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Abstract—Reliability and energy consumption in detection to identify channels that may be vacant. Transmission is the
are key objectives for distributed spectrum sensing in cognitive |imited on channels determined to be empty in order to avoid

sensor networks. In conventional distributed sensing approads, jnterference with primary users. Reliable determinatidn o
although the detection performance improves with the number . o
empty channels is thus a critical problem.

of radios, so does the network energy consumption. We consider . . .
a combined sleeping and censoring scheme as an energy efficient 1he hidden terminal problem as well as fading effects can
spectrum sensing technique for cognitive sensor networks. Our adversely affect the performance reliability of a cogmitiv

objective is to minimize the energy consumed in distributed radio. It has been shown that in a network of cognitive
sensing subject to constraints on the detection performance,yb radios, distributed spectrum sensing improves the detecti

optimally choosing the sleeping and censoring design parameters. L . .
The constraint on the detection performance is given by a mini- performance [7], [8]. Distributed spectrum sensing ailevi

mum target probability of detection and a maximum permissible ates these problems by exploiting the spatial diversitynfro
probability of false alarm. Depending on the availability of prior  multiple signal observations at spatially distributed s#s.

knowledge about the probability of primary user presence, two \While distributed sensing does improve detection religbili

cases are considered. The case where a priori knowledge is nOtpa etwork energy consumed scales with the number of radios
available defines the blind setup; otherwise the setup is called . i | sch 718
knowledge-aided. By considering a sensor network based on !N conventional sc emes [7], [8].

IEEE 802.15.4/ZigBee radios, we show that significant energy N this paper, we are interested in the problem of distritbute

savings can be achieved by the proposed scheme. spectrum sensing in cognitive sensor networks. We shaf ref
Index Terms—distributed spectrum sensing, cognitive sensor t© @ COgnitive sensor network as a wireless network of low-
networks, detection and fusion performance. power radios that gain secondary spectrum access following

the cognitive radio paradigm discussed earlier. We are in-
terested in devising energy efficient strategies for digted
sensing.

Recent advances in wireless communication technologiesye consider a distributed spectrum sensing system compris-
and services have created a tremendous demand for ragipof a fusion center (FC) and a number of cognitive sensors
spectrum. Radio spectrum has largely been managed ungigit carry out sensing in dedicated, periodic sensing.dfots
a licensed approach that has led to the current day scaritgy detection, which is a common approach to the detection
in spectrum. However a number of recent spectrum megf unknown signals [9], [10], is used for channel sensing.
surements [1], [2], [3] has shown that licensed spectrum The sensing results of each cognitive radio are collected at
under-utilized and that there exist spectrum portions edusthe FC, which makes a global decision on the occupancy of
over space and time. To promote utilization of such spectrufie channel using a fusion rule. Schemes based on soft and
portions, dynamic spectrum sharing models based on cegnithard fusion have been considered in the past [8] (the reader
radios have been proposed [4]. Spectrum regulations [$], [§ referred to [11] for an extensive treatment of distribute
are underway to promote such technologies for seconda@tection). It has been shown in [8] that the performance
spectrum sharing of licensed spectrum. In its recent Repefthard fusion schemes is comparable to that of soft fusion
and Order [5], the FCC permitted the operation of networkghemes in a number of practical settings. We shall hende lim
consisting of low-power portable devices and sensors in tB@r attention to hard decision based spectrum sensinge sinc
VHF-UHF band. The FCC is also in the process of seekinfle energy cost of sending one bit per decision is smaller tha
comments on the secondary spectrum allocation of the 2.3@nding multiple bits per decision for a soft decision sohem
2.4 GHz band for body sensor network operation to offer we propose a combination of sleeping and censoring as
wireless healthcare services [6]. an energy-saving mechanism for spectrum sensing. In this

Cognitive radios achieve secondary spectrum access wWhjltheme, when in sleep mode, each radio switches off its
limiting harmful interference to licensed primary user® Tsensing transceiver and incurs no observation costs os-tran
achieve this, spectrum sensing of radio channels is emgloy@ission costs. Censoring involves transmitting detectien

