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Abstract—Reliability and energy consumption in detection
are key objectives for distributed spectrum sensing in cognitive
sensor networks. In conventional distributed sensing approaches,
although the detection performance improves with the number
of radios, so does the network energy consumption. We consider
a combined sleeping and censoring scheme as an energy efficient
spectrum sensing technique for cognitive sensor networks. Our
objective is to minimize the energy consumed in distributed
sensing subject to constraints on the detection performance, by
optimally choosing the sleeping and censoring design parameters.
The constraint on the detection performance is given by a mini-
mum target probability of detection and a maximum permissible
probability of false alarm. Depending on the availability of prior
knowledge about the probability of primary user presence, two
cases are considered. The case where a priori knowledge is not
available defines the blind setup; otherwise the setup is called
knowledge-aided. By considering a sensor network based on
IEEE 802.15.4/ZigBee radios, we show that significant energy
savings can be achieved by the proposed scheme.

Index Terms—distributed spectrum sensing, cognitive sensor
networks, detection and fusion performance.

I. I NTRODUCTION

Recent advances in wireless communication technologies
and services have created a tremendous demand for radio
spectrum. Radio spectrum has largely been managed under
a licensed approach that has led to the current day scarcity
in spectrum. However a number of recent spectrum mea-
surements [1], [2], [3] has shown that licensed spectrum is
under-utilized and that there exist spectrum portions unused
over space and time. To promote utilization of such spectrum
portions, dynamic spectrum sharing models based on cognitive
radios have been proposed [4]. Spectrum regulations [5], [6]
are underway to promote such technologies for secondary
spectrum sharing of licensed spectrum. In its recent Report
and Order [5], the FCC permitted the operation of networks
consisting of low-power portable devices and sensors in the
VHF-UHF band. The FCC is also in the process of seeking
comments on the secondary spectrum allocation of the 2.36-
2.4 GHz band for body sensor network operation to offer
wireless healthcare services [6].

Cognitive radios achieve secondary spectrum access while
limiting harmful interference to licensed primary users. To
achieve this, spectrum sensing of radio channels is employed
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to identify channels that may be vacant. Transmission is then
limited on channels determined to be empty in order to avoid
interference with primary users. Reliable determination of
empty channels is thus a critical problem.

The hidden terminal problem as well as fading effects can
adversely affect the performance reliability of a cognitive
radio. It has been shown that in a network of cognitive
radios, distributed spectrum sensing improves the detection
performance [7], [8]. Distributed spectrum sensing allevi-
ates these problems by exploiting the spatial diversity from
multiple signal observations at spatially distributed sensors.
While distributed sensing does improve detection reliability,
the network energy consumed scales with the number of radios
in conventional schemes [7], [8].

In this paper, we are interested in the problem of distributed
spectrum sensing in cognitive sensor networks. We shall refer
to a cognitive sensor network as a wireless network of low-
power radios that gain secondary spectrum access following
the cognitive radio paradigm discussed earlier. We are in-
terested in devising energy efficient strategies for distributed
sensing.

We consider a distributed spectrum sensing system compris-
ing of a fusion center (FC) and a number of cognitive sensors
that carry out sensing in dedicated, periodic sensing slots. En-
ergy detection, which is a common approach to the detection
of unknown signals [9], [10], is used for channel sensing.
The sensing results of each cognitive radio are collected at
the FC, which makes a global decision on the occupancy of
the channel using a fusion rule. Schemes based on soft and
hard fusion have been considered in the past [8] (the reader
is referred to [11] for an extensive treatment of distributed
detection). It has been shown in [8] that the performance
of hard fusion schemes is comparable to that of soft fusion
schemes in a number of practical settings. We shall hence limit
our attention to hard decision based spectrum sensing, since
the energy cost of sending one bit per decision is smaller than
sending multiple bits per decision for a soft decision scheme.

We propose a combination of sleeping and censoring as
an energy-saving mechanism for spectrum sensing. In this
scheme, when in sleep mode, each radio switches off its
sensing transceiver and incurs no observation costs or trans-
mission costs. Censoring involves transmitting detectionre-
sults only when they are in a certain information region.
Our goal is to minimize the average energy incurred by the
cognitive sensor network to perform spectrum sensing while
maintaining a global detection performance by determiningthe
optimum sleeping and censoring parameters. The constraints
on the detection performance are specified by a minimum
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target probability of detection and a maximum permissible
probability of false alarm. We consider two cases based on
the availability of prior knowledge about the probability of
primary user presence. For the case that the prior probabilities
are not available, a blind setup is defined. When the prior prob-
abilities are available, a knowledge-aided setup is described.
Systematic algorithms for obtaining the optimum sleeping and
censoring parameters are proposed for both setups. We then
consider a network of IEEE 802.15.4/ZigBee radios to evaluate
the efficiency of our proposed scheme. Resulting simulation
results show that large energy savings can be obtained in
comparison to traditional spectrum sensing schemes.

