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Abstract—Human activity quantification consists of computing
a numerical or qualitative metric that indicates the amount
of movement a person engaged in a given time interval. Such
a metric has important applications in elderly care, wellness
and healthcare given the strong empirical relation between a
person’s health and his or her activity level. This paper proposes
and evaluates methods to quantify the level of human activity
in an indoor environment using a continuous wave radar. An
experimental evaluation is carried out using a flexible and
low-cost software defined radar platform. Results showed a
good correlation between the proposed metrics and the motion
sequence performed by the subject suggesting that accurate
activity quantification in indoor environments can be achieved
using a few simple off-body sensors.

Index Terms—Activity Monitoring, Radar, Software Radio,
Remote Sensing.

I. INTRODUCTION

Human activity characterization has important applications
in elderly care, wellness and healthcare given the strong
empirical relation between a person’s health and his or her
activity pattern. Such a characterization in home environment
may involve quantifying the overall activity level, identify-
ing human activity, or classification of the type of human
activity. Human activity quantification consists of computing
a numerical or qualitative metric that indicates the amount of
movement a person engaged in a given time interval. This has
inspired the design of activity monitoring systems that range
from fitness training [1] to early discharge support of post-
operative patients [2]. Seniors living independently by wish
or circumstances may also benefit from having their activity
level monitored as a means of assessing their health status or
identifying accidents or unusual behavior [3]. This information
can be fed to companies specialized in providing swift help
in case of need [4], healthcare providers or concerned family
members.

The monitoring of human subjects in health and wellness
applications may span long periods of time. As a consequence,
user compliance is very sensitive to burden level imposed
by the underlying sensor technology. Radar is an attractive
technology for long term monitoring of human movement
because it does not need to be carried by the user, can be
placed behind walls and is able to cover a large area depending
on its operating parameters. Furthermore, the coarseness of the
information provided by radars is less prone to raise privacy

concerns when compared to cameras.
Deploying radars in health and wellness applications at

the user’s home will be facilitated if such systems are low
cost, easy to deploy and safe. Low radiation emission ensures
safety for the user while multiple room coverage per radar
unit eases deployment at home. This paper describes a system
designed for human activity quantification that addresses these
important requirements. The following main contributions to
the area of unobtrusive monitoring in health and wellness
applications are presented:

• Two activity metrics derived from radar signals in indoor
environments are proposed for activity quantification and
evaluated through experiments. The first metric is derived
from variations in the power of the received signal while
the second metric relies on the phase differences between
transmitted and received signals.

• An experimental radar platform based on low cost
software-defined radio hardware and open source soft-
ware is described and its use for indoor monitoring of
human movement is validated. The platform offers the
opportunity of realizing field experiments at an expedited
pace and low budget.

The remainder of the paper is organized as follows: Section
II reviews major previous works in human activity character-
ization. The methods used to compute the activity index and
displacement are described in detail in Section III. Section IV
describes the software defined radar platform (which consist of
GNU Radio and universal software radio peripheral) and the
experimental setup used in the validation experiments. The
estimation results are presented and discussed in Section V.
Finally, conclusions are drawn in Section VI based on the
results obtained.

II. RELATED WORK

The data required for human movement analysis in indoor
environments can be gathered through on-body or off-body
sensors. In the former category, triaxial accelerometers have
been widely investigated for quantifying and classifying hu-
man activities [5]. The main disadvantage of on-body sensors
is that these must be carried by the monitored subject at all
times, a true inconvenience when monitoring periods span
weeks or months. In elderly care applications, where long



monitoring periods are expected, subjects can also be forgetful
or uncooperative thus hampering the data collection process.

Off-body sensing for movement analysis can be performed
using technologies such as cameras [6], ultrasound [7] or
PIR (pyroelectric infrared) sensors [3]. These approaches
suffer however from limited range indoors, which is usually
constrained to a single room. The range limitation of these
technologies means that many sensors are required to cover
a single building. Furthermore, these multiple sensing units
must be networked for data collection thus increasing the
deployment and maintenance complexity of the system. Radars
on the other hand are able to monitor large areas. Depending
on the transmission parameters, radars can also be used for
through-the-wall sensing [8].

