aK ×N matrix with its(k, n)-th element given by
[Γl]k,n = ϑk,l,n, ∀l ∈ [0,K − 1].

Some remarks about (10) now follow.
1. In the special case of OFDM signalling, the orthogonality

condition among the transmitter and receiver functions
yieldsϑk,l,n = 0, ∀k 6= l. Hence, (10) simplifies to

ĝq =
[

diag(ūq)Θ̄
]†

x̄q, (12)

whereΘ̄ is anL × N matrix with its (m,n)-th element
given by[Θ̄]m,n = ϑkm,km,n.

2. The channel tap vectorgq is often sparse for a wideband
multipath channel. The sparsity feature can be incorpo-
rated as prior knowledge to enhance the estimation accu-
racy, via the followingℓ1-regularized LS formulation:

ĝq = argmin
gq

{

‖gq‖1 + λ
∥

∥x̄q−
(

IL⊗ūT
q

)

Θgq

∥

∥

2

2

}

.

(13)
where theℓ1-norm term imposes sparsity on the recov-
ered channel vector, and the positive weightλ balances
the bias-variance tradeoff in the channel estimate [6].

3. Under the assumption of zero-mean white Gaussian in-
terference, it is known from [9] that minimum mean square
error (MMSE) training is based on usingL equi-powered
and equi-spaced training symbols. In practice, however,
whenever the interference covariance matrix is available
after interference sensing, the channel estimate can be
further improved, for instance following the method in
[10], and possibly, by iterating between the channel and
interference sensing steps. For briefness, details of this
enhancement technique are skipped.

4.2. Interference Sensing

For sensing the interference covariance matrixRq at low com-
plexity, we develop a compressive sampling mechanism that
only requires a small number of samples.

Let us adopt the expansion model for describingνq(t):

νq(t) =
∑K−1

k=0 νq,kϕk(t) (14)

whereνq
∆

= [νq,0, . . . , νq,K−1]
T is the vector representation

of νq(t). Accordingly, the filtered interference samplevq,l is:

vq,l =
∑K−1

k=0 νq,k [ϕk(t) ⋆ ϕ∗
l (−t)]|t=0 =

∑K−1
k=0 νq,kξl,k,

or equivalently in vector-matrix form: vq = Ξνq,
whereΞ is aK ×K matrix with its(l, k)-th elementξl,k

∆

=
[ϕk(t) ⋆ ϕ∗

l (−t)]|t=0 known. The sensing task of acquiring
vq is now equivalent to estimatingνq.



The rationale of our sensing mechanism hinges on the
observation that the signalνq(t) is sparse in the large space
spanned by all{ϕk(t)}K−1

k=0 . This means thatνq is a sparse
vector with only a small number of nonzero elements (mea-
sured by thel0-norm||νq||0), whose locations are clearly un-
known. The sparse nature ofνq results from both the CR
context of interest and the sparsity-constrained DRA problem
that we have formalized in (5). Specifically:i) the set of ex-
pansion functions{ϕk(t)}k we adopt at the receiver can be a
redundant non-orthogonal set or a combination of sets of or-
thogonal functions tailored for communication signals, e.g.,
a combination of the functions used in FDM and TDM; ac-
cordingly, it provides an over-complete representation ofthe
signal space;ii ) sparsity constraints are imposed to limit the
number of transmitter functions, which results in sparse re-
source occupancy by CR users after DRA optimization;iii )
the sparsity ofνq induced byi) andii ) can be further reduced

by using a sparsifying basisTq for νq, such that̃νq
∆

= T−1
q νq

has a low sparsity order. With the use ofTq, vq = (ΞTq)ν̃q

has a sparse representationν̃q on the transformed receiver
waveformsΞTq. We focus on recoveringνq, while ν̃q can
be recovered similarly when stronger sparsity is desired.

Thanks to its sparseness,νq can be recovered from a small
numberC of measurements, with||νq||0 < C ≤ K, in line
with the recent results in compressive sampling [5], [6]. Over-
all, a compressive sampler can be implemented as follows.
• The received signalx(t) is processed by anauxiliary

wideband filters(t) of bandwidth1/T (chosen to be “uni-
versal” regardless of the signal structure) to getyq(t).

• After channel estimation of{gq,n}, the signal component

y
(s)
q (t) = uq(t) ⋆ gq(t) ⋆ s(−t) can be removed from
yq(t), yielding ζq(t) = νq(t) ⋆ s(−t). Specifically in

digital form,y(s)
q (t) at a given sampling pointt = tc is

y(s)
q (tc) =

∑

k uq,k

∑N−1
n=0 gq,n [ψk(t−nT ) ⋆ s(−t)|t=tc

] ,

which can be removed from the received filtered sample
yq(t)⋆s(−t)|t=tc

to obtain the interference sampleζq(tc).
• ζq(t) is sampled atC time instances{tc}

C−1
c=0 within each

block after skipping the cyclic prefix, yielding samples

ζq,c = ζq(tc) =
∑K−1

k=0 νq,k [ϕk(t) ⋆ s(t)]|t=tc
,

or, in vector-matrix form,

ζq = Λνq, (15)

whereζq

∆

= [ζq,0, . . . , ζq,C−1]
T andΛ is aC×K known

measurement matrix with its(c, k)-th element given by
[Λ]c,k = [ϕk(t) ⋆ s(t)]|t=tc

. Compressive sampling the-
ory suggests several choices for both the filters(t) and
the sampling instances{tc}

C−1
c=0 , which enable effective

recovery of the sparse unknowns; see, e.g., [5], [6], [11].
Having acquired the compressive measurementsζq, the

sparse signalνq can be recovered by solving anℓ1-norm reg-
ularized LS problem similar to (13), as follows (ρ is a weight):

ν̂q = arg min
νq

{

‖νq‖1 + ρ‖ζq − Λνq‖
2
2

}

. (16)

Finally, after estimatinĝvq = Ξν̂q on a number of sub-
sequent blocks, the interference covariance matrixRq can be
evaluated by its sample average.

