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Abstract—We propose a space-time compressive sampling (STCS)
array architecture by exploiting the sparsity in the angle and frequency
domain. Two Doppler-DoA estimation methods are designed to efficiently
reconstruct the two-dimensional (2D) sparse signal. The STCS array
together with the 2D reconstruction methods allow for accurate yet low-
power location and speed estimation of moving targets. The proposed
methods are not only tested by simulations but also using an experimental
ultrasonic sensor array setup.

I. INTRODUCTION

For security and surveillance systems, detecting moving targets
(e.g. humans) and their locations is of particular interest. An array
based radar can obtain the movement information (velocity) via
Doppler processing and the location or direction-of-arrival (DoA)
information via spatial beamforming, which is referred to as the
Doppler-DoA (DDoA) estimation. Fig. 1 shows a typical receiver
front-end for a conventional array. Each antenna or sensor element of
the array is connected to a separate chain of front-end circuits, which
takes the analog RF signal as input and then performs amplifying,
mixing, filtering, analog-to-digital conversion (ADC) and outputs
the digital baseband (BB) signal for further processing, i.e., DDoA
estimation.

For the power consumption of the array based architecture, the
front-end processing done by analog circuits is dominant over the
digital signal processing done by a microprocessor. Generally, a
higher angle (DoA) resolution requires a larger number of elements in
the array, for a fixed element spacing, which means a larger number
of front-end circuit chains. For each front-end chain, the ADC needs
to sample at the Nyquist rate determined by the maximum velocity
(Doppler) of the moving targets. The key challenge is to lower the
front-end complexity, i.e., reduce the number of front-end circuit
chains and the ADC sampling rate, while maintaining the angle-
velocity resolution in the DDoA estimation.
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Fig. 1: Conventional array front-end architecture.

Compressive sampling (CS) is a method of acquisition and re-
construction of sparse signals [3]. Usually, the acquisition is done
by a compression matrix drawn from a certain random distribution
and the reconstruction is done by l1-norm minimization [3]. Two CS
applications of interest here are the analog-to-information convertor
(AIC) that can sample below the Nyquist-rate for wideband spectrum
estimation [5], and the CS array with spatial compression that can
reduce the number of front-end chains for DoA estimation [6]. It
is also shown in [6] that for the compressed signals, the minimum

variance distortionless response (MVDR) estimator [1] can achieve
similar angle resolution as that of the l1-norm minimization based
reconstruction algorithms.

In this paper, we propose a space-time compressive sampling
(STCS) array with compression in both the spatial and temporal
domain, by exploiting the sparsity in the angle and frequency respec-
tively. For the STCS array based DDoA estimation, we propose two
methods: one based on two-dimensional (2D) sparse reconstruction,
and one based on an iterative procedure that jointly updates the
beamformer and the frequency estimator using the MVDR approach.

II. SIGNAL MODEL
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Fig. 2: Geometry of the DDoA estimation problem.

The geometry of our DDoA estimation problem is illustrated in
Fig. 2. In this paper an element refers to an omnidirectional antenna
or sensor. A single element transmitter is located at the origin. The
receiver is a uniform linear array (ULA) of Nl elements with element
spacing d, located on the y-axis and centered at the origin. The trans-
mitter radiates a continuous-wave (CW) sinusoidal signal at a carrier
frequency fc propagating at a velocity c (wavelength λ = c/fc). The
transmitted signal hits K moving targets in the far-field which reflect
the signal to the receiver. The k-th (k = 0, 1, . . . , K − 1) target
is moving with a velocity vk (vk � c), which is considered to be
constant within a short observation window T . The received RF signal
is down-mixed and low-pass filtered to obtain the complex baseband
signal. After filtering out the DC components due to the reflections
from stationary objects, the baseband signal contains only the reflec-
tions from the moving targets. On the l-th (l = 0, 1, . . . , Nl − 1)
receive element at the t-th (t = 0, 1, . . . , Nt − 1) time instant, the
baseband signal (ignoring the additive noise term) has the form

x(l, t) =
K−1∑

k=0

βkej2π(fk/Fs)te−j2π(d/λ) sin(θk)l, (1)

where Fs is the Nyquist sampling rate determined by the maximum
vk, and Nt = TFs. For the reflected signal from the k-th target, βk

is the complex amplitude, fk = 2vk/λ is the Doppler shift, and θk

is the DoA w.r.t. the x-axis. Given the received signals, we perform
DDoA estimation to obtain the movement information vk (or fk) and
the associated spatial information θk about the targets.