Censoring has been considered in the context of wireless
sensor networks and cognitive radios [13], [15], [16], [17],
[18] and shown to be effective in saving energy. The design of
censoring regions under different optimization settings related
to the detection performance has been considered in [15]-
[18] for minimization of the miss detection probability with
constraints on the false alarm rate and the network energy con-
sumption. Further, [15], [16] and [18] consider minimization
of the detection error probability subject to the network energy
consumption. The combination of sleeping and censoring was
considered in [14], with the goal of maximizing the mutual
information between the state of signal occupancy and the
decision state of the fusion center. Censoring for cognitive
radios is considered in [13] where a censoring decision rule
similar to our scheme is employed to reduce the number of
bits sent to the fusion center and so the bandwidth occupancy
of the cognitive radio network. Our scheme is different in
three ways. First we consider a combination of sleeping and
censoring and give closed-form analytical expressions forthe
probability of detection and false alarm. Second, we give a
clear problem formulation and necessary algorithms to solve
the problem in order to design the sensing parameters which
is not given in [13]. Third, in [13], only the knowledge-
aided setup is considered for analysis while we also consider
the blind setup. Finally, the fusion center in [13] makes no
decision in case it does not receive any results from the
cognitive users which is ambiguous in the sense that the FC
has to make a final decision about the presence (or absence) of
the primary user. In this paper, if no results are reported tothe
FC, we assume that the primary user is not present. A sleeping
technique is employed in [26] where the sleeping policy is
controlled by learning from the past channel observations.
As shall be shown, the optimization problems resulting from
our work differ from these mentioned past works; we lay
constraints on the detection performance while the energy
consumption is minimized. Furthermore, a cluster-based and
a confidence voting approach to energy efficient distributed
sensing is proposed in [12]. In the cluster-based approach,a
cognitive radio network is divided into several clusters based
on their geometric location. Each cognitive radio sends its
local decision to its assigned cluster head which makes a local
cluster decision and sends it to the fusion center. This way
the network energy consumption reduces due to the distance
reduction by avoiding broadcasting every result to the fusion
center directly. In the confidence voting approach, each user
sends its local decision to the FC only if it is deemed confident

enough. The secondary user looks for a consensus among the
other users and if its result is in accordance with the majority
opinion, it gains confidence else its confidence level decreases.
Each user can send its result to the FC only if its confidence
level is above a certain threshold. However, these approaches
are mainly protocol based schemes and the detection technique
as well as the underlying problem formulation for system
design parameters are not given. Our proposed technique can
be combined with the technique proposed in [12] to achieve
even more energy savings.

The remainder of the paper is organized as follows. In
Section II, we describe distributed spectrum sensing based
on sleeping and censoring and formulate energy-efficient dis-
tributed sensing as an optimization problem for the blind and
knowledge-aided setups. Expressions for the global probability
of detection and false alarm are then derived in Section III.In
Section IV, the problem is analyzed and systematic algorithms
are proposed to solve the underlying optimization problems
for both setups. We present numerical and simulation results
to show the energy savings obtained by the proposed scheme
in Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL

The considered distributed spectrum sensing system com-
prises ofN cognitive sensors and an FC in a parallel dis-
tributed fusion configuration as shown in Fig. 1. In such a
configuration, each of the radios makes its own local decision
and sends the result to the FC. The FC combines these local
decisions according to a certain rule and makes the final
decision by solving a binary hypothesis testing problem, i.e.
the FC determines whether a primary system is transmitting,
given by hypothesisH1, or not, given by hypothesisH0.
Each radio is controlled by two policies: (i) a sleeping policy
determines whether or not it is awake, and (ii) a censoring
policy determines whether or not it transmits its detection
result, given that it is awake. Denoteµ to be the sleeping rate,
i.e. the probability that a radio is turned off. Each radioi that
is awake performs detection in a dedicated sensing slot using
T0 observation samples, denoted byxi[k], k = 1, 2, ..., T0.
Each observation samplexi[k] follows the data model,

xi[k] =

{

ni[k] underH0

si[k] + ni[k] underH1
(1)

where the primary user’s signal and the noise at thei-th
radio are denoted bysi[k] and ni[k] respectively. The noise
is assumed to be ani.i.d. Gaussian random process with
zero mean and varianceσ2

n and the signal is assumed to
be deterministic. An energy detector is employed by each
cognitive sensor that calculates the accumulated energy over
T0 observation samples. The received energy collected over
the T0 observation samples at thei-th radio is given by

Ei =

T0
∑

k=1

x2
i [k]. (2)

Afterwards a censoring policy is employed at each radio
[15], [18]. Censoring thresholdsλ1 andλ2 are applied at each
of the radios. The rangeλ1 < Ei < λ2 is called the censoring



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

Cognitive sensor 1


Cognitive sensor 2


Cognitive sensor N


Fusion

center

(FC)


.