) sults only when they are in a certain information region.
zozg”ir‘ffb;“'s paper were presented at [ECON 2009, Porto, #MSBP goal is to minimize the average energy incurred by the
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I. INTRODUCTION
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target probability of detection and a maximum permissiblenough. The secondary user looks for a consensus among the
probability of false alarm. We consider two cases based other users and if its result is in accordance with the migjori
the availability of prior knowledge about the probability oopinion, it gains confidence else its confidence level dsa®sa
primary user presence. For the case that the prior probebili Each user can send its result to the FC only if its confidence
are not available, a blind setup is defined. When the prior-prdievel is above a certain threshold. However, these appesach
abilities are available, a knowledge-aided setup is desdri are mainly protocol based schemes and the detection taghniq
Systematic algorithms for obtaining the optimum sleepind aas well as the underlying problem formulation for system
censoring parameters are proposed for both setups. We thdesign parameters are not given. Our proposed technique can
consider a network of IEEE 802.15.4/ZigBee radios to evalusbe combined with the technique proposed in [12] to achieve
the efficiency of our proposed scheme. Resulting simulati@ren more energy savings.
results show that large energy savings can be obtained ifThe remainder of the paper is organized as follows. In
comparison to traditional spectrum sensing schemes. Section 1l, we describe distributed spectrum sensing based
Censoring has been considered in the context of wirelems sleeping and censoring and formulate energy-efficiesit di
sensor networks and cognitive radios [13], [15], [16], [17}kributed sensing as an optimization problem for the blind an
[18] and shown to be effective in saving energy. The design kiowledge-aided setups. Expressions for the global pibtyab
censoring regions under different optimization settirgjated of detection and false alarm are then derived in Sectioririll.
to the detection performance has been considered in [1Sfction IV, the problem is analyzed and systematic algmsth
[18] for minimization of the miss detection probability Wit are proposed to solve the underlying optimization problems
constraints on the false alarm rate and the network enengy céor both setups. We present numerical and simulation result
sumption. Further, [15], [16] and [18] consider minimizati to show the energy savings obtained by the proposed scheme
of the detection error probability subject to the networkrgly in Section V. Conclusions are drawn in Section VI.
consumption. The combination of sleeping and censoring was
considered in [14], with the goal of maximizing the mutual Il. SYSTEM MODEL
information between the state of signal occupancy and th
decision state of the fusion center. Censoring for cogmitiv

S . . . o rises of N cognitive sensors and an FC in a parallel dis-
radios is considered in [13] where a censoring decision r L

- . ibuted fusion configuration as shown in Fig. 1. In such a
similar to our scheme is employed to reduce the number Of .. . . . -

. : . configuration, each of the radios makes its own local detisio

bits sent to the fusion center and so the bandwidth occupanc .

o . o .afd sends the result to the FC. The FC combines these local

of the cognitive radio network. Our scheme is different in

three ways. First we consider a combination of sleeping and “cion by solving a binary hypothesis testing probles, i.

censoring and give (_:Iosed-form analytical expresslonsﬂfe_br the FC determines whether a primary system is transmitting,
probability of detection and false alarm. Second, we give a

clear problem formulation and necessary algorithms toesol ven by_ hypothes@-{l, or not, given .by hypothe_s@{o. .
ch radio is controlled by two policies: (i) a sleeping ppli

the problem in order to design the sensing parameters whi : o . .
is not given in [13]. Third, in [13], only the knowledge-&ﬁerm'nes whether or not it is awake, and (ii) a censoring

! . ; . . .(Policy determines whether or not it transmits its detection
aided setup is considered for analysis while we also consi

e . - .
. ) . . result, given that it is awake. Denoteto be the sleeping rate,
the blind setup. Finally, the fusion center in [13] makes nf.)e. the probability that a radio is turned off. Each raditat

decision in case it does not receive any results from the o : : .
" S . . awake performs detection in a dedicated sensing slogusin
cognitive users which is ambiguous in the sense that the b .
i . o.pbservation samples, denoted byk], k£ = 1,2,...,Tp.
has to make a final decision about the presence (or absenc of .
. ; ; ach observation sample [k] follows the data model,
the primary user. In this paper, if no results are reportetti¢o
FC, we assume that the primary user is not present. A sleeping wilk] = n; [k] underH, 1)
technique is employed in [26] where the sleeping policy is T sk 4 ng K] underH;
controlled by learning from the past channel observauorwhere the primary user's signal and the noise at #tb

As shall be shown, the optimization problems resulting from) .-~ - "qeo oo by;[k] and n;[k] respectively. The noise

our WOT" differ from thes_e mentioned past vv_orks; we la}’s assumed to be amni.d. Gaussian random process with
constraints on the detection performance while the ener