Dividing the DoA search range (e.g., of 180◦) into Nθ angles
denoted by θp, p = 1, 2, . . . , Nθ , we can define a basis matrix Ψθ
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in the angle domain of size Nl × Nθ (Nθ � Nl) as

Ψθ = [θ1 θ2 · · · θNθ
], (2)

θp = [1 ejαp · · · ejαp(Nl−1)]T /
√

Nl,

αp = −2π(d/λ) sin(θp),

where θp is an array steering vector for θp. Similarly, dividing the
Doppler search range (e.g., of Fs Hz) into Nf frequencies denoted by
fq , q = 1, 2, . . . , Nf , we define a basis matrix Ψf in the frequency
domain of size Nt × Nf (Nf ≥ Nt) as

Ψf = [f1 f2 · · · fNf
], (3)

fq = [1 ejωq · · · ejωq(Nt−1)]T /
√

Nt,

ωq = 2π(fq/Fs),

where fq is a Fourier basis vector for fq . Suppose that the angle and
frequency grids are fine enough (if Nθ and Nf are large enough),
the k-th target has its DoA θk and Doppler fk aligned on the search
grids, indexed by pk and qk respectively. We rewrite the signal of
(1) in matrix form, by defining an Nl ×Nt matrix X with x(l, t) as
its coefficient on the l-th row and the t-th column,

X = ΨθZθfΨ
T
f , (4)

where Zθf of size Nθ × Nf is a sparse matrix containing only K
non-zero coefficients, i.e., Zθf (pk, qk) = βk .

Notation: In this paper we will use the following notations. ⊗
denotes the Kronecker product, and ∗ denotes the complex conjugate.
1n denotes an all one vector of size n×1, and In denotes an identity
matrix of size n × n.

III. SPACE-TIME COMPRESSIVE SAMPLING

The proposed STCS array front-end architecture is illustrated in
Fig. 3. We first define a spatial domain compression matrix Φa of size
Ml×Nl (Ml < Nl), which transforms the original array of dimension
Nl to a smaller array of dimension Ml. After the spatial compression,
only Ml (instead of originally Nl) front-end circuit chains are needed
to convert the analog RF signal to the digital baseband signal. In each
front-end chain, we replace the original Nyquist-rate ADC with a
sub-Nyquist-rate AIC for analog-to-digital conversion. Since the AIC
performs block-wise compression, the original time domain signal
of Nt samples (at Nyquist rate) is divided into B blocks such that
Nt = BNτ . We define a temporal domain compression matrix Φb

of size Mτ × Nτ (Mτ < Nτ ), which represents an AIC sampling
at Mτ/Nτ of the Nyquist rate. The AIC transforms the Nτ samples
per block to Mτ samples, and outputs a total number of Mt = BMτ

samples. The compression matrices (Φa and Φb) contain coefficients
drawn i.i.d. from a random distribution, e.g., Gaussian, Bernoulli.
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Fig. 3: Space-time CS array front-end architecture.

For notational simplification, in all the equations we will use
the digital baseband version of the signal. Note that the spatial
compression Φa is applied to the analog RF signal whereas the
temporal compression Φb is applied to the analog baseband signal.
The multiplication with the coefficients from Φa can be implemented
by an attenuator or a phase shifter or simply by an on-off selection
switch. The AIC sampling is conceptually described as a Nyquist-
rate ADC followed by a compression matrix Φb. In practice, the AIC
operates on the analog signal and outputs the digital signal, where
the multiplication with Φb can be implemented using mixers and
integrators [5]. For a fixed compression ratio, small values of Mτ

and Nτ are preferred due to the AIC implementation complexity.
Letting i = 1, 2, . . . , B be the block index, the received signal of

the conventional array expressed by (4) can be rewritten as

X = [X1 X2 · · · XB ]. (5)

Then the received signal of the proposed STCS array is

Y = [Y1 Y2 · · · YB], (6)

Yi = ΦaXiΦ
T
b ,

where Xi is the original signal of size Nl ×Nτ and Yi is the space-
time compressed signal of size Ml × Mτ . In terms of the Doppler-
DoA coefficients Zθf , (6) becomes

