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Abstract—Radar is an attractive technology for long term
monitoring of human movement as it operates remotely, can
be placed behind walls and is able to monitor a large area
depending on its operating parameters. A radar signal reflected
off a moving person carries rich information on his or her
activity pattern in the form of a set of Doppler frequency
components produced by the specific combination of limbs and
torso movements. Deploying radars in indoor environments poses
however challenges for the interpretation of signals reflected off
a moving object due to multipath propagation. Two strategies
for the estimation of human walking velocity profile in indoor
environments are suggested and discussed. The accuracy of the
strategies are evaluated and compared in a field experiment using
a flexible and low-cost software defined radar platform. The
results obtained indicate that both methods are able to estimate
the velocity profile of the person’s translational movement with
less than 10% error.

Index Terms—Human movement, Velocity profile, Radar, GNU
Radio

I. INTRODUCTION

Automatic classification of human activity is an enabler of
relevant applications in the healthcare and wellness domains
given the strong empirical relation between a person’s health
and his or her activity profile. As a rule of thumb, the
ability of a person to engage independently in strenuous and
complex activities entails better fitness and health status, the
reverse relation being also generally true. This implication
has inspired the design of activity monitoring systems that
range from fitness training [1] to early discharge support of
postoperative patients [2]. Activity classification may also be
used to identify unusual movements, such as falling in elderly
care applications.

Different on-body and off-body sensors have been used
for activity monitoring as for instance accelerometers [3]
and cameras [4]. However, human movement monitoring in
health and wellness applications may span for long periods
of time and user compliance is very sensitive to the burden
level imposed by the underlying sensor technology. Radar is
an attractive technology for long term monitoring of human
movement because it is an off-body sensor, can be placed
behind walls and is able to cover a large area depending on
its operating parameters. Furthermore, the coarseness of the
information provided by radars is less prone to raise privacy
concerns when compared to cameras.

A radar signal reflected off a moving person carries infor-
mation on his or her activity in the form of a set of Doppler
frequency components produced by the specific combination
of limbs and torso movements. The Doppler frequency pattern
that results from such a complex movement sequence is
called ”Micro-Doppler Signature”. If for a given activity, these
Doppler components can be categorized into unambiguous
profiles or “footprints”, then radar signals may be used to
identify specific activities over time. Although not each and
every human activity results in a distinguishable signature,
the accurate extraction of unique features may be sufficient
to enable classification.

A major feature for the classification of human activities
using Doppler signature is velocity profile, i.e., the velocity
of different parts of the body over time [5]. Moreover, the
velocity profile of a walking person shows different states
(accelerate, decelerate, sudden stop, change in direction, etc.)
that are useful to be identified in various applications. In
general, a careful observation of how a person’s gait and
velocity profile develops over time provides insights that can
be used for timely intervention (if and when needed) in health
and elderly care applications.

Deploying radars in health and wellness applications at the
user’s home will be facilitated if such systems are low cost,
easy to deploy and safe. Low radiation emission ensures safety
for the user while multiple room coverage per radar unit eases
deployment at home. However, extracting useful information
from radars deployed in an indoor environment, where subjects
may spend most or all their time, poses a challenge due to
multipath propagation. The unfavorable environment makes
it more difficult to identify Doppler components that carry
information on the actual translational motion of the person.

This paper suggests and compares two strategies for estimat-
ing a person’s walking velocity profile in indoor environments.
The main contributions to the area of unobtrusive monitoring
in health and wellness applications are as follows:
• Two methods to estimate the velocity profile of human

translational motion from the Doppler signature obtained
in a form of time-frequency spectrogram are proposed
and evaluated.

• An experimental radar platform based on low-cost
software-defined radio hardware and open source soft-
ware is implemented and its use for indoor monitoring



of human movement is validated. The platform offers the
opportunity of realizing field experiments at an expedited
pace and low budget.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work in the area of human activity
monitoring and characterization; Section III describes a human
movement model for assisting in the identification of the major
Doppler components in the radar signal; Section IV introduces
basic radar concepts like radar cross section and the radar
signal model; Section V discusses spectral estimation and pro-
poses two methods for estimating a person’s walking velocity
profile from the received radar signal; Section VI describes
the software defined radar platform and the experimental setup
used in the validation experiments. The estimation results are
presented and evaluated in Section VII. Finally, Section VIII
summarizes and concludes the paper based on the results
obtained.