CoT T 240 mean and variance? and the signal is assumed to
consumption is minimized. Furthermore, a cluster-basetl deterministic. An energy detector is employed by each
a confidence voting approach to energy efficient distributeC(g

nsing is pr din 1121 In the cluster-based ; gnitive sensor that calculates the accumulated energy ov
SENsINg IS propose [ ].' : € cluster-based app (mchfo observation samples. The received energy collected over
cognitive radio network is divided into several clustersdzh

. . : " : the T, observation samples at tligh radio is given b
on their geometric location. Each cognitive radio sends &s 0 P 9 y

local decision to its assigned cluster head which makesa loc To )

cluster decision and sends it to the fusion center. This way E; = Zﬂ% [k]. (2)

the network energy consumption reduces due to the distance k=1

reduction by avoiding broadcasting every result to thediusi  Afterwards a censoring policy is employed at each radio
center directly. In the confidence voting approach, each ug&5], [18]. Censoring thresholds, and A\, are applied at each
sends its local decision to the FC only if it is deemed confideaf the radios. The rangg; < E; < )\, is called the censoring

®The considered distributed spectrum sensing system com-

Scisions according to a certain rule and makes the final
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wherep = Pr(\ < E; < A2) is denoted to be the censoring

—| Cognitive sensor 1
rate.
\ We shall assume that # 0 andp # 0. The sensing energy

Coaiive sensor 2 Fusion D.. C, constitutes the energy consumed in listening and collgctin
—> - » - . .
g : center the T, observation samples, as well as the energy required for

(FC) making a local decision. The transmission enefgy is the

. energy required to transmit the one-bit local decision ® th
FC.
—| Cognitive sensor N

Denote@p and Q¢ to be the respective global probability
of detection and false alarm. The target detection perfooma
Fig. 1. Distributed spectrum sensing configuration is then quantified byQr < o and Qp > (. Here, a and

[ are pre-specified detection design parameters. In practice
it is desirable to havev close to zero ands close to unity.
region. At the:-th radio, the local censoring decision rule isthese conditions respectively ensure that the cognitineae

given as network can, exploit empty channels and that primary users
send 1, declaring, if B > Ao, are not interfered with. Our goal is to determine the optimum
no decision ifA1 < E; < Ao, (3) sleeping rate: and the censoring thresholds and A, such
send 0, declaring if B; <)\;. that Ct in (6) is minimized subject to the constrainig <

. . . . . « and Qp > (. Note from (8) thatp can be written as a
In practice the average received signal-to-noise ratIOR}SNfunction of \; and \,. Hence our optimization problem can

at each cognitive radio is different. However, the syste i
: - : Fe formulated as follows:
parameter design becomes very difficult and even analljtical

intractable for different SNRs. Particularly in our schertiee Iimi Cr
. S HoAT, A2 @)
problem becomes NP-complete. For analytical tractabilvy st.Qr<a, Qp > 0.

assume that the received signal-to-noise ratio (SNR) &t eac ) . )
radio is the same, denoted by Such an assumption still DPepending on the prior knowledge about the respective
allows us to gain valuable insight into the design of cemgpri Prior probabilities,my = Pr(Ho) andm = Pr(H,), of the
and sleeping parameters. This has also been consideref]in [/Pothesesty and,, we consider two different cases.
which presents an experimental study of cooperative spctr

sensing where the received SNR at each cognitive radioAs Blind Problem Formulation

assumed to be the same and it is shown that cooperativg; st \we assume that, and, are unknown, and that, is
sensing still improves the detection performance of the\eog ch smaller thamr, reflecting channel under-utilization. In

tive network. Following this assumption, the probabiBtief ;s case, we can follow the definition of [18] for the cenagri
false alarm and detection for each radio are the same, dbnqi&e under the blind Neyman-Pearson (NP) setup

respectively byP; and P;. It is well known [10] that under the
model (1)-(2),E; follows a central chi-square distribution with PP = Pr(\ < E; < Xo|Ho).
2T, degrees of freedom undef, and a non-central chi—squareUSing (4), we may write\® as

distribution with 27, degrees of freedom and non-centrality '

paramete2y under;. w DT, 2 (T, %)
Based on the above decision rule, the local probabilities of = LTy  I(Ty) (®)
false alarm and detection can be respectively written as ) )
N Denoting QNP and QNP to be the respective global proba-
Py = Pr(E; > Xo|Ho) = I'(To, ) 4) bility of detection and false alarm under the blind setup, (7
[(Toy) becomes
and W CNP
Py = PT(EZ > )‘2|H1) = QTO( V 2 sV >‘2)7 (5) Hg\lllg\z T (9)