Y = ΦaX(IB ⊗ Φb)
T = Ψ̃θZθfΨ̃

T
f , (7)

Ψ̃θ = ΦaΨθ, Ψ̃f = (IB ⊗ Φb)Ψf ,

where Ψ̃θ , Ψ̃f are the angle basis matrix and the frequency
basis matrix respectively for the compressed signal. If we di-
vide Ψ̃f into B sub-matrices, each with Mτ rows, then Ψ̃

T
f =

[Ψ̃T
f,1 Ψ̃

T
f,2 · · · Ψ̃

T
f,B], where the i-th sub-matrix is denoted as Ψ̃f,i.

The Yi in (6) can be expressed by Ψ̃f,1 (the first Mτ rows of Ψ̃f )
as

Yi = Ψ̃θZθfΨ̃
T
f,i = Ψ̃θZ̄θf,iΨ̃

T
f,1, (8)

where Z̄θf,i is Zθf with some element-wise phase rotation, which
can be ignored since only |Zθf | is of interest.

IV. THE STCS ARRAY BASED DDOA ESTIMATION

To estimate the DDOA spectrum using sparse reconstruction, one
straightforward way is to vectorize the signal model of (7) and
rewrite Zθf into a big sparse vector of size (NθNf ) × 1, and then
solve it using the single measurement vector (SMV) based l1-norm
minimization. But NθNf is typically so large that the computational
complexity is usually unaffordable for practical (especially real-time)
implementations. Hence, we will propose two other approaches.

A. 2D sparse reconstruction

The multiple measurement vectors (MMV) sparse reconstruction
is addressed in [2], which computes the sparse solutions given MMV
sharing a common sparsity structure. We refer to [2] as the 1D MMV
sparse reconstruction, since it exploits the sparsity in one single
domain. The 1D MMV sparse reconstruction problem is formulated
as solving arg minZ ‖Z‖s s.t. Y = ΨZ, where Y collects the Nc

MMV, Ψ is the common sparsity structure among the Nc MMV, Z

of size Nr ×Nc is the sparse solution. The cost function to minimize
is defined as the row norm given by ‖Z‖s = ΣNr

r=1(Σ
Nc
c=1|zr,c|2)s/2,

where zr,c is the (r, c)-th element of Z, and s ∈ [0, 1] is a diversity
measure parameter. To minimize ‖Z‖s, a smaller s penalizes more
the non-zero rows of Z.
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To estimate Zθf , we first utilize the sparsity in the angle (θ) domain
by solving a 1D MMV problem of

Ẑθt = arg min
Zθt

‖Zθt‖s s.t. Y = Ψ̃θZθt, (9)

where by rewriting (7), Zθt = ZθfΨ̃
T
f is a sparse matrix with (at

most) K non-zero rows corresponding to θk. Given Ẑθt, we obtain
a coarse estimation of the angle spectrum and select some candidate
angle indices {pc} as,

pc = {p|Pθ(p) > h · maxPθ(p)}, Pθ(p) =

Mt∑

t=1

|ẑp,t|2, (10)

where ẑp,t is the (p, t)-th element of Ẑθt and h is a threshold value.
Then for each p ∈ {pc}, we solve a 1D SMV problem of

ẑθpf = arg min
zθpf

‖zT
θpf‖s s.t. ẑ

T
θpt = Ψ̃fz

T
θpf , (11)

where zθpf and ẑθpt are the p-th rows of Zθf and Ẑθt respectively.
Finally, the estimated Zθf has ẑθpf as its p-th row for p ∈ {pc},
and zeros elsewhere.

B. 2D MVDR reconstruction

Let {θ̃p}, p = 1, 2, . . . , Nθ , be the columns of the angle basis
matrix Ψ̃θ , and {f̃q}, q = 1, 2, . . . , Nf , be the columns of the
frequency basis matrix Ψ̃f,1. Define Y

′ = [YT
1 Y

T
2 · · · Y

T
B ] of

size Mτ ×(BMl). First we select some candidate angle indices {pc}
and candidate frequency indices {qc} based on a coarse estimation
of the angle spectrum Pθ(p) and the frequency spectrum Pf (q),
respectively:

pc = {p|Pθ(p) > h1 · P m
θ }, Pθ(p) = 1/(θ̃

H

p R
−1
y θ̃p), (12)

qc = {q|Pf (q) > h2 · P m
f }, Pf (q) = 1/(f̃H

q R
−1
y′ f̃q),

where Ry = (YY
H)/Mt, Ry′ = (Y′

Y
′H)/(BMl), P m

θ =
max Pθ(p), P m

f = max Pf (q), and h1 and h2 are two threshold
values.