Human tracking using radars has been extensively re-
searched for military surveillance and rescue scenarios
[9][10][8][11]. In these contexts, the radar designer must en-
sure that the system is able to operate reliably under extremely
unfavorable conditions. The total amount of radiation emitted
in such applications is however not much of a concern. On the
other hand, the system described in this paper is meant to be
deployed in people’s homes thus safety of the users must be
ensured. Moreover, the system should be low cost, flexible and
easy to deploy. It achieves these requirements by essentially
employing the same off-the-shelf wireless technology that is
already present in people’s houses for accessing the Internet.

III. ACTIVITY INDEX & DISPLACEMENT ESTIMATION

Human activity quantification requires a numerical or qual-
itative metric that indicates the amount of movement of a
subject in a given time interval. In this Section two numerical
metrics for human activity quantification are presented, both
derived from the signal received back at the radar being
reflected off a person. The first metric, activity index, relates
the overall activity of a person to power fluctuation of the
received signal; the second metric is an estimation of the total
displacement of the person based on phase variation of the
received signal.

A. Radar Signals

Assume a radar transmits an unmodulated continuous wave
(CW) signal given by:

s(t) = aej(ωt+φo) (1)

where a, ω and φo are the signal amplitude, frequency and
initial phase respectively. A signal reflected from a mov-
ing human reaches the radar antenna with a time varying
amplitude a(t) and phase φ(t) and can be described by
a(t)ej(ωt+φo+φ(t)). In baseband, the resulting waveform re-
duces to a(t)ejφ(t). The actual signal received by the radar
is in fact a summation of many reflections bouncing from
the different parts of the human body and other objects in
the indoor environment. The after-sampling baseband signal
resulting from D reflected signals can thus be represented as:

y [n] =
D∑
d=1

ad [n] ejφd[n] (2)

where y[n] is a sample at time instant tn = nT where T is the
sampling time. The following Sections describe metrics based
on the numerical manipulation of this signal.

B. Activity Index

A possible way to define a metric that quantifies human
movement based on radar signals is to track the power fluctu-
ation due to multipath fading. The movement of humans inside
the monitored area changes paths and propagation parameters
of the radar signal thus causing a fluctuation of the total
received power. An activity index (AI) can therefore be defined
as the standard deviation of the power of the signal in a
given time interval. However, this computation makes the AI
dependent on the distance between the radar and the human
target. This dependency can be avoided by normalizing the
standard deviation with the average power of the signal.

A time varying index is able to describe the variation of the
activity level as a function of time. Therefore, the AI is best
represented by the ratio of a moving standard deviation to a
moving average of the power of the signal. Let P [n] = |y [n]|2
be the power of the signal at time instant tn. The normalized
activity index at time tn′ is defined as:

AI [n′] =

√
1
L

∑n′+L−1

n=n′
(P [n])2−

(
1
L

∑n′+L−1

n=n′
P [n]

)2

1
L

∑n′+L−1

n=n′
P [n]

(3)

where L is the number of signal samples taken in each
consecutive computation. L is chosen considering the time
interval at which AI needs to be updated; thus, n′ is set to
multiples of L.

The normalization factor ensures that the index is a real
number in the interval [0, 1] if the statistical dispersion of the
signal power over time is smaller than the average signal power
over the same period.

C. Displacement

A rather intuitive approach to quantify human movement
is to estimate a person’s torso displacement over time. The
more displacement in a given interval, the more the person
was engaged in movement.

Distance of a target is commonly estimated using pulse
radars by measuring the time delay of the signal reflected back
off the target. However, a wideband pulse radar is required to
detect short-range targets [12]. On the other hand, it can be
noticed that transmission of a pulse is not required to estimate
displacement. Displacement of a target can be estimated using
a simple unmodulated (narrowband) radar by computing the
change in phase of the received signal as described next.