. . , : 1N < NP> 3.
where T'(a,z) is the incomplete gamma function given SLQE <@, Qp" =0

by I(a,z) = [~t*"'e~tdt, with I'(a,0) = T'(a) and

Qu.(a,z) is the generalized Marcum Q-functio®,,(a,z) = B. Knowledge-Aided Problem Formulation
aulil f:o tuefﬂ;“z I, 1(at)dt, with I,_;(.) being the modi- Here, we assume that, and m; are knqwn. In practice,
fied Bessel function of the first kind and order- 1. estimates ofro and m; can be obtained via spectrum mea-

DenoteC,, and C;, to be the energy consumed by the surements. In this case, we can follow the definition of [18]
th radio in sensing and transmission, respectively. Out cd8r the censoring rate under the knowledge-aided Baye&ian (
function is then given by the average energy consumed ®gtup

distributed sensing in the network, P8 = Pr(\ < Ei < \o)
N
= moPr(M < E; < Aa|Hp) + mPr(M < E; < A2|H
Cr=(-mY (CtCl-p) @) o o)t mbr )

= mobo + m101 (10)

i=1
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wheredy andd; can be written using (4) and (5) as conditioned on hypothesi&/,. The probability thatZ out of
B K awake cognitive radios, for a fixe®l” underH,, send a
%0 = Pr(As < E; < A2[Ho) decision result to the FC is given yr(L|K,H,). The term

_ I'(To, ) T(To, %) 1) Pr(Drc=1Ho, LK) is the probability that the FC makes
I'(To) I'(Ty) a false decision, i.e. the probability that the channel dated
occupied, conditioned on hypothegig for a fixed K and L.
61 = Pr(AM < E; < AQ\HO Note that (14) can be further simplified using the binomial
= Q71,(v/27, VA1) — Q1. (\/27, VA2 (12) expansion theorem. After some algebraic manipulation, we
obtain

Denote@8 and QB to be the respective gIobaI probability P P N
of detection and false alarm under the knowledge-aidecpsetu QF =1-{1-(1—-p)d—-p7)Ps}". (15)

Hence, our optimization problem becomes This can be easily explained by the OR rule based global

min CB probability of false alarm when conS|der|r1}g'\‘l = w)(1—
R B (13)  )NPyp; to be the local probability of false alarm mcludmg the
S.t. QF <a, Q> 5.
censoring and sleeping policies.
In the followmg section, we derive analytically the expres The global probability of detection for the blind setup}y”,
sions forQpP°, QFF, QF and QE. can be derived in a similar way. We have

NP _ _
I1l. DETECTION PERFORMANCEANALYSIS p = Pr(Drc=1,L> 1K >1[H)

Each cognitive radio that is awake listens to the channel in _ i Pr(Dpc =1,L > 1, K[H,)

dedicated sensing slots. An awake cognitive radio computes -

the received signal energy and locally decides on the pcesen

or absence of the licensed system based on the decisiomrule i —

(3). If it comes up with a decision, then it sends its decision

result to the FC. The FC employs an OR rule to make the

final decision denoted by . That is, Dpc = 1 if the FC =

receives at least one local decision declaring 1, Else: = 0.

Let the number of awake cognitive radios Re and letL out

of K such cognitive radios send their decision to the FC. X
The probability of false alarm for the blind setugF® can

now be written as

BP — Pr(Dpczl L>1,K >1H)

K=1

Pr(K|H,)Pr(Dpc =1,L > 1|Hy, K)

(%)uN‘K(l—u)K

Pr(Dpec =1, LIH1, K)

(%) pN R = "