II. RELATED WORK

The data required for human movement analysis in indoor
environments can be gathered through on-body or off-body
sensors. In the former category, triaxial accelerometers have
been widely investigated for quantifying and classifying hu-
man activities [3]. The main disadvantage of on-body sensors
is that these must be carried by the monitored subject at all
times, a true inconvenience when monitoring periods span for
weeks or months. In elderly care applications, where long
monitoring periods are expected, subjects can also be forgetful
or uncooperative thus hampering the data collection process.

Off-body sensing for movement analysis can be performed
using technologies such as cameras [4], ultrasound [6] or
pyroelectric infrared (PIR) sensors [7]. These approaches
suffer however from limited range indoors as line of sight
is usually constrained to a single room. The range limitation
of these technologies means that many sensors are required to
cover a single building. Furthermore, these multiple sensing
units must be networked for data collection thus increasing the
deployment and maintenance complexity of the system. Radars
on the other hand are able to monitor large areas. Depending
on the transmission parameters, radars can also be used for
through-the-wall sensing [8].

The use of radars for human activity monitoring and clas-
sification has also been intensively investigated. Anderson [9]
used multiple frequency continuous wave radar for classifica-
tion of humans, animals and vehicles. Otero used a 10GHz CW
radar using micro-path antennas to collect data and to attempt
classification [10]. Gurbuz et al. proposed a simulation based
gender discrimination using spectrograms of radar signals [11].
Hornsteiner et al. applied radars to identify human motion
[12]. Kim et al. used artificial neural network for classifying
human activities based on micro-Doppler signatures [5]. All
these papers used Fast Fourier Transform based frequency esti-
mation. There is also previous work on using other transforms.
Geisheimer et al. [13] introduced the chirplet transform as a
spectral analysis tool. The Hilbert-Haung Transform for non-
linear and non-stationary signals in wide band noise radars

is also suggested by Lay et al. [14]. A complex but more
accurate iterative way to obtain each pixel in the spectrogram
in a bid to improve the frequency resolution and suppress the
side lobes of the fast Fourier transform is also suggested by
Du et al. [15].

Even though the above authors have treated different aspects
in human activity monitoring in general, the estimation of ve-
locity profile in indoor environment where the received signal
is plagued with multipath propagation was not specifically
treated. In this paper, we suggest methods to characterize a
person’s walking velocity profile from a spectrogram esti-
mate. Moreover, we used high resolution parametric spectral
estimator (MUSIC) and compared its performance with the
commonly used Fast Fourier Transform.

III. HUMAN MOVEMENT MODEL

Our starting point for human activity characterization is the
definition of a movement model. After studying the relation-
ship between the different parts of the body during locomotion,
features that have unique values in different activities can be
identified. In this regard, the person’s velocity profile is one
of the important features that can be used to achieve activity
classification.

The velocity profile refers to the instantaneous temporal
displacement that the different parts of the human body attain
during movement. Most of the human movement models
available rely on dividing the non-rigid human body into the
most significant rigid parts and modeling the velocity profile
of these components. One of the most used models [16]
decomposes the body into 12 parts consisting of the torso,
lower and upper part of each leg, lower and upper part of
each arm, the head and each of the right and left foot. This
model also describes the kinematics of each of these body parts
as a person walks with a particular velocity. Another known
model was based on 3-D position analysis of reflective markers
worn on the body using high resolution camera [17]. This
model states that the velocity profile of each body part can be
represented using low-order Fourier series. Using this model
as a basis, we have described a modified human movement
velocity profile as follows.

Assume a person is moving at a constant velocity V in a
certain direction and that the human body consists of M rigid
parts. The velocity profile of each body part, V m(t) can be
represented as a sum of sinusoids given by:

Vm(t) = V +A · {km1sin(ωct+ pm)
+km2cos(ωct+ pm) (1)
+km3sin(2ωct+ pm) + km4cos(2ωct+ pm)}

Note that the velocity profile of each body part Vm is
characterized by the amplitude constants km1, ..., km4 and a
phase constant pm(0 ≤ pm ≤ π). The oscillation amplitudes
km1, ..., km4 are largest for the legs and smallest for the torso.
The phase pm reflects the locomotion mechanism of the body.
For example, the right leg and left arm combination move 180o



out of phase with respect to the left leg and right arm. A is a
constant that has a specific value for different human activities.
The frequency of oscillation of the body ωc, is called cadence
frequency and can be related to the velocity of the person by
ωc = 2πB ·

√
V , where B is a constant that depends of the

type of human activity.
A simulation of the velocity profile of a walking person

based on the model stated above is shown in Figure 1. As
the figure shows, the amplitude of oscillation of each body
part is different; however, all body parts oscillate at the same
frequency ωc and its second harmonics 2ωc.