.


.


D

FC


Fig. 1. Distributed spectrum sensing configuration

region. At thei-th radio, the local censoring decision rule is
given as







send 1, declaringH1 if Ei ≥ λ2,
no decision ifλ1 < Ei < λ2,
send 0, declaringH0 if Ei ≤ λ1.

(3)

In practice the average received signal-to-noise ratio (SNR)
at each cognitive radio is different. However, the system
parameter design becomes very difficult and even analytically
intractable for different SNRs. Particularly in our scheme, the
problem becomes NP-complete. For analytical tractability, we
assume that the received signal-to-noise ratio (SNR) at each
radio is the same, denoted byγ. Such an assumption still
allows us to gain valuable insight into the design of censoring
and sleeping parameters. This has also been considered in [25]
which presents an experimental study of cooperative spectrum
sensing where the received SNR at each cognitive radio is
assumed to be the same and it is shown that cooperative
sensing still improves the detection performance of the cogni-
tive network. Following this assumption, the probabilities of
false alarm and detection for each radio are the same, denoted
respectively byPf andPd. It is well known [10] that under the
model (1)-(2),Ei follows a central chi-square distribution with
2T0 degrees of freedom underH0 and a non-central chi-square
distribution with 2T0 degrees of freedom and non-centrality
parameter2γ underH1.

Based on the above decision rule, the local probabilities of
false alarm and detection can be respectively written as

Pf = Pr(Ei ≥ λ2|H0) =
Γ(T0,

λ2

2 )

Γ(T0)
(4)

and
Pd = Pr(Ei ≥ λ2|H1) = QT0

(
√

2γ,
√

λ2), (5)

where Γ(a, x) is the incomplete gamma function given
by Γ(a, x) =

∫ ∞
x

ta−1e−tdt, with Γ(a, 0) = Γ(a) and
Qu(a, x) is the generalized Marcum Q-function,Qu(a, x) =

1
au−1

∫ ∞
x

tue−
t2+a2

2 Iu−1(at)dt, with Iu−1(.) being the modi-
fied Bessel function of the first kind and orderu − 1.

DenoteCsi
and Cti

to be the energy consumed by thei-
th radio in sensing and transmission, respectively. Our cost
function is then given by the average energy consumed for
distributed sensing in the network,

CT = (1 − µ)

N
∑

i=1

(Csi
+ Cti

(1 − ρ)), (6)

whereρ = Pr(λ1 < Ei < λ2) is denoted to be the censoring
rate.

We shall assume thatµ 6= 0 andρ 6= 0. The sensing energy
Csi

constitutes the energy consumed in listening and collecting
theT0 observation samples, as well as the energy required for
making a local decision. The transmission energyCti

is the
energy required to transmit the one-bit local decision to the
FC.

DenoteQD and QF to be the respective global probability
of detection and false alarm. The target detection performance
is then quantified by:QF ≤ α and QD ≥ β. Here, α and
β are pre-specified detection design parameters. In practice,
it is desirable to haveα close to zero andβ close to unity.
These conditions respectively ensure that the cognitive sensor
network can, exploit empty channels and that primary users
are not interfered with. Our goal is to determine the optimum
sleeping rateµ and the censoring thresholdsλ1 and λ2 such
that CT in (6) is minimized subject to the constraintsQF ≤
α and QD ≥ β. Note from (8) thatρ can be written as a
function of λ1 and λ2. Hence our optimization problem can
be formulated as follows:

min
µ,λ1,λ2

CT

s.t. QF ≤ α, QD ≥ β.
(7)

Depending on the prior knowledge about the respective
prior probabilities,π0 = Pr(H0) and π1 = Pr(H1), of the
hypothesesH0 andH1, we consider two different cases.

A. Blind Problem Formulation

First, we assume thatπ0 andπ1 are unknown, and thatπ1 is
much smaller thanπ0, reflecting channel under-utilization. In
this case, we can follow the definition of [18] for the censoring
rate under the blind Neyman-Pearson (NP) setup

ρNP = Pr(λ1 < Ei < λ2|H0).