NE EMZ EMZ

~
Il
-

M 71+

= Z Pr(Dpc =1,L > 1,K[H,) x N Pr(LIHy, K)Pr(Dpc = 1|Hy, K, L)
K=1 L=1
N N N
= 3" Pr(K[Ho)Pr(Drc = 1,L > 1[Ho, K) =S <K) Y
K=1 K=1
N K
N _ K
:Z<K)/1’N K(l—,u,)K XZ<L)6KL 5) [1*(1*Pd)L]
K=1 L=1
K = 1— 1—8) P WY 16
< 3" Pr(Dro = 1, Lito, K) — (1= p)(1 = )P}, (16)
I—1 whered = P()\l < E; < X\2|Hy) and P, is given by (5). This
N also can be explained by the OR rule based global probability
— Z <K> pNE Q= K of detection when considering)” = (1 — u)(1 —6) P, to be
K=1 the local probability of detection including the censoriugd
K sleeping policies.
x Y Pr(L[Ho, K)Pr(Dpc = 1|Ho, K, L) DenotingP§, = (1—p)(1—d0) Py to be the local probability
L=1 of false alarm including the censoring and sleeping pdicie
NN NoK K the global probability of false alarm for the knowledgeead
= Z K P (1—p) scenario,QE, can be written as
K=1
. QB = Pr(Dpc =1,L > 1,K > 1|Ho)
NPy\K —L NPy L
3 () @t - ey ey

o o . o o N
where Py is given by (4). In the above expressidhy; (K |Ho) = 1= {1 (=) =00)Pr}, (17

is the probability that there aré&’ cognitive radios awake where Py is given by (4).
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DenotingP2 = (1—)(1—6,) P, to be the local probability ~ Since CN' (p\P) = %ﬁ: < 0andp"'(\) = %7 <o,
of detection including the censoring and sleeping policiege obtain CN'(A;) = CNP (p)NP)pNP'(A;) > 0. Therefore
. . T 1 T 7\P )P 1) = 0. )

the global probability of detection for the knowledge-aldethe optimalCNP is attained for the lowest; in the feasible

scenario,Q, can be derived in a similar way. We obtain  set of the problem that based on Lemma 1 is equal tdsing

Q% = Pr(Dpc =1,L > 1,K > 1[H;) this result, we can relax one of the arguments of the problem.
BN Furthermore, when\; = 0, we obtain1 — pN® = P; and
=1- {1 —Fa 1 — 0 = Py. Thus, after some simplifications and using the
=1-{1—-(1—p(1- 61)Pd}N , (18) fact that there is a one-to-one relationship betw®erand X,
where P, is given by (5). (A2 = 200, [(Ty) Py]), the problem (22) can be written
In the following section, we analyze the optimization prob2S

lems (9) and (13) given the expressions for the constraints ) N
derived in this section and we propose an algorithm to solve P, (1—n) Z [Cai + Ci, Py]
them. o =1
st.(1-pP;—1-(1—-a)/V <0
V. PROBLEM ANALYSIS 1 1
In this section, (9) and (13) are analyzed in order to find (1—p)P? 1= (1—pB)YN <0 (23)

a systematic solution for the system parameters, namely th‘?n the above problem, the objective function and the

sleeping rate and censoring thresholds for the two SetuDS.'function (1 — u)P? are convex with respect tp and P
Before going forward with the problem analysis we m'_ndividuall but n{)t ointlv. We now prove that—L is

troduce the following lemma, which is used to simplify théI Y, X d] yd iduall ph é—(/jb)Pj i

optimization problems in the subsequent subsections. also convex inu and Py individually. The second dervative

o S ,
Lemma 1If the feasible set of (7) is not empty, thep — 0 Of 1= 1S g=ps > 0. Thus, ;=7 is convex with respect

2
. 1—=p . .
is in the feasible set of the problem. to u. It is well known that for a LRT continuous tesk, is

Proof: Denote M to be the feasible set of (7). AssumeFOncave inPs [11, p 14] and so is log-concave #y (note that
3 (W5, ML AL) € M where ! £ 0 s the lowesty; € M. the energy detector becomes a LRT detector for the Gaussian

Inserting* in Qp and Qr we define the following problem signals). Since the product of two log-concave functioneds

with M denoting its corresponding feasible set, concave,P? is log-concave, thuspid2 is convex with respect
to Pf.
ax Qo Although (23) is not a standard convex optimization prob-
S.t.Qr < a. (19) lem, we can still exploit the individual convexity of the

problem ing and Py for a systematic solution. Therefore, for
"Solving the problem, we solve the resulting convex problem
to find Py (or p) for a giveny (or Py) over the range of

Denoting the respective local probability of false alarnd a
detection including censoring and sleeping policieshyand