As indicated in (2), the signal received at the radar is a
summation of many sinusoids. These can be grouped into two
main components. The first component, represented as a1 [n],
consists of the summation of signals reflected solely by static



objects; whereas, the second component, a2 [n] is the signal
reflected by the torso of a moving person. Note that during
time interval [tn−1 : tn], component a1 [n] does not change in
magnitude or phase. Contrarily, component a2 [n] experiences
a change in phase ∆φ2 [n] in each signal sample due to the
person’s movement. Thus, (2) can approximately be written
as:

y [n] = a1e
jφ1 + a2 [n] ej(∆φ2[n]+φ2[n−1]) (4)

In narrowband signals, the change in phase can be directly
related to the change in propagation delay and hence to the
change in distance (displacement) of objects in the environ-
ment. The total radial displacement, ∆x [n] of a moving person
with respect to the transmission direction in the time interval
[0, tn] can be given in terms of the phase change ∆φ2 as:

∆x [n] =
λ

4π

(
n∑
i=1

∆φ2 [i]

)
(5)

The change in phase in (4) can be estimated using the
arctangent demodulation method [13], which is given by:

∆φ2 [n] = arctan{(y [n]− a1e
jφ1) · (6)

(y [n− 1]− a1e
jφ1)∗}

where ∗ represents a complex conjugation. The zero fre-
quency component, a1e

jφ1 can be estimated by averaging
the signal over the considered time interval. If only humans
are moving in the indoor environment, the change in phase
∆φ2 [n] is very small (∆φ2 [n] � 2π) for sampling rates
of a few hundred Hz and radar transmission frequencies less
than 10 GHz. Consequently displacement ambiguity does not
emerge from aliasing.

The signal reflected off a person’s torso is expected to be
the major phase varying component received back at the radar;
however, other phase varying components may also be present
that constitute the background signal. This background signal
is the result of reflections from other moving objects in the
environment, receiver noise and other noise sources in the
indoor environment. The presence of the background noise
implies that displacement detection (∆φ2 [i] 6= 0) may occur
even when the person remains in the same location. In order to
avoid false displacement estimation, arctangent demodulation
can be combined with dynamic background noise subtraction
as described next.

1) Dynamic background noise subtraction: Background
noise differs from the static component, a1e

jφ1 in (4) as it
spreads over the frequency range containing Doppler com-
ponents from which the person displacement is estimated.
Dynamic background noise subtraction can be done in the
frequency domain based on the assumption that the expected
value of its magnitude at each frequency remains the same dur-
ing intervals in which the person’s torso moves and intervals
in which the torso is motionless.

Let Y [k, n′] represent the short time Fourier transform
(STFT) applied to the received radar signal:

Y [k, n′] =
n′+L∑
n=n′

y [n] e−j2πnk/N (7)

where n′, which is set to multiples of L, represents the
start of the moving window transform, k represents the kth

frequency component of the signal, and N is the size of
the FFT. The magnitude of the background signal spectrum
at each frequency, Yback [k] is estimated by averaging over
windows when the person is static (there is no motion),

i.e., Ŷback [k] = E {|Yback [k, n′] |} ≈ 1
N

N∑
n′=1

|Yback [k, n′] |.

These static moments can be detected based on a signal
strength threshold detector over the frequency of interest. The
estimated background noise spectrum is then subtracted from
the spectrum of the signal. This approach is analogous to
speech background noise subtraction methods that rely on non-
speech intervals [14][15]. Thus, a general expression is defined
using a flexible constant γ to get a subtracted spectrum,
Ỹm [k, n′] =

∣∣∣Ỹm [k, n′]
∣∣∣ .ej(∠Y [k,n′]), where:

∣∣Ỹm[k,n′]
∣∣={|Y [k,n′]|−γŶback[k] , if |Y [k,n′]|>γŶback[k]

YSF , otherwise
(8)

YSF is the magnitude of the spectral floor. A short time IFFT
is then applied to Ỹm [k, n′] in order to get the time domain
signal.

The spectrum of the resulting signal is made flat (white)
when there is no torso motion; thus, the expected change in
phase from sample to sample is zero as the phase change
is the sum of vectors of equal amplitude and random phase
distributed in [0, 2π]. Therefore, when the radial displacement
estimate in (5) is applied over multiple samples, the estimation
error will be minimal.