Using (4), we may writeρNP as

ρNP =
Γ(T0,

λ1

2 )

Γ(T0)
− Γ(T0,

λ2

2 )

Γ(T0)
. (8)

DenotingQNP
D and QNP

F to be the respective global proba-
bility of detection and false alarm under the blind setup, (7)
becomes

min
µ,λ1,λ2

CNP
T

s.t. QNP
F ≤ α, QNP

D ≥ β.
(9)

B. Knowledge-Aided Problem Formulation

Here, we assume thatπ0 and π1 are known. In practice,
estimates ofπ0 and π1 can be obtained via spectrum mea-
surements. In this case, we can follow the definition of [18]
for the censoring rate under the knowledge-aided Bayesian (B)
setup

ρB = Pr(λ1 < Ei < λ2)

= π0Pr(λ1 < Ei < λ2|H0) + π1Pr(λ1 < Ei < λ2|H1)

= π0δ0 + π1δ1 (10)
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whereδ0 andδ1 can be written using (4) and (5) as

δ0 = Pr(λ1 < Ei < λ2|H0)

=
Γ(T0,

λ1

2 )

Γ(T0)
− Γ(T0,

λ2

2 )

Γ(T0)
, (11)

δ1 = Pr(λ1 < Ei < λ2|H1)

= QT0
(
√

2γ,
√

λ1) − QT0
(
√

2γ,
√

λ2). (12)

DenoteQB
D andQB

F to be the respective global probability
of detection and false alarm under the knowledge-aided setup.
Hence, our optimization problem becomes

min
µ,λ1,λ2

CB
T

s.t. QB
F ≤ α, QB

D ≥ β.
(13)

In the following section, we derive analytically the expres-
sions forQNP

D , QNP
F , QB

D andQB
F .

III. D ETECTION PERFORMANCEANALYSIS

Each cognitive radio that is awake listens to the channel in
dedicated sensing slots. An awake cognitive radio computes
the received signal energy and locally decides on the presence
or absence of the licensed system based on the decision rule in
(3). If it comes up with a decision, then it sends its decision
result to the FC. The FC employs an OR rule to make the
final decision denoted byDFC . That is,DFC = 1 if the FC
receives at least one local decision declaring 1, elseDFC = 0.
Let the number of awake cognitive radios beK, and letL out
of K such cognitive radios send their decision to the FC.

The probability of false alarm for the blind setup,QNP
F can

now be written as

QNP
F = Pr(DFC = 1, L ≥ 1,K ≥ 1|H0)

=

N
∑

K=1

Pr(DFC = 1, L ≥ 1,K|H0)

=

N
∑

K=1

Pr(K|H0)Pr(DFC = 1, L ≥ 1|H0,K)

=

N
∑

K=1

(

N
K

)

µN−K(1 − µ)K

×
K

∑

L=1

Pr(DFC = 1, L|H0,K)

=

N
∑

K=1

(

N
K

)

µN−K(1 − µ)K

×
K

∑

L=1

Pr(L|H0,K)Pr(DFC = 1|H0,K, L)

=

N
∑

K=1

(

N
K

)

µN−K(1 − µ)K

×
K

∑

L=1

(

K
L

)

(ρNP)K−L(1 − ρNP)L[1 − (1 − Pf )L],(14)

wherePf is given by (4). In the above expression,Pr(K|H0)
is the probability that there areK cognitive radios awake

conditioned on hypothesisH0. The probability thatL out of
K awake cognitive radios, for a fixedK underH0, send a
decision result to the FC is given byPr(L|K,H0). The term
Pr(DFC = 1|H0, L,K) is the probability that the FC makes
a false decision, i.e. the probability that the channel is declared
occupied, conditioned on hypothesisH0 for a fixedK andL.

Note that (14) can be further simplified using the binomial
expansion theorem. After some algebraic manipulation, we
obtain

QNP
F = 1 − {1 − (1 − µ)(1 − ρNP)Pf}N . (15)

This can be easily explained by the OR rule based global
probability of false alarm when consideringP NP

fl = (1−µ)(1−
ρNP)Pf to be the local probability of false alarm including the
censoring and sleeping policies.

The global probability of detection for the blind setup,QNP
D ,

can be derived in a similar way. We have

QNP
D = Pr(DFC = 1, L ≥ 1,K ≥ 1|H1)

=

N
∑

K=1

Pr(DFC = 1, L ≥ 1,K|H1)

=
N

∑

K=1

Pr(K|H1)Pr(DFC = 1, L ≥ 1|H1,K)

=

N
∑

K=1

(

N
K

)

µN−K(1 − µ)K

×
K

∑

L=1

Pr(DFC = 1, L|H1,K)

=

N
∑

K=1

(

N
K

)

µN−K(1 − µ)K

×
K

∑

L=1

Pr(L|H1,K)Pr(DFC = 1|H1,K, L)

=

N
∑

K=1

(

N
K

)

µN−K(1 − µ)K

×
K

∑

L=1

(

K
L

)

δK−L(1 − δ)L[1 − (1 − Pd)
L]

= 1 − {1 − (1 − µ)(1 − δ)Pd}N , (16)

whereδ = P (λ1 < Ei < λ2|H1) andPd is given by (5). This
also can be explained by the OR rule based global probability
of detection when consideringP NP

dl = (1− µ)(1− δ)Pd to be
the local probability of detection including the censoringand
sleeping policies.