Py We obtain 0 < u<1( < P; < 1). Finally, we need to locate
max 1 — {1 — Py} the minimumC}* and its corresponding parametef%, and
Mida N 1 using an exhaustive search. Further, we can also employ
st.1—{l1-Pp}" <o (20)  standard systematic optimization tools such as altematin
and after simplifications (20) becomes optimization, leading to a local instead of a global solatio
fnax Fu B. Knowledge-Aided Setup
st.Py<1—(1—a)/N, (21)  To analyze (13), it is more convenient to rewrite it in the
Sincedy = pN? and §; = 6, without loss of generality, we following format
can denote’y; = (1—p*)(1—p"P) Py and Py = (1—p*)(1— . N 5
8)P;. Since 21t = (1 - u*)Pf‘ma_iA’;Np) > 0 (where we used Mglf&(l — 1) 2 [Coi + Cr (1= p%)]
opN B * O\ % ! _ * =
the/ facr': thitapTl g( 0), if (Al,)AQ) € M ,thr:an()\l = OI, A3) E St1—[1—(1—p)(l-06)P " <a
M . Therefored (A, = 0,5) € M . Further, it is clear that N
S _ . - 1—[1—-(1-— 1-46,)P, > 0. 24
(1*,0,3) € M which is a contradiction with our assumption (== =0)Pf" 2 5 (24)
that A7 # 0. Hence, ifM # () thenX\; =0 € M.O Similar to the blind setup we can prove that if the feasible
. set of (24) is not empty, then the optim@F is attained for
A. Blind Setup A1 = 0. Using this result, we can relax one of the arguments
Based on (15) and (16), (9) can be written as of the problem. Thus, the new problem becomes
N N
Jmin (1= p) 3 [Co + Gy (1= )] min(l = p) y_ [Cs, + (1= 7))
o i=1 " i=1
stl1—[1—1-pld-pP)PN <a St1—[1—(1—-p1-3d8)P" <a
L-[1=(1—p)1 8PV > B. (22) 1-[1—=(1—-p)—8)P)Y > 5. (25)
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When \; = 0, we obtain whereG(A\2) = Qr, (V2 ,\ﬁ) Thus, we find that for every
1 s —p 0 < u* < pimaz, Pf = F(G™ Y(\/B' /1 — pu*)). Therefore,
IRCEEE our minimization problem fob < u < pmas reduces to the
1 -6 =Py (26) following unconstrained line search problem
Hence, (24) is given by N
N min(1— 1) > [Cs, + Cu(moF(GTH(©) +me]  (32)
min(l - )Z [Cs,i + Cy, (mo Py + wlPd)} i=1
Hoo i=1 where¢ = /3’ /1 — u. Looking carefully at (32), we find that
st1-[1-(1- u)Pf]N <a we can use the same optimization problem for the blind setup
1-[1—(1— M)Pg]N > 4. (27) by consideringmg = 1 (w1 = 0). In other words, the blind

- _ o setup is just a special case of the knowledge-aided setup. Th
After rewriting (27) in the standard optimization problems the approach that we will adopt in the simulations for both

format [19], we obtain setups.
N
mlijn(l — ) Z [Cs, + Ct, (mo Py + 1 Py)] V. NUMERICAL AND SIMULATION RESULTS
wEs i=1

A. Numerical Analysis

2 1/N
st-mPpsl=(1-a) / We first numerically analyze the problem for different
! 5 < ! (28) scenarios. A network of 5 cognitive radios with the same
(A=pP; ~ 1= (1=pVN sensing and transmission energy is employed. In this n&twor
Similar to the blind setup, we can show that the constrainggch cognitive radio experiences an SNR®UB. The aim is
are convex with respect tp and Py individually, but the to analyze how the optimal parameters change with respect to
objective function is not convex inP;. However, as we different detection performance constraints. In one stena
will show in the following, the problem can still be solvedthe sensing and transmission energies are assumed to be the

systematically. same and in the other one the transmission energy is assumed
Assume thaf: is fixed tou*. Then (28) will reduce to the to be10 times larger than the sensing energy. We note that for
following problem the case where the sensing energy(gimes larger than the
N transmission energy, we obtain results very close to the cas
mm (1- Z C’ +Cy, (o Py + 7r1Pd)] where the sensing energy is equal to the transmission energy
= and hence these results are not shown.
—(1— )N In Fig. 2, the optimal censoring and sleeping rates are
s.t. P} < " shown fora = 0.1 and 0.8 < g < 0.99. It is shown
(1—p ) that as the transmission energy increases with respecteto th
1 1—p . . ) . .
— < —1/N' (29) sensing energy, the censoring rate increases while thgiistpe
Py m1-(1=p) rate decreases. The reason is that as the transmissiory energ
. I(Ty, 22 . becomes significantly larger compared to the sensing energy
Defining  F'(Az) (F(OT(j )’ we can write P 4 the total transmission energy has to be reduced more than the
as Py = Qr,(v27,V/2F~1(Py)).  Calculating  sensing energy.
the derivative of Cf with respect to Py, we find  Fig 3 shows the optimal censoring and sleeping rates for
that 2% = (1 — u*)OZfil [CemoPrtmPo]l 001 < o < 0.1 and 8 = 0.9. Similar to the previous