2) Accuracy of the displacement estimator: The accuracy of
a radar displacement estimator depends on a number of factors.
First and foremost, only radial displacement with respect to the
radar transmission direction can be estimated. This limitation
can be overcome by using two radars positioned at an angle so
that movements in orthogonal axes can be detected. A second
determining factor for the estimation accuracy is the relative
strength of the signal directly reflected from the person’s
torso compared to other signal components. According to
the arctangent demodulation method, the phase change of
the torso component is estimated from the phase change of
the aggregate signal received at the radar. The stronger the
torso component is, the more the estimation will reflect the
factual torso displacement of the person. This concept is
illustrated in Figure 1 for a few multipath components. The
direct path torso component, whose phase change α needs to
be estimated is shown in dark lines. Applying the arctangent
demodulation provides an estimation of angle β, which is the
phase difference between the sum of all signal components.



Figure 1. Arctangent demodulation accuracy

The phase estimation error |β − α| is thus dependent on the
ratio of the magnitude of the torso component with respect to
the magnitudes of the other time varying components.

Lastly, the accuracy of the displacement estimation depends
on the assumption that the expected value of the background
signal spectrum remains the same during intervals in which
the person’s torso moves and intervals in which the torso
is motionless. As this assumption may not always hold, the
background spectrum estimation should be updated whenever
small intervals of torso motionlessness are detected. The rate at
which the background spectrum computation is updated yields
a trade-off between complexity and accuracy.

IV. GNU RADIO-BASED RADAR

The metrics to quantify human movement presented in Sec-
tion III were evaluated using a GNU Radio-based radar. GNU
Radio is an open source and free programming toolkit for
realizing software defined radios [16]. The toolkit consists of
a set of signal processing blocks that can be configured to work
with different hardware components. The Universal Software
Radio Peripheral (USRP) is a general purpose programmable
hardware that is designed to be used as a frontend for GNU
Radio [17].

GNU Radio and USRP have been widely used for prototyp-
ing in communication systems research [18]. Their adoption in
a wide range of applications is motivated by the low cost and
relative ease to use. However, the use of USRP as a platform
for building active radar is limited due to its low power and
limited bandwidth. A possible design of USRP based long-
range pulse radar is discussed in [19]. To the best of our
knowledge, our work is the first using USRP and GNU Radio
as a short-range (indoor) active radar.

In our experiments, a USRP is used in conjunction with
GNU Radio to implement an unmodulated continuous wave
radar. The USRP was equipped with a XCVR2450 daugh-
terboard, which works as the radar RF frontend operating in
the 2.4 − 2.5 and 4.9 − 5.9 GHz bands. Figure 2 shows the
schematics of our radar. The setup uses two separate USRPs,
one for transmission and the other dedicated for reception.
A cable between the boards ensures that the two boards are
synchronized to a common clock.

Figure 2. Experimental Setup

Clock synchronization between transmitter and receiver
is not required if the radar is only computing the activity
index based on the power variation of the signal. In this
case the synchronization cable can be removed and the radar
can be easily arranged in a bi-static configuration in which
transmitter and receiver are placed in different locations. A
bi-static configuration is more sensitive to movements in the
area surrounding the imaginary line containing transmitter and
receiver modules.

This radar platform is both low-cost and very flexible. The
carrier frequency, transmit power, receiver gain, and other
parameters are easily configurable in software.

Since, excessive radiation can cause health hazards [20], the
maximum transmit power of a radar should comply with the
regulations of human exposure to radio frequency. The FCC
has set the maximum safety limit of power density beyond
which human beings should not be exposed in uncontrolled
(home) and controlled (laboratory) environment. The maxi-
mum power density allowed in a living room environment is
1mW/cm2 [20]. The radiated power in our experiments is set
below 30 dBm considering this safety limit.

V. EVALUATION OF METRICS

The accuracy of the activity quantification methods de-
scribed in Section III is evaluated in a set of experiments using
the GNU Radio-based radar setup described in Section IV. A
person’s movement in a confined area was measured using
a radar transmission frequency of 5 GHz and transmission
power of 30 dBm (including antenna gains). The received
signal is recorded in a data file and processed offline using
MATLAB. A sampling rate of 500 S/s, a window size of 100
samples (0.2 s) and FFT size (N) of 500 are used for the
computation of the quantification metrics. The accuracy of a
metric was defined by comparing its value with the actual
motion performed by the subject.