DenotingP B
fl = (1−µ)(1−δ0)Pf to be the local probability

of false alarm including the censoring and sleeping policies,
the global probability of false alarm for the knowledge-aided
scenario,QB

F , can be written as

QB
F = Pr(DFC = 1, L ≥ 1,K ≥ 1|H0)

= 1 −
{

1 − P B
fl

}N

= 1 − {1 − (1 − µ)(1 − δ0)Pf}N
, (17)

wherePf is given by (4).
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DenotingP B
dl = (1−µ)(1−δ1)Pd to be the local probability

of detection including the censoring and sleeping policies,
the global probability of detection for the knowledge-aided
scenario,QB

D, can be derived in a similar way. We obtain

QB
D = Pr(DFC = 1, L ≥ 1,K ≥ 1|H1)

= 1 −
{

1 − P B
dl

}N

= 1 − {1 − (1 − µ)(1 − δ1)Pd}N
, (18)

wherePd is given by (5).
In the following section, we analyze the optimization prob-

lems (9) and (13) given the expressions for the constraints
derived in this section and we propose an algorithm to solve
them.

IV. PROBLEM ANALYSIS

In this section, (9) and (13) are analyzed in order to find
a systematic solution for the system parameters, namely the
sleeping rate and censoring thresholds for the two setups.

Before going forward with the problem analysis we in-
troduce the following lemma, which is used to simplify the
optimization problems in the subsequent subsections.

Lemma 1: If the feasible set of (7) is not empty, thenλ1 = 0
is in the feasible set of the problem.

Proof: DenoteM to be the feasible set of (7). Assume
∃ (µ∗, λ∗

1, λ
∗
2) ∈ M whereλ∗

1 6= 0 is the lowestλ1 ∈ M.
Insertingµ∗ in QD and QF we define the following problem
with M′

denoting its corresponding feasible set,

max
λ1,λ2

QD

s.t. QF ≤ α. (19)

Denoting the respective local probability of false alarm and
detection including censoring and sleeping policies byPfl and
Pdl. We obtain

max
λ1,λ2

1 − {1 − Pdl}N

s.t. 1 − {1 − Pfl}N ≤ α. (20)

and after simplifications (20) becomes

max
λ1,λ2

Pdl

s.t. Pfl ≤ 1 − (1 − α)1/N . (21)

Sinceδ0 = ρNP and δ1 = δ, without loss of generality, we
can denotePfl = (1−µ∗)(1−ρNP)Pf andPdl = (1−µ∗)(1−
δ)Pd. Since ∂Pfl

∂λ1
= (1 − µ∗)Pf

∂(1−ρNP)
∂λ1

≥ 0 (where we used

the fact that∂ρNP

∂λ1
≤ 0), if (λ∗

1, λ
∗
2) ∈ M′

, then(λ1 = 0, λ∗
2) ∈

M′

. Therefore,∃ (λ1 = 0, λ∗
2) ∈ M′

. Further, it is clear that
(µ∗, 0, λ∗

2) ∈ M which is a contradiction with our assumption
that λ∗

1 6= 0. Hence, ifM 6= ∅ thenλ1 = 0 ∈ M.�

A. Blind Setup

Based on (15) and (16), (9) can be written as

min
µ,λ1,λ2

(1 − µ)

N
∑

i=1

[

Csi
+ Cti

(1 − ρNP)
]

s.t. 1 − [1 − (1 − µ)(1 − ρNP)Pf ]N ≤ α

1 − [1 − (1 − µ)(1 − δ)Pd]
N ≥ β. (22)

SinceCNP
T

′
(ρNP) =

∂CNP
T

∂ρNP ≤ 0 and ρNP′(λ1) = ∂ρNP

∂λ1
≤ 0,

we obtainCNP
T

′
(λ1) = CNP

T
′
T (ρNP)ρNP′(λ1) ≥ 0. Therefore,

the optimalCNP
T is attained for the lowestλ1 in the feasible

set of the problem that based on Lemma 1 is equal to0. Using
this result, we can relax one of the arguments of the problem.
Furthermore, whenλ1 = 0, we obtain1 − ρNP = Pf and
1 − δ = Pd. Thus, after some simplifications and using the
fact that there is a one-to-one relationship betweenPf andλ2