op P - ) . :
4 4 case, it is shown that the optimal censoring rate increases a

o N OP4] >
(1 —p )6%32:1 Cromo + OPf] 2 0 vyhere we used the the transmission energy increases with respect to thergensi
fact thata—Pf > 0. Therefore we can write (29) as follows energy while the sleeping rate decreases.

minp, Py
st P2 < 1-(1—a)Y/¥N B. Case Study for IEEE 802.15.4/ZigBee
(1=a ) - Here, a case study is considered in order to verify the
(\/ﬂ\/gF L(P;) ) = 1-(1- ﬁ)l/N (30) performance of the proposed combined sleeping and cegsorin

scheme. A Chipcon CC2420 transceiver based on the IEEE
802.15.4/ZigBee standard [20] is considered to compute the
energy consumption in sensing and transmission. This low-
power radio with a data rate upto 250 Kbps is aimed to work

! asawireless personal area network up to ranges of 100 m. Our
we thus haveIfT < 1. Therefore, we obtaip® < 1 -3 cognitive sensor network comprises of such radios arrairged
and thus i, = 1— 6. a circular field with a radius of 70 m, uniformly distributed

Looking at (30) we can find that along the circumference with the FC located in the center. We

model the wireless channel between the cognitive sensor and
F(G'(\/B /1= p*) < Pr</o'/1—p*  (31) the FC using a free-space path loss model. This means that

Here, we have to note that* cannot be chosen arbitrary.
Assuminge’ =1 — (1 —a)/N andg’ =1 - (1 - g)'/V,
the detection probability constraint is generally lardert the
false alarm rate /constrai;z‘i»t’ > o’. So regarding thaP? <1,
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Fig. 2. Optimal sleeping and censoring ratedos= 0.1 and0.8 < 8 < 0.99
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Fig. 3. Optimal sleeping and censoring rateddil < o < 0.1 andg = 0.9

for the blind setup
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Fig. 4. Comparison of energy consumption for different setups

the energy consumed for listening is approximately 40 n& Th
processing energy related to the signal processing pahein t
transmit mode for a data rate of 250 kbps, a voltage of 2.1V,
and current of 17.4 mA is approximately 150 nJ/bit. Since we
use one bit per decision, the sensing energy of each cognitiv
sensor isC; = 190 nJ [22], [23].

The transmitter dissipates energy to run the radio eleictson
and the power amplifier. Following the model in [21] and [24],
to transmit one bit over a distanek the radio spends:

Ct(d) = Cy_clec + eampd2 (33)

whereC;_.. is the transmitter electronics energy ang,,, is

the amplification required to satisfy a given receiver savityi
level. Assuming a data rate of 250 kbps and a transmit power
of 20 mW, C;_¢iec = 80 nJ. Thee,,, to satisfy a receiver
sensitivity of -90 dBm at an SNR of 10 dB is 40.4 p3/fa2],

[23].

Every simulation result in this section is averaged ovet0100
realizations. Two sets of values were chosen for the a priori
probabilities: 7y = 0.2,7; = 0.8 andmy = 0.8, 7 = 0.2.

In Fig. 4, we show the energy consumed in spectrum sensing
for different values of the probability of detection corasi,
8. Here, N = 5, SNR =10 dB anda = 0.1. As is clear, a

the signal power attenuation is inversely proportionaltte t combined sleeping and censoring scheme consumes less than
square of the distanaé between the transmitter and receivemhalf the energy as would be consumed if a distributed spectru
The energy consumption analysis that is presented heensing such as in [8] were employed. Furthermore, we see
is based on the transceiver model developed in [21]. Thieat whenm, is much higher thanr, the blind setup gives
sensing energy for each decision consists of two parts: taknost the same performance as the knowledge-aided setup.

energy consumption involved in listening over the channel a

In Fig. 5, we show the average energy consumed as the

making the decision and the energy consumption of the sigmaimber of cognitive sensors in the network is increasedeHer

processing part for modulation, signal shaping, etc. Theés o =

0.1 and 8 = 0.9. Without sleeping or censoring, the

contribution depends on the number of samples taken duriegergy consumed in spectrum sensing scales linearly with
the detection time. We choosg, = 5, corresponding to a the number of cognitive sensors. However with a sleeping
detection time of 1us. Considering the fact that the typicaland censoring scheme, the energy consumption saturates to
circuit power consumption of ZigBee is approximately 40 m\W4 level that is several orders of magnitude lower. We clearly
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see that to attain the desired detection performance leubl, 1
a small fraction of the cognitive sensors need to partieipa
in spectrum sensing. Again, it is shown that the blind sett
gives a lower bound of the system energy consumption for
certain detection performance.