Figure 1. Human movement velocity profile [12]

The translational velocity of the body is normally time-
varying. Therefore, the oscillations of the body parts in (1)
will be superimposed on the time varying velocity profile of
the body. The torso has the smallest oscillation amplitudes
km1, ..., km4 and therefore the translational velocity V of the
body can be approximated by the velocity of the torso. The
velocity profile of the other body parts can be expressed as
sinusoids superimposed on the velocity profile of the torso.
Equation (1) can thus be modified to:

Vm(t) = Vtorso(t) +A · {km1 sin(ωct+ pm)
+km2 cos(ωct+ pm) (2)
+km3 sin(2ωct+ pm) + km4 cos(2ωct+ pm)}

IV. RADAR IN HUMAN SENSING

Radar is a device that transmits electromagnetic waves,
receives the signal reflected back off the target and extracts
information about the characteristics (range, velocity, shape,
reflectivity, etc.) of the target. The amount of electromagnetic
energy that a target is capable of reflecting back is measured
in terms of the radar cross section of the target. Doppler radars

are those that measure the velocity of a target based on the
Doppler effect, i.e., an electromagnetic wave hitting a moving
target undergoes a frequency shift proportional to the velocity
of the target. The radar cross section and velocity profile are
constant and easy to determine for a rigid body moving at
a constant speed. However, as discussed in Section III, the
human body locomotion is quite complicated. The radar cross
section and the signal model for radar based human movement
monitoring are discussed in the following sections.

A. Human body Radar Cross Section

Radar cross section (RCS) is a measure of signal reflectivity
of an object and is usually expressed in a unit of area (e.g. m2).
RCS depends on the frequency of the transmitted signal and
parameters of the target such as size, shape and material [18].
The RCS of a moving person is challenging to model because
it is composed of multiple semi-independent moving parts. A
simple additive approach to create an RCS model by adding up
the contribution of each body part is commonly adopted. The
contribution of each part can be assumed to remain constant
during motion without significant error. In addition, the total
RCS can be assumed to be half of the body surface area which
is exposed when the person is facing the radar; this area is
typically listed as 1m2 [19]. Each of the 12 major parts of the
human body listed in Section III contribute a fraction of the
RCS. The torso has the highest RCS fraction followed by the
legs and arms. The head and feet have the least contribution.
Particularly, the percentage contribution of each body part is
listed as: torso 31%, arms 10% each, legs 16.5% each, head
9% and feet 7% [19].

As the torso has the highest RCS of all the moving body
parts, the velocity profile of the torso can be estimated by
picking out the strongest component from the received Doppler
signal.

B. Signal Model

Doppler radars measure the frequency shift of electromag-
netic waves due to motion. The Doppler frequency shift of an
object is directly proportional to the velocity of the object and
the carrier frequency of the transmitted signal as described
next.

Assume a narrowband, unmodulated signal aej(2πft+φo)

is transmitted where a, f and φo are the amplitude, carrier
frequency and initial phase respectively. The signal received
at the receiver antenna being reflected off a person has a time
varying amplitude a(t) and a time varying phase change φ(t)
given by a(t)ej(ωt+φo+φ(t)). Hence, the received baseband
signal after demodulation is reduced to:

y(t) = a(t)ej(φ(t)) (3)

The Doppler frequency shift fd is the rate of change of the
phase of the signal, i.e., fd(t) = − 1

2π ·
dφ(t)
dt . This shows that

the Doppler shift of a rigid target moving at a velocity V (t)
is given by fd(t) = 2V (t)

λ in a monostatic (radar transmitter
and receiver co-located) scenario where λ is the wavelength of



the transmitted radio wave. It is stated in Section III that the
different rigid parts of the body have their own time-varying
velocity profile superimposed on the body velocity. Therefore,
each of these body parts have their own time-varying Doppler
shift, i.e., fdm(t) = 2Vm(t)

λ where Vm(t) is the velocity profile
of each body part. It is however generally challenging to
extract the velocity profiles of each body part for the following
reasons:
• The received signal is a superposition of signals that con-

sist of Doppler shifts of different moving parts. Moreover,
each body part has different RCS resulting in different
contribution to the aggregate signal.