(λ2 = 2Γ−1[T0,Γ(T0)Pf ]), the problem (22) can be written
as

min
µ,Pf

(1 − µ)
N

∑

i=1

[

Csi
+ Cti

Pf

]

s.t. (1 − µ)P 2
f − 1 − (1 − α)1/N ≤ 0

1

(1 − µ)P 2
d

− 1

1 − (1 − β)1/N
≤ 0. (23)

In the above problem, the objective function and the
function (1 − µ)P 2

f are convex with respect toµ and Pf

individually, but not jointly. We now prove that 1
(1−µ)P 2

d
is

also convex inµ and Pf individually. The second derivative
of 1

1−µ is 2
(1−µ)3 > 0. Thus, 1

1−µ is convex with respect
to µ. It is well known that for a LRT continuous test,Pd is
concave inPf [11, p 14] and so is log-concave inPf (note that
the energy detector becomes a LRT detector for the Gaussian
signals). Since the product of two log-concave functions islog-
concave,P 2

d is log-concave, thus,1
P 2

d
is convex with respect

to Pf .
Although (23) is not a standard convex optimization prob-

lem, we can still exploit the individual convexity of the
problem inµ andPf for a systematic solution. Therefore, for
solving the problem, we solve the resulting convex problem
to find Pf (or µ) for a given µ (or Pf ) over the range of
0 < µ < 1 (0 < Pf < 1). Finally, we need to locate
the minimumCNP

T and its corresponding parameters,Pf and
µ using an exhaustive search. Further, we can also employ
standard systematic optimization tools such as alternating
optimization, leading to a local instead of a global solution.

B. Knowledge-Aided Setup

To analyze (13), it is more convenient to rewrite it in the
following format

min
µ,λ1,λ2

(1 − µ)

N
∑

i=1

[

Csi
+ Cti

(1 − ρB)
]

s.t. 1 − [1 − (1 − µ)(1 − δ0)Pf ]N ≤ α

1 − [1 − (1 − µ)(1 − δ1)Pd]
N ≥ β. (24)

Similar to the blind setup we can prove that if the feasible
set of (24) is not empty, then the optimalCB

T is attained for
λ1 = 0. Using this result, we can relax one of the arguments
of the problem. Thus, the new problem becomes

min
µ,λ2

(1 − µ)

N
∑

i=1

[

Csi
+ Cti

(1 − ρB)
]

s.t. 1 − [1 − (1 − µ)(1 − δ0)Pf ]N ≤ α

1 − [1 − (1 − µ)(1 − δ1)Pd]
N ≥ β. (25)
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Whenλ1 = 0, we obtain

1 − δ0 = Pf ,

1 − δ1 = Pd. (26)

Hence, (24) is given by

min
µ,λ2

(1 − µ)
N

∑

i=1

[

Csi
+ Cti

(π0Pf + π1Pd)
]

s.t. 1 − [1 − (1 − µ)P 2
f ]N ≤ α

1 − [1 − (1 − µ)P 2
d ]N ≥ β. (27)

After rewriting (27) in the standard optimization problem
format [19], we obtain

min
µ,Pf

(1 − µ)

N
∑

i=1

[

Csi
+ Cti

(π0Pf + π1Pd)
]

s.t. (1 − µ)P 2
f ≤ 1 − (1 − α)1/N

1

(1 − µ)P 2
d

≤ 1

1 − (1 − β)1/N
. (28)

Similar to the blind setup, we can show that the constraints
are convex with respect toµ and Pf individually, but the
objective function is not convex inPf . However, as we
will show in the following, the problem can still be solved
systematically.

Assume thatµ is fixed toµ∗. Then (28) will reduce to the
following problem

min
Pf

(1 − µ∗)

N
∑

i=1

[

Csi
+ Cti

(π0Pf + π1Pd)
]

s.t. P 2
f ≤ 1 − (1 − α)1/N

(1 − µ∗)
1

P 2
d

≤ 1 − µ∗

1 − (1 − β)1/N
. (29)

Defining F (λ2) =
Γ(T0,

λ2
2

)

Γ(T0)
, we can write Pd

as Pd = QT0
(
√

2γ,
√

2F−1(Pf )). Calculating
the derivative of CB

T with respect to Pf , we find

that ∂CB
T

∂Pf
= (1 − µ∗)

∂
∑ N

i=1

[

Cti
(π0Pf+π1Pd)

]

∂Pf
=

(1 − µ∗)
[
∑N

i=1 Cti
π0 + ∂Pd

∂Pf

]