Fig. 6 shows the optimal censoring and sleeping rate f
different values of the probability of detection consttajh
and o = 0.1. Since the sensing energy of a ZigBee netwot
is much higher than its transmission energy, the optimalesal
for the sleeping rate is attained at,., for different values
of 3. That is why in Fig. 6, the sleeping rate is shown t
have the same value for different a priori probabilitigsand
w1 as well as for the blind setup. However, it is shown the
the censoring rate changes with the a priori probabilitiets.
clear that the optimal censoring rate increases wittand is
the largest for the blind setupr{ = 1).

In I_:|g. 7, we finally show how the optimal censoring ant 02— ——
sleeping rates change with respect to the number of users Number of users
a =0.1 andg = 0.9. For this figure, the blind setup is usec
TOI’ the SImUIatlons,' It is ShOIWH that ,as the number Of_ usel’—:lsg. 7. Optimal censoring and sleeping rate with number of itvgnradios
increases, the optimal sleeping rate increases dramgtioal for the blind setup
order to keep the system energy consumption as stable as
possible. However, the optimal censoring rate saturates af

Optimal censoring and sleeping rate

—u

-=-p ]

limited number of users. seeking a systematic solution for the obtained optimizatio
problems, we showed that the resulting optimization prmoble
VI. SUMMARY AND CONCLUSIONS can be reduced to an unconstrained line search problem for

We presented an energy efficient distributed spectrum sehgth setups.

ing technigue based on the combination of censoring andNumerical results were presented with different scenarios
sleeping policies. Depending on the knowledge of the a iprioegarding the sensing and transmission energies. It wagnsho
probability of primary user presence, a Neyman-Pearsamdbl that in case the transmission energy is much higher than the
setup) and Bayesian (knowledge-aided setup) formulatias wsensing energy, the optimal sleeping rate is higher thamwhe
obtained with the goal of minimizing the network energyhe sensing and transmission energy are equal to each other.
consumption subject to a global detection performance coive then considered a case study with IEEE 802.15.4/ZigBee
straint. We then derived analytical expressions for théajlo radios. It was shown that the network energy consumption is
probabilities of detection and false alarm for each setap. teduced significantly and almost becomes independent of the
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number of cooperating cognitive radios, for a large numlber [22] S. Maleki, A. Pandharipande and G. Leus, “Energy efficigistributed

radios.

Note that we did not address the design of protocoﬂ%]

employed in the cognitive sensor network - in particulae th
medium access protocol that individual sensors use tortriins

their detection results to the FC. Optimizing the designhef t [24]

protocol jointly with the sensing and censoring policiesildo

spectrum sensingto appear in 35th Annual Conference of the IEEE

Industrial Electronics SociefyNov 2009.

S. Maleki, A. Pandharipande and G. Leus, “Energy efficiistributed
spectrum sensing with convex optimizationd appear in the Third
International Workshop on Computational Advances in Maknsor
Adaptive ProcessingNov 2009.

J. Ammer and J. Rabaey, “The energy-per-useful-bit mébdri@valuat-
ing and optimizing sensor network physical layed&EE International

lead to additional energy savings. Further, our analysis v:\[ezl gWOVkShOP on Wireless Ad-Hoc and Sensor Netwazke6.
f

. . . D. Cabric, A. Tkachenko and R. W. Brodersen, “Experinaéstudy of
based on the OR hard fusion rule. The design of sleeping spectrum sensing based on energy detection and networlerziam,”

censoring schemes with extensions to other fusion rules andFirst international workshop on Technology and policy farcassing
soft fusion is a subject of further study. spectrum2006. o , ,

[26] D. Datla, R. Rajbanshi, A. M. Wyglinski and G. J. MindéAn adaptive

spectrum sensing architecture for dynamic spectrum acoetseorks,”
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