As a final remark on the implementation costs, we note
that, after having estimatedHq, it would be possible to re-
cover the filtered interference vectorvq asv̂q = xq − Ĥquq

directly. This is a conceptually simple approach, but its main
drawback is the use of allK receiver functions in order to ac-
quirexq. Sensing the interference through compressive sam-
pling, instead, requires a small number of samples per block
that can be made significantly smaller thanK, which can con-
siderably reduce hardware-related implementation costs.

5. SIMULATIONS RESULTS

We simulate aQ-user peer-to-peer CR network. There are
Q2 channel links, whereQ of them are desired links and the
others are interferences. Each link experiences frequencyse-
lective fading modelled by anN -tap tapped delay line, where
each tap coefficient is independently generated as zero-mean
and unit variance complex Gaussian. The link power gain is
expressed by the scalarρrq > 0, ∀r, q ∈ [1, Q], which cap-
tures both the path loss and the fading power. The noise vari-
ance is set to be unitary. As case study, we focus on an OFDM
platform consisting ofK = 32 subcarriers as signal expan-
sion functions. Given the literature on channel estimation, we
focus on testifying the effectiveness of the compressed inter-
ference sensing technique in Section 4.2, assuming that chan-
nels have been accurately acquired. The auxiliary wideband
filter s(t) is chosen to be a rectangular pulse of time-spanT .

5.1. Performance of Interference Sensing

The CR scenario is based onQ = 3 users transmitting the av-
erage powersP1 = 5,P2 = P3 = 10, respectively, with prop-
agation channels having gainsρqq = 1, ∀q ∈ [1, Q], ρrq = 5
for ∀r 6= q ∈ [1, Q], andN = 8 tap coefficients. Taking
userq = 1 as an example, the snapshots of the recovered in-
terferencêvq versus the function index are depicted in Fig. 1,
for various compression ratiosC/K = 45%, 70% and90%
respectively. The case of full-rate sampling (C/K = 100%)
results in perfect recovery, and hence is not shown. It is ap-
parent that even with a moderate compression ratioC/K =
45%, the compressed sensing scheme can reliably recover the
instantaneous interference, without having to collectK sam-
ples per block by activating all theK receiver functions.

5.2. Sensitivity of DRA Efficiency to Sensing Errors

The impact of interference sensing errors on the capacity per-
formance of DRA is now addressed when the actions of the
active CR users are decided based on imperfect interference
estimates{v̂q}q. We assume for simplicity that{v̂q}q devi-
ate from the true values{vq}q element-by-element by a zero-
mean random component with standard deviationσv, whose
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Fig. 1. Noise free interference profile (vertical lines), its noisyreal-
ization (dashed line) and the estimated interference (solid line) ver-
sus the function index, for userq = 1.

value is chosen as a SNR-independent upper bound derived
from trials similar to that in Section 5.1. Further, we assume
that the DRA optimization problem is solved only under the
average power constraint (4), dropping the mask constraint
(3) for simplicity. As performance metric, we consider the
average sum capacity of all users (averaged over100 sets of
independent channel realizations) versus SNR for DRA under
four scenarios:a) sparsity-constrained DRA via (5) withl =
1 in the l-norm constraint (5c), and no sensing errors (σv =
0); b) sparsity-constrained DRA withl = 1, and moderately
large sensing errors (σv = 0.1); c) sparsity-unconstrained
DRA via (5) in the absence of thel-norm constraint (5c), and
no sensing errors (σv = 0); d) sparsity-unconstrained DRA
and moderately large sensing errors (σv = 0.1).

Fig. 2 depicts the values of sum capacity attained by the
above DRA strategies. As expected, sparsity-unconstrained
DRA outperforms the sparsity-constrained counterpart, but
the performance gaps are rather small. This means that the
sparsity-constrained DRA design can dynamically select ac-
tive expansion functions where the effective resources lieon,
thus offering a noticeable saving in complexity yet at a tol-
erable cost of small performance loss. Regarding the impact
of sensing errors, the capacity performance of the distributed
DRA games reveals to be quite robust against imperfect (sta-
tistical) knowledge of interference. Such robustness allows
for strong compression during sensing, which helps to keep
the computational load at affordable levels.

6. SUMMARY

Focusing on cognitive radios with multiple transmitter and
receiver expansion functions, this paper has developed com-
pressed sensing techniques that estimate all the channel and
interference links using only a small number of samples col-
lected from a sparse set of expansion functions. The proposed
sensing schemes effectively fulfill the sensing needs for joint
DRA and waveform adaptation, resulting in a truly distributed
implementation for spectral-efficient multiuser CR networks.
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Fig. 2. Average sum capacity vs. SNR budget (decided byPq,max)
for both sparsity constrained and unconstrained DRA games,when
sensing errors are zero (σv =0) or moderately large (σv =0.1).
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