≥ 0 where we used the

fact that ∂Pd

∂Pf
≥ 0. Therefore we can write (29) as follows

minPf
Pf

s.t. P 2
f ≤ 1−(1−α)1/N

(1−µ∗)

1

Q2
T0

(
√

2γ,
√

2F−1(Pf ))
≤ 1−µ∗

1−(1−β)1/N (30)

Here, we have to note thatµ∗ cannot be chosen arbitrary.
Assumingα

′

= 1 − (1 − α)1/N and β
′

= 1 − (1 − β)1/N ,
the detection probability constraint is generally larger than the
false alarm rate constraintβ

′

> α
′

. So regarding thatP 2
d ≤ 1,

we thus have β
′

1−µ∗
≤ 1. Therefore, we obtainµ∗ ≤ 1 − β

′

and thus,µmax = 1 − β
′

.
Looking at (30) we can find that

F (G−1(
√

β′/1 − µ∗)) ≤ Pf ≤
√

α′/1 − µ∗ (31)

whereG(λ2) = QT0
(
√

2γ,
√

λ2). Thus, we find that for every
0 < µ∗ ≤ µmax, P ∗

f = F (G−1(
√

β′/1 − µ∗)). Therefore,
our minimization problem for0 < µ ≤ µmax reduces to the
following unconstrained line search problem

min
µ

(1 − µ)

N
∑

i=1

[

Csi
+ Cti

(π0F (G−1(ξ)) + π1ξ
]

(32)

whereξ =
√

β′/1 − µ. Looking carefully at (32), we find that
we can use the same optimization problem for the blind setup
by consideringπ0 = 1 (π1 = 0). In other words, the blind
setup is just a special case of the knowledge-aided setup. This
is the approach that we will adopt in the simulations for both
setups.

V. NUMERICAL AND SIMULATION RESULTS

A. Numerical Analysis

We first numerically analyze the problem for different
scenarios. A network of 5 cognitive radios with the same
sensing and transmission energy is employed. In this network,
each cognitive radio experiences an SNR of10 dB. The aim is
to analyze how the optimal parameters change with respect to
different detection performance constraints. In one scenario,
the sensing and transmission energies are assumed to be the
same and in the other one the transmission energy is assumed
to be10 times larger than the sensing energy. We note that for
the case where the sensing energy is10 times larger than the
transmission energy, we obtain results very close to the case
where the sensing energy is equal to the transmission energy
and hence these results are not shown.

In Fig. 2, the optimal censoring and sleeping rates are
shown for α = 0.1 and 0.8 ≤ β ≤ 0.99. It is shown
that as the transmission energy increases with respect to the
sensing energy, the censoring rate increases while the sleeping
rate decreases. The reason is that as the transmission energy
becomes significantly larger compared to the sensing energy,
the total transmission energy has to be reduced more than the
sensing energy.

Fig. 3 shows the optimal censoring and sleeping rates for
0.01 ≤ α ≤ 0.1 and β = 0.9. Similar to the previous
case, it is shown that the optimal censoring rate increases as
the transmission energy increases with respect to the sensing
energy while the sleeping rate decreases.

B. Case Study for IEEE 802.15.4/ZigBee

Here, a case study is considered in order to verify the
performance of the proposed combined sleeping and censoring
scheme. A Chipcon CC2420 transceiver based on the IEEE
802.15.4/ZigBee standard [20] is considered to compute the
energy consumption in sensing and transmission. This low-
power radio with a data rate upto 250 Kbps is aimed to work
as a wireless personal area network up to ranges of 100 m. Our
cognitive sensor network comprises of such radios arrangedin
a circular field with a radius of 70 m, uniformly distributed
along the circumference with the FC located in the center. We
model the wireless channel between the cognitive sensor and
the FC using a free-space path loss model. This means that
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Fig. 2. Optimal sleeping and censoring rate forα = 0.1 and0.8 ≤ β ≤ 0.99

for the blind setup
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Fig. 3. Optimal sleeping and censoring rate for0.01 ≤ α ≤ 0.1 andβ = 0.9

for the blind setup

the signal power attenuation is inversely proportional to the
square of the distanced between the transmitter and receiver.

The energy consumption analysis that is presented here
is based on the transceiver model developed in [21]. The
sensing energy for each decision consists of two parts: the
energy consumption involved in listening over the channel and
making the decision and the energy consumption of the signal
processing part for modulation, signal shaping, etc. The former
contribution depends on the number of samples taken during
the detection time. We chooseT0 = 5, corresponding to a
detection time of 1µs. Considering the fact that the typical
circuit power consumption of ZigBee is approximately 40 mW,
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Fig. 4. Comparison of energy consumption for different setups.

the energy consumed for listening is approximately 40 nJ. The
processing energy related to the signal processing part in the
transmit mode for a data rate of 250 kbps, a voltage of 2.1 V,
and current of 17.4 mA is approximately 150 nJ/bit. Since we
use one bit per decision, the sensing energy of each cognitive
sensor isCs = 190 nJ [22], [23].