• There is significant multipath fading in indoor environ-
ment which results in further additive components to the
resulting signal.

• A radar measures only the radial component of the
velocity of the person, and thus only a portion of the
movement can be estimated with signals from a single
radar.

The content that follows emphasizes on how to estimate the
velocity profile of the body from the aggregate received signal.

A typical walking of a person in an indoor environment
is described by non-uniform motion, i.e., the velocity profile
of the body varies with time. However, physical constraints
limit the person from changing velocity during short time
intervals. Consequently, the person’s velocity can be assumed
to remain constant during short time intervals. In other words,
a non-uniform human motion can be viewed as a uniform
motion over small time or displacement intervals. This means
that, even though the received signal is non-stationary, it
can be assumed as a piece-wise stationary signal. Based on
this argument, the received signal during a small piece-wise
stationary interval can be assumed to be a summation of a
certain number of sinusoids. If D sinusoids are assumed, the
received signal after sampling can be given by:

y [n] =
D∑
d=1

[
ad · ej(

4πVd
λ n+φd)

]
(4)

where y [n] is a sample at time instant nT (1/T is the sampling
frequency) and ad, Vd and φd are respectively the ampli-
tude (proportional to the RCS), velocity and initial phase of
each Doppler frequency component. The indoor environment
consists of stationary objects such as walls that have larger
RCS than the human body. The signal reflected from these
stationary objects has zero Doppler frequency shift. Moreover,
there is a strong direct signal between the transmitter and
receiver antennas of the radar. The resulting effect is a strong
DC component in the baseband radar signal. The received
signal can then be expressed as:

y[n] = a · ejφ +
D∑
d=1

[
ad · ej(

4πVd
λ n+φd)

]
(5)

The number of sinusoids D may change between consecu-
tive intervals, but it is assumed to remain constant to avoid

complexity. The value of D can be taken as small as the
number of body parts described in Section III; however, but
it is generally better to assign it a larger number to obtain a
smooth Doppler spectrum pattern.

V. VELOCITY PROFILE ESTIMATION

The received radar signal consists of many frequency com-
ponents as described in the previous section. If piecewise sta-
tionarity is assumed, a joint time-frequency estimation can be
used to decompose the received signal into these components.
In order to estimate the spectral content of a signal, non-
parametric or parametric spectral estimators can be applied
[20]. In this work, the short time Fourier transform (STFT)
and a high resolution parametric estimator, MUltiple SIgnal
Classification (MUSIC) are used.

Once the spectral components of the signal are obtained,
the next step is to estimate the velocity profile of the person’s
torso. This can be accomplished in different ways using the
joint time-frequency estimation. In this paper, two methods
are suggested and their performance are compared: maximum
power and weighted power methods.

A. DC removal

As shown in (5), there is a strong DC component in
the aggregate received signal. This component contains no
information and makes the spectral magnitudes of the other
relevant frequencies almost invisible in the spectrogram.

There are different techniques to eliminate a DC component
from a signal. The simplest method available is adopted here,
i.e., averaging. The average value of the signal is computed
and subtracted from the aggregate signal as follows.

ŷ[n] = y[n]− 1
N

N∑
n=1

y[n] (6)

where N is a large number. The remaining signal ŷ [n] can be
assumed to consist of reflections from moving objects only.

B. Spectral estimation

The short time Fourier transform (STFT) applied on the
signal, ŷ [n] is given by:

Y [k, n′] =
n′+L∑
n=n′

ŷ [n] · e−j2πnk/N (7)

where L is the number of signal samples taken in each
consecutive computation (window size); n′, which is set to
multiples of L, represents the start of the moving window
transform; k represents the kth frequency component of the
signal and N is the size of the FFT. The window size L is
set based on the duration over which the signal is assumed
stationary. This form of short time FFT computation is also
called sliding window FFT.