Then for each selected angle-frequency pair (p, q), p ∈ {pc} and
q ∈ {qc}, we perform an iterative procedure to find jointly the
optimum MVDR beamformer wp and the optimum MVDR frequency
estimator vq .

• INITIALIZATION: w
(0)
p = 1Ml

, v
(0)
q = 1Mτ .

• ITERATION: j = 0, 1, . . .
Calculate w

(j+1)
p by solving

arg min
w

w
H
R

(j)
v w s.t. w

H
θ̃p = 1,

where R
(j)
v = (Y

(j)
v Y

(j)H
v )/B, and Y

(j)
v = Y(IB ⊗ v

(j)∗
q ).

The solution is explicitly given by the MVDR estimator as

w
(j+1)
p = (R(j)

v )−1
θ̃p/(θ̃

H

p (R(j)
v )−1

θ̃p), (13)

Calculate v
(j+1)
q by solving

arg min
v

v
H
R

(j)
w v s.t. v

H
f̃q = 1,

where R
(j)
w = (Y

(j)
w Y

(j)H
w )/B, and Y

(j)
w = Y

′(IB ⊗ w
(j)∗
p ).

The solution is explicitly given by the MVDR estimator as

v
(j+1)
q = (R(j)

w )−1
f̃q/(f̃

H
q (R(j)

w )−1
f̃q), (14)

• OUTPUT: after J iterations, wp = w
(J)
p , vq = v

(J)
q .

In the j-th iteration of the above algorithm, w
(j)
p is a beamformer

for θp, and v
(j)
q is a frequency estimator for fq . To update the

beamformer, we use v
(j)
q as a bandpass filter centered at fq to

obtain the filtered signal Y
(j)
v , based on which the spatial correlation

R
(j)
v is computed to get the new beamformer w

(j+1)
p . To update

the frequency estimator, we use w
(j)
p as a spatial filter steered

to θp to obtain the beamformed signal Y
(j)
w , based on which the

temporal correlation R
(j)
w is computed to get the new frequency

estimator v
(j+1)
q . Both w

(j+1)
p and v

(j+1)
q are solved using the

MVDR approach, i.e., looking for the filter rejecting the maximum
amount of out-of-band power while passing the component at angle
θp or frequency fq with no distortion.

Finally, the estimated Zθf is

Ẑθf (p, q) = w
H
p Rvwp, p ∈ {pc}, q ∈ {qc}, (15)

where Rv = (YvY
H
v )/B, and Yv = Y(IB ⊗ v

∗
q ).

V. SIMULATIONS AND EXPERIMENTS

To verify the proposed STCS array concept, we perform sim-
ulations and also experiments using ultrasonic sensor array. The
following parameters are used for both simulations and experiments.
The transmitted ultrasound signal is a CW sinusoid of fc = 40
kHz (c = 343 m/s and λ = 4.3 mm). The target is a person
walking indoors with the expected maximum velocity of vm = 4 m/s
producing a maximum Doppler of fm = 933 Hz (2vm/λ), requiring
a Nyquist sampling rate of Fs = 2 kHz (2fm). One observation
window of T = 32 ms (Nt = TFs = 64) is used to produce
one DDoA spectrum estimate. The conventional receiver array has
Nl = 8 front-end chains, each equipped with an ADC sampling at
Fs. The STCS receiver array is spatially compressed to Ml = 4
chains, each equipped with an AIC sampling at 0.5Fs (Nτ = 8,
Mτ = 4, B = Nt/Nτ = 8). The compression matrices Φa and Φb

are generated using random Gaussian distribution. The DoA search
range (from −90◦ to 90◦) is divided uniformly into Nθ = 90 points,
and the Doppler search range (from −Fs/2 to Fs/2) is divided
uniformly into Nf = 256 points.

The conventional array with Bartlett DDoA spectrum is used as
the reference, i.e., Z

bart
θf = Ψ

H
θ XΨ

∗
f . For the STCS array, the 2D

sparse reconstruction employs M-FOCUSS (s = 0.8, 16 iterations)
to solve (9) and FOCUSS (s = 0.8, 32 iterations) to solve (11), and
h = 0.5 in (10), and the 2D MVDR employs h1 = h2 = 0.5 in (12)
and J = 8 iterations for each selected angle-frequency pair.

A. Simulation results

We simulate a scenario of K = 2 moving targets, −1 m/s at 40◦,
and 3 m/s at −30◦, respectively. The received reflections from the
two targets have equal signal strength, with AWGN of 20 dB below
the signal power. Fig. 4 shows the simulation results, where (4a) and
(4b) show the Bartlett spectrum for the conventional array and the
STCS array repectively, (4c) is the STCS array using 2D M-FOCUSS,
and (4d) is the STCS array using 2D MVDR. The STCS array
produces a Bartlett spectrum with aliasing in angles and frequencies
(or velocities) due to the space-time compression, i.e., both the
spatial dimension of the array and the temporal domain sampling
rate are halved as compared to the conventional array. Using the two
proposed methods, the STCS array produces a DDoA spectrum that
correctly identifies the two moving targets with high resolution. The
2D M-FOCUSS and the 2D MVDR achieve similar resolutions in
the reconstructed DDoA spectrum, while the 2D MVDR requires less
computational complexity. Each iteration of the M-FOCUSS involves
one matrix pseudo-inverse computation, i.e., Ψ̃θ of size Ml ×Nθ in
(9) and Ψ̃f of size Mt×Nf in (11). Each iteration of the 2D MVDR
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(d) compressed: 2D MVDR

Fig. 4: Simulation results. −1 m/s at 40◦, 3 m/s at −30◦.

involves two matrix inverse computations, i.e., R(j)
w of size Ml×Ml

and R
(j)
v of size Mτ × Mτ . The 2D MVDR also converges fast as

suggested by the simulation, where w
(j)
p and v

(j)
q do not change any

more after J = 8 iterations.

B. Experimental results using ultrasonic sensor array

The commercially available ultrasonic sensors from Knowles [4]
are used. The experiment setup is shown in Fig. 5. The transmitter is
a single sensor (model 400ST/R160). The receiver ULA is built with
eight identical sensors (model SPM0404UD5). One person is moving
(towards the sensors) around 0.8 m/s at approximately −40◦, at a
distance of 2 m from the sensors. (0◦ refers to the boresight of the
ULA)
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Fig. 5: The experimental setup.
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Fig. 6: Emulated STCS array front-end processing.

Instead of a real circuit implementation, we emulate the STCS
array front-end processing as shown in Fig. 6. The received signal
from each one of the 8 ultrasonic sensors is sampled at 200 kHz
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(d) compressed: 2D MVDR

Fig. 7: Experimental results. 0.8 m/s at −40◦.

(with proper filtering around the 40 kHz carrier), which is viewed as
the ’analog RF’ signal. After Φa we obtain the spatially-compressed
’analog RF’ signal with 4 branches. After mixing and LPF (Nyquist
rate bandwidth Fs) we obtain the ’analog BB’ signal. Finally the
AIC Φb produces the ’digital BB’ signal at 0.5Fs . Before the DDoA
estimation, a high-pass filter (H(z) = 1 − 2z−1 + z−2) is applied
to remove the reflections from stationary objects. The result is the
space-time compressed signal of (7). Fig. 7 shows the experimental
results, where similar conclusions to those for the simulation results
can be drawn. The STCS array with the two proposed reconstruction
methods can correctly identify the moving person.

VI. CONCLUSION

We have proposed a space-time CS array architecture together
with two reconstruction methods for DDoA estimation, by exploiting
the sparsity in the angle and frequency domain. The STCS array
concept and the algorithms have been tested by simulations as well
as experiments using an ultrasonic sensor array. As compared to
the conventional array, the STCS array can reduce greatly the front-
end processing complexity, which is the dominant part in the power
consumption. The proposed algorithms can also be extended to other
2D sparse reconstruction scenarios such as range-DoA and range-
Doppler.
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