The transmitter dissipates energy to run the radio electronics
and the power amplifier. Following the model in [21] and [24],
to transmit one bit over a distanced, the radio spends:

Ct(d) = Ct−elec + eampd
2 (33)

whereCt−elec is the transmitter electronics energy andeamp is
the amplification required to satisfy a given receiver sensitivity
level. Assuming a data rate of 250 kbps and a transmit power
of 20 mW, Ct−elec = 80 nJ. Theeamp to satisfy a receiver
sensitivity of -90 dBm at an SNR of 10 dB is 40.4 pJ/m2 [22],
[23].

Every simulation result in this section is averaged over 1000
realizations. Two sets of values were chosen for the a priori
probabilities:π0 = 0.2, π1 = 0.8 and π0 = 0.8, π1 = 0.2.
In Fig. 4, we show the energy consumed in spectrum sensing
for different values of the probability of detection constraint,
β. Here,N = 5, SNR = 10 dB andα = 0.1. As is clear, a
combined sleeping and censoring scheme consumes less than
half the energy as would be consumed if a distributed spectrum
sensing such as in [8] were employed. Furthermore, we see
that whenπ0 is much higher thanπ1, the blind setup gives
almost the same performance as the knowledge-aided setup.

In Fig. 5, we show the average energy consumed as the
number of cognitive sensors in the network is increased. Here,
α = 0.1 and β = 0.9. Without sleeping or censoring, the
energy consumed in spectrum sensing scales linearly with
the number of cognitive sensors. However with a sleeping
and censoring scheme, the energy consumption saturates to
a level that is several orders of magnitude lower. We clearly
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see that to attain the desired detection performance level,only
a small fraction of the cognitive sensors need to participate
in spectrum sensing. Again, it is shown that the blind setup
gives a lower bound of the system energy consumption for a
certain detection performance.

Fig. 6 shows the optimal censoring and sleeping rate for
different values of the probability of detection constraint β
and α = 0.1. Since the sensing energy of a ZigBee network
is much higher than its transmission energy, the optimal value
for the sleeping rate is attained atµmax for different values
of β. That is why in Fig. 6, the sleeping rate is shown to
have the same value for different a priori probabilitiesπ0 and
π1 as well as for the blind setup. However, it is shown that
the censoring rate changes with the a priori probabilities.It is
clear that the optimal censoring rate increases withπ0 and is
the largest for the blind setup (π0 = 1).

In Fig. 7, we finally show how the optimal censoring and
sleeping rates change with respect to the number of users for
α = 0.1 andβ = 0.9. For this figure, the blind setup is used
for the simulations. It is shown that as the number of users
increases, the optimal sleeping rate increases dramatically in
order to keep the system energy consumption as stable as
possible. However, the optimal censoring rate saturates after a
limited number of users.

VI. SUMMARY AND CONCLUSIONS

We presented an energy efficient distributed spectrum sens-
ing technique based on the combination of censoring and
sleeping policies. Depending on the knowledge of the a priori
probability of primary user presence, a Neyman-Pearson (blind
setup) and Bayesian (knowledge-aided setup) formulation was
obtained with the goal of minimizing the network energy
consumption subject to a global detection performance con-
straint. We then derived analytical expressions for the global
probabilities of detection and false alarm for each setup. In
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Fig. 7. Optimal censoring and sleeping rate with number of cognitive radios
for the blind setup

seeking a systematic solution for the obtained optimization
problems, we showed that the resulting optimization problem
can be reduced to an unconstrained line search problem for
both setups.

Numerical results were presented with different scenarios
regarding the sensing and transmission energies. It was shown
that in case the transmission energy is much higher than the
sensing energy, the optimal sleeping rate is higher than when
the sensing and transmission energy are equal to each other.
We then considered a case study with IEEE 802.15.4/ZigBee
radios. It was shown that the network energy consumption is
reduced significantly and almost becomes independent of the
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number of cooperating cognitive radios, for a large number of
radios.

Note that we did not address the design of protocols
employed in the cognitive sensor network - in particular, the
medium access protocol that individual sensors use to transmit
their detection results to the FC. Optimizing the design of the
protocol jointly with the sensing and censoring policies could
lead to additional energy savings. Further, our analysis was
based on the OR hard fusion rule. The design of sleeping and
censoring schemes with extensions to other fusion rules and
soft fusion is a subject of further study.
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