For the sake of comparison, a MUSIC [20] based spectral
estimation is also applied to the received signal. MUSIC is
a parametric spectral estimator based on eigenvalue decom-
position. Sliding window MUSIC based spectral estimation



is not commonly used; however, it is intuitive that it can be
applied similarly to sliding window FFT. The major advantage
of parametric spectral estimators like MUSIC is that the
spectral resolution is independent of the window size L. In
the STFT, the window size is a trade-off between stationarity
and spectral resolution. However, the MUSIC method requires
a priori knowledge of two parameters: the auto-correlation
lag parameter m and the number of sinusoids D [20]. The
performance of the MUSIC method can be better or worse
than STFT based on the setting of these two parameters.

The joint time-frequency spectral estimation is represented
using the spectrogram, a color plot of the magnitude of
frequency components as a function of time and frequency.
The pixels in the spectrogram represent the power at a par-
ticular frequency and time, which is computed as: P [k, n′] =
|Y [k, n′]|2.

C. Velocity estimation methods

As discussed in Section III, each body part has its own
velocity profile superimposed on the velocity profile of the
torso. The instantaneous torso velocity vtorso [n′] is expressed
in terms of the torso Doppler frequency as vtorso [n′] =
2π
λ ftorso [n′]. The following two methods can be used to

estimate the torso Doppler frequency at a particular time n′

from the spectrogram.
Maximum power method: As described in Section III,

the torso has the largest RCS of all the body parts. Thus,
the frequency component which has the highest power must
be the Doppler frequency component of the torso since the
strongest DC component is already removed. The maximum
power method selects the frequency of maximum power from
each spectral window in the computed spectrogram, i.e.,
ftorso [n′] = f [ktorso, n′], where, ktorso is the frequency
index at which P [k, n′] is maximum. However, selecting the
maximum frequency component returns the torso frequency
component only when there is motion. If there is no motion,
the received signal ŷ[n] in (6) consists of only background
noise and therefore selecting the strongest frequency compo-
nent gives a wrong estimate of the torso frequency (which is
zero). A parameter must thus be selected to distinguish motion
and no-motion intervals (for instance, in Figure 4, the interval
of no-motion is 0 − 3 s). This parameter will be computed
from the signal received when there is no motion and used
as a threshold. The total signal power in the spectrogram
column is one of the suitable parameters that can be used
to distinguish these intervals. This parameter is computed
and averaged over the duration of no-motion to determine a
threshold, i.e., Pthr = average{

∑N
k=1 P [k, n′]}. Therefore,

ftorso [n′] =

{
f [ktorso, n′] if

∑N
k=1 P [k, n′] > Pthr

0 else

Weighted power method: The maximum power method
requires a threshold which may fail to distinguish the motion
and no-motion intervals correctly. This can result in a non-
zero velocity estimate in absence of motion or zero velocity
even though there is motion. Thus a method that pulls the

velocity to zero when there is no or little motion without
using a threshold is desirable. This method should also pull
the resulting velocity estimate to the torso velocity when there
is motion. One possible way to do this is to estimate ftorso [n′]
as a power-weighted average frequency in each spectrogram
column n′, i.e.,

ftorso [n′] =
∑N
k=1 f [k, n′] · P [k, n′]∑N

k=1 P [k, n′]

This is based on the assumption that the frequency index range
considered in the spectrogram is [−Fs/2 : Fs/2] (Fs is the
sampling frequency) or the zero frequency is the central point
in the spectrogram.

The major problem of the weighted power method is that
it results in a biased estimate when image frequencies are
present. Image frequencies are those Doppler frequencies that
occur on the opposite side of the actual Doppler frequency
pattern in the spectrogram. These occur due to multipath
propagation in indoor environments. For instance, when a
person is moving towards the radar, the Doppler frequencies
are positive. However, there are also signals that reflect on
the back of the person and received in the aggregate signal.
The person is moving away from the radar with respect to
these signal paths resulting in negative (image) frequencies.
The presence of image frequencies makes the weighted power
estimate biased with respect to the actual torso frequency.
However, the rays that reflect off the back of the person
travel longer distances as compared to the rays that reflect off
the front of the person and therefore, these components have
lower power levels. The low power level of image frequencies
reduces their impact on the weighted power method.