A. Activity Index

Experiment-1: During this experiment, the transmitter and
receiver are placed at opposite corners of a room (˜90 m2) in
a bi-static radar configuration. Transmitter and receiver were
equipped with a 3 dBi antenna. A person moves freely in the
environment for approximately 40 s and has its movement
logged by a 3-axial accelerometer attached to the torso (EQ-
01 Equivital [21]). An activity index was computed for both
the radar and accelerometer signals as shown in Figure 3. The



Figure 3. Activity Index of Accelerometer and Radar

Figure 4. Experiment-2

activity index for the accelerometer data was defined as the
square root of the sum of the signal variances over the 3 axes.
Both indices were normalized to represent maximum activity
in the time interval as 1.

Figure 3 shows that there is a good correlation between
the activity index computed and the movement sequence
performed in the experiment.

B. Displacement

The following experiments were performed to assess the
accuracy of the displacement estimations using the pseudo-
monostatic configuration depicted in Figure 2. Transmitter and
receiver were equipped with a 20 dBi micropatch antenna.

Experiment-2: A person remains motionless for 10 s and
then moves back and forth towards the radar as depicted in
Figure 4. The person follows the motion sequence for a total
time duration of 10 s before returning to the inactive state for
another 10 s. The distance between the motion starting point
and the radar was 2.5 m when measured manually.

The displacement estimated using the arctangent demod-
ulation method without background subtraction is shown in
Figure 5. Note that the displacement estimation closely follows
the motion sequence indicated by the dotted lines in Figure
4. Moreover, the estimated displacement is quite close to the
actual value of 2.5 m. The estimation error due to background
noise is not significant in the first 10 s whereas it becomes
significant after 20 s. It is thus clear that background noise
subtraction is required for a better displacement estimation.

Figure 5. Displacement versus time from experiment-2

Figure 6. Experiment-3

Experiment-3: In this experiment, a person performs a
sawtooth motion in a 2 m wide, 12 m long corridor as shown
in Figure 6. Initially the person remains motionless for 5 s and
then moves towards the radar in the aforementioned movement
pattern. The person reaches the radar at 22 s.

The displacement estimated from this experiment is de-
picted in Figure 7. Note that the total estimated displacement
with background noise subtraction is about 12.4 m, which
differs only 3.33% from the actual distance of 12 m. The
displacement remains almost constant during the tangential
motions; this shows that the displacement estimator is per-
forming well, as the radar measures the radial component of
the actual displacement. If background noise is not eliminated,
the person displacement is overestimated when he or she is not
moving. This effect is the result of colored noise (clutter).

VI. CONCLUSION

Human activity quantification consists of computing a nu-
merical or qualitative metric that indicates the amount of
movement a person engaged in a given time interval. In
this paper two activity metrics derived from radar signals
are proposed for indoor environments and evaluated through
experiments using a GNU Radio-based radar platform. The
first metric, referred to as activity index, quantifies human
movement by tracking the power fluctuation of radar signals
due to multipath fading in the environment. The activity index
is computed as the ratio of the standard deviation of the
received signal energy in a given time interval and the total



Figure 7. Displacement from sawtooth motion

energy of the signal in this same interval. The experiment
described in Section V indicates that a good correlation
exists between the activity index obtained and the movement
sequence performed by a person in an indoor environment. A
second metric presented for the quantification of human activ-
ity is physical displacement. The estimation of a person’s dis-
placement in an indoor environment is based on a two-signal
component model and arctangent demodulation method. The
main components are comprised by signals reflected from
the person’s torso and signals reflected from static objects.
According to the experiments conducted, this simple model
seems accurate enough to estimate displacement of a moving
person, but incurs in significant errors if the person’s torso is
not moving. When the torso is quasi-static, background noise
originated from other objects in the environment is significant
and may not constitute uncorrelated random process. This
problem can be addressed by subtracting background noise
from the received signal as suggested in Section III-C1. A
limitation of displacement estimation using radars is that only
the radial component of the displacement is perceived by
the radar. A better estimation of the movement can thus be
achieved by combining information from two or more radars
adjusted to monitor distinct directions.

A main limitation of the present study is that it addresses
monitoring of the movement of a single person in the indoor
environment. Single person monitoring may be useful in real
scenarios, e.g., in senior residences, but such scenarios are con-
sidered exceptional. Thus, expanding this work to multi-mover
scenario is essential. In future work, strategies to discriminate
the activity of multi-movers in a given environment will be

considered.
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