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Abstract—In this paper we focus on compressive sampling been advocated as an effective means to reduce the sampling
(CS) based ultra wideband (UWB) differential detection. We rate of sparse signals much below the Nyquist rate without
formulate an optimization problem to jointly recover the sparse large performance losses. The basic concept is to représent

received UWB signals as well as the differentially encoded data _. | with onl f ts vi d ecti
symbol. We utilize an alternating direction method of multipliers Signal with only a few measurements via random projections

(ADMoM) to solve this joint optimization problem. Our proposed ~ that are carried out in the analog domain. Based on these
joint recovery method outperforms the straightforward separate measurements, the sparse signal is then reconstructedythro
recovery method, which recovers the sparse received UWB siglsa any sparse recovery method. Since the received UWB signals
in a first step and then deyects the differentially encoded symbol can be considered sparse, a CS based approach might be
based on the recovered signals. .

Index Terms—compressive sampling, ultra-wideband, differen- V€Y useful here, aqd thl§ has already been demonstrated for
tial detection, ADMoM coherent UWB receivers in [13].

In this paper we propose a CS based detector for differen-
|. INTRODUCTION tially modulated UWB signals. We formulate our cost function

Ultra wideband (UWB) communications has opened t aﬁs a composmqn of sparse regularized least squares éorors
S o 1he sparse received UWB signals and a DD error. We then pro-
door for short range communications with increased capaci

) . . R ; vide an efficient method, namely alternating direction rodth

robustness against multipath fading, fine timing resohgj@tc ;o J ;
: ; of multipliers (ADMoM) [9], to minimize the cost function. $\
[1]. A number of modulation techniques have been propose . : .

) .a benchmark, we also consider the straightforword apprach
to help achieve these goals. The most common modulation. . L .

. i . which we first minimize the sparse regularized least squares
scheme is pulse position modulation (PPM) [2]. However

another useful non-coherent modulation scheme is the Br_rors for the sparse receiveq UWB signals, and then apply

phase modulation scheme in which case the pulse is inverte based on the recovered signals.

to create an opposite phase [2], [3]. This is also known I?i
i

the differential modulation (DM) scheme. Since DM is a . . o : : ) :
s the identity matrix,sign(z;) is the sign function which

antipodal modulation method, it has3adB gain in power : .
efficiency over PPM [2]. Noncoherent detectors for diﬁ‘ert—akes values-1 and 1 depending on the polarity of;, and

entially modulated UWB have been proposed in Iiteraturé,(') is the expected value.

e.g., in [4] and [5]. In [4], classical differential detemti I. SIGNAL MODEL
(DD) has been considered, whereas in [5], a performance . L
improvement is obtained by using multiple symbol differaht Let s, (._1 or +1) be the'transm|tted SymbOI a't time m;tant
detection (MSDD). The performance of this MSDD schemg Assuming a symbol period df, the received signal during

is comparable to the conventional Rake receiver. Moreové ,e kth symbol period can then be written as

otation: ¢, norm of a vectorx is denoted ag|x||, =
f.vzgl lz;|P)*/?, []Tis the transpose]]” is the hermitian,

to alleviate the strict conditions of timing recovery forigh r(t +kT) = h(t)sp +v(t + kT), t € [0,T),
MSDD scheme, a novel approach has been proposed in [6] to
re|y on Symbo'_'eve| Synchronization On|y_ Where U(t) iS the additive nOise and/(t) iS the Composite

One big hurdle though in the implementation of any dete€hannel impulse response, including the transmitted parse
tion scheme for UWB (including [6]) is the high sampling ratdéhe receive filter. Note that we implicitly assume that the
required for an all-digital implementation. Since UWB sitgna Support ofa(t) is included in[0,7"), which obviously puts
have an extremely high bandwidth, the Nyquist samplinfgPMme constraints on synchronization and the delay spread
criterion demands analog to digital converters (ADCs) witf the channel. For DM, the transmitted symbels can be
a high sampling rate. Thus the realization of all-digitaklo Written as
power UWB receivers becomes quite difficult. In the past few Sk = bgsg—1,

years, the idea of compressive sampling (CS) [7], [8] h%vc‘nere b (—1 or +1) is the data symbol at time instait

This work is supported in part by NWO-STW under the VICI prangr Suppose now that _the NquiSt r‘_ate_ is given]b§T = N/T*
(project 10382). and thatr(t + kT is sampled within[0,T) at Nyquist rate,



leading tory, = [r(kT),r(Ts+kT),...,r((N—1)Ts+kT)]Y. under the name least-absolute shrinkage and selection oper
We then obtain the model ator (LASSO), by suggesting afy regularization term. The
estimate can then be written as
ry = hs, + vy,

=Xp + Vi, (1) )A(lasso - argm’in Hy - (}XHE + A ||X||1 ) (6)
where h = [h(0), h(T%),...,h((N — 1)T;)]" and v is where) is again the Lagrangian constant. Theregulariza-

similarly defined as. For simplicity we will assume that;  tion forces sparsity and some of the coefficientszofill turn
is a zero-mean white vector sequence with coveriance matgift to be exactly zero. This technique has been extensively

E(vivl) = 1. The instantaneous SNR is defined as used for reconstructing sparse signals.
|h|28(s2) 2 For differentially modoulated UWB signals, the decision is
n =t okl T2 (2) made on two consecutive symbols (assume the time instants

Elvillz) No? k=1 andk = 2 are considered). The sparse received UWB
In UWB, x;, is generally sparse due to the fact that the chasignals then have to be reconstructed and their polariies h
nel is sparse and/or the delay spread of the channel is muohe compared in order to make a decision. Therefore, there
smaller than the symbol period. Thus according to the Gffe basically two cost functions to consider. One is relaed
theory [7], [8] it can be represented By linear measurementsthe ¢; regularized OLS cost function for the two consecutive
with M < N. These measurements are generally obtainegmbol periods:
through analog processing oft) [14], but for convenience,

. . . 1
we model them here as an operation that is carried out on the Co==lyr — @115 + A |Ixuly
Nyquist rate sampled version oft). 12
The compressed received signal can be modeled as +3 ly2 — ®oxall; + Ao [[x2]; . (7)
yi = Ppry whereas the other one is related to the differential detecti
= ®pxy + Ppvy error: )
= ®;x; + nyg, 3 Cy = 3 1 — baxa]3 . (8)

where thel x N matrix & is the transform operator or mea-There are now two ways to proceed. We can follow the rather
surement matrix at time instait with M linear functionals straightforward separate recovery approach, in which ve fir
as its rows. Note that this matrik;, changes with time in its pinimize (7) overx; andx, and then minimize (8) oveb,
most general form, but this is not required. using the previously estimated received UWB signalsand
The compression ratic is defined asy = M/N where +, Both problems are convex, which makes this approach
6 € (0,1]. It has a direct impact on the performance of C®asy to solve. But since it is a two-step approach, it might
A higher value ofé implies a higher value of/ and hence a not pe the most optimal thing to do. We will come back to
better result but obviously we would like to have acceptabjge separate recovery approach in Section V. In this pager, w
performance with minimund/ so as to decrease the samplinggyocate a joint recovery approach, where we jointly try to
rate. estimatex;, x2, andb,. To achieve this, we will minimize a

Il SIGNAL RECOVERY weighted sum of (7) and (8):

Let us first look at a single time instarit, and focus c-1 s = @13 |15 + A [l
on the reconstruction ok;. To simplify notation, we omit 12
the time indexk here. A naive way to reconstrust is by + = |ly2 — ‘I>2X2||§ + A2 [|%2]|;
adopting ordinary least squares (OLS). An estimatexfds (21 )
then obtained as + 5 llx1 = baxall; 9)
Xols = arg min ly — ®x||; (4) wherea is the weighting factor. Clearly (9) is not convex, and

) ) thus we cannot use ordinary convex optimization techniques
but sinced is fat (M < N) and thus not full column rank, the {4 geterminex;, x», andb,. In the next section, we derive an

solution is not unique. One way to circumvent this problem igqqrithm that can lead us to a local minimum of (9).
to use Tikhonov'’s regularization which penalizes the OLStco Apart from the both aforementioned scenarios, the cost
function with a quadratic penalty’{ regularization), leading fynction can also be expressed in the form of compressed

to . . ) ) symbols. Since the aim of differential detection is to make a
Xreg = argmin [y — @x|l; + A[x[;, (5)  decision on the polarity of the next symbol, we can write the

: . . .. cost function as
where) is the Lagrangian constant. Though this regularization

results in a unique solution, it pays no respect to the dyarsi 1 )
of x. Tibshirani proposed in [