The maximum power method is not affected by the pres-
ence of image frequencies as it simply selects the strongest
frequency component. The weighted power method however
performs well even in static conditions and is easier to apply
as there is no need for a threshold.

VI. GNU RADIO-BASED RADAR

The torso velocity profile estimation discussed in the pre-
vious section was evaluated in a set of experiments using
a GNU Radio-based radar. GNU Radio is an open source
and free programming toolkit for realizing software defined
radios [21]. The toolkit consists of a set of signal processing
blocks that can be configured to work with different hardware
components. The Universal Software Radio Peripheral (USRP)
is a general purpose programmable hardware that is designed
to be used as a frontend for GNU Radio [22].

GNU Radio and USRP have been widely used for prototyp-
ing research in communication systems [23]. Their adoption
in a wide range of applications is motivated by the low cost
and relative ease to use. However, the use of USRP as a
platform for building active radars is limited due to its low
power and limited bandwidth. A possible design of a USRP
based long-range pulse radar is discussed in [24]. To the best
of our knowledge, our work is the first using USRP and GNU
Radio as a short-range (indoor) active radar.



In our experiments, a USRP is used in conjunction with
GNU Radio to implement unmodulated continuous wave radar.
The USRP was equipped with a XCVR2450 daughterboard
which works as the radar RF frontend operating in the 2.4−
2.5 and 4.9− 5.9 GHz bands. Figure 2 shows the schematics
of our radar. The setup uses two separate USRPs, one for
transmission and the other dedicated for reception. A cable
between the boards ensures the two boards are synchronized
to a common clock.

Figure 2. Experimental Setup

This radar platform is both low-cost and very flexible. The
carrier frequency, transmit power, receiver gain, and other
parameters are easily configurable in software.

VII. EVALUATION

In the evaluation experiments, a person’s movement in a
confined area was measured using radar transmission fre-
quency of 5 GHz and transmission power of 30 dBm (includ-
ing antenna gains). The received signals were recorded in a
data file and processed offline using MATLAB. The signal
was low-pass filtered and decimated to a sampling rate Fs of
500S/s . A window size of 100 samples (0.2s), FFT size (N )
of 500 and an overlap of 75% between the sliding windows
were used in the computation of both STFT and MUSIC
spectrograms. In MUSIC, the autocorrelation lag parameter m
is set to 0.5L and the number of sinusoids D is set to 25. Such
a value of D was chosen after experimenting on the received
signal and taking into a account the discussion in Section IV.

Some important parameters of motion that can be easily
observed from the spectrogram are discussed and compared
with the actual motion of the subject. The velocity profile
is estimated using the two methods discussed in Section V-C.
These velocity estimation methods are evaluated by computing
the total distance covered (from the velocity profiles) and
comparing this with the actual distance covered by the subject
(measured manually). The weighted mean method is then used
to estimate and compare velocity estimations from the STFT
and MUSIC based spectrograms.

The following experiment was done in a 2m wide and 12m
long corridor as shown in Figure 3, to verify the velocity
profile estimation discussed in Section V. The person stood
at a distance of 12m in front of the radar for about 3 sec and
then started walking towards the radar. A timer shows that it
takes the person about 10 sec and 15 steps to complete the
12m by walking.

Figure 3. Experiment-4

A. Spectrograms

The STFT and MUSIC based spectrograms obtained from
this experiment are shown in Figure 4 and 5, respectively.
These spectrograms show the micro-Doppler pattern of the
motion of the target over time.

Figure 4. STFT based Spectrogram Estimation

Figure 5. MUSIC based spectrogram estimation

The following observations can be derived from these
spectrograms:
• The time duration of motion and the number of steps

obtained manually match the spectrogram behavior. The
latter, which is counted to be 15 during the experiment, is
equal to the number of spikes in the spectrogram (which
is also 15 as Figure 4 shows more clearly).



• Even though the person is moving towards the radar
(positive Doppler frequency), the spectrograms show that
there is an image micro-Doppler pattern of weaker power
in the negative Doppler frequencies. This reflects the
discussion in Section V-C.

• The STFT spectrogram has lower resolution than the
MUSIC spectrogram. The STFT micro-Doppler pattern
is smooth as compared to a spiky MUSIC spectrogram
that resolves the strongest frequencies as Figure 5 shows.
Therefore, it can be deduced that the MUSIC spectrogram
helps to observe the specific contribution of each of the
rigid parts of the body.

B. Velocity Profile

The torso velocity profile of the experiment estimated from
the STFT spectrogram is shown in Figure 6. In order to verify
the velocity estimation methods, a part of the motion where
the torso velocity is positive is considered (between 3 sec and
11 sec as shown in Figure 4).

The distance the person moved can be estimated as the
area under the velocity curve. That is, Distance = ∆n′ ·∑8sec
n′=3sec vtorso [n′]. A total distance of 13.26m is obtained

from the maximum power method which gives an error
percentage of only 10.5% as compared to the actual distance
of 12m. Similarly, a total distance of 11.34m is obtained from
the weighted power method which gives an error percentage
of only 5.5%. These results show that both torso estimation
methods give good results.

The average velocity of the person can be estimated by
taking the average value of the torso velocity over the motion
interval, i.e., Vave = average(vtorso). An average velocity of
1.42m/sec is obtained from the experiment. The acceleration
when motion starts (at 3 sec) and the deceleration when motion
stops (at 11 sec) are also evident from the figure.

Figure 6. Torso velocity estimations comparison

C. STFT vs MUSIC

The spectrograms in Figure 4 and 5 show that MUSIC
is a good spectral estimator to resolve the contribution of
the rigid parts of the body to the overall micro-Doppler
signature. Moreover, in order to see the accuracy of velocity

estimations computed from STFT and MUSIC spectrograms,
the estimations using the second method of weighted power
are compared as shown in Figure 7.

The total distance is computed from these velocity estima-
tions and is found to be 11.34m (estimation error of 5.5%) for
the STFT based spectrogram and 12.34m (estimation error of
2.83%) for the MUSIC based spectrogram. This result shows
that the MUSIC based spectrogram outperforms the STFT on
average. However, there is no significant difference between
the two methods because the estimation methods in Section V
are not much affected by frequency resolution.

Figure 7. Torso velocity estimations comparison

VIII. CONCLUSION

Human activity monitoring and classification has important
applications in a variety of fields. One of the major parame-
ters that help to distinguish different human activities is the
velocity profile of the translational human motion. Moreover,
the estimated translational velocity profile, like the one shown
in Figure 6, contains rich information about a person’s activity
such as: direction of motion, the time when the person started
and stopped moving, the distance moved, whether there was a
fast deceleration due to falling, whether everything was static,
etc. Radars are suitable off-body sensors that can be used
to measure velocity profile. However, the Doppler frequency
pattern obtained from radars working in indoor environment
is quite complex. This is due to the presence of multipath
in indoor environment and the fact that the human body
consists of rigid body parts of different RCS and velocity
profiles. Therefore, joint time-frequency estimation methods
such as STFT and MUSIC are required to extract the Doppler
frequency pattern from the signal. It is shown that the MUSIC
based spectrogram not only provides a resolved spectrogram
showing the contribution of each component but also results
in lower estimation error. Two methods (maximum power and
weighted power methods) were suggested for estimating the
velocity profile from the spectrogram. The maximum power
method is error-prone due to the need for a threshold as its per-
formance depends on the choice and accurate estimation of the
threshold value. In the absence of image frequencies (outdoor
environment for instance), the weighted power method is a



more suitable method. However, it is found that both methods
are able to estimate the translational velocity profile with an
accuracy that is good enough for the applications concerned.

It is evident that extracting velocity profiles of each part of
the body (Figure 1) from the analogous MUSIC spectrogram
pattern (Figure 5) will be a very big step that can enable
activity classification. However, this requires research on how
to identify the frequencies in a spectrogram column and
how to match those with the corresponding frequencies in
the consecutive column. A major limitation of the velocity
estimation methods discussed so far is that only the radial
component of the velocity is being perceived and estimated
by the radar. One way to achieve a better estimation is by
combining information from two or more radars adjusted to
monitor distinct directions. The velocity estimation methods
discussed in this paper assume that there is a single mover in
the monitored environment. In applications where this is not
acceptable, it is essential to be able to discriminate and track
the velocity profiles of multi-movers. In future work, strategies
to discriminate the velocity profile of multi-movers in a given
environment will be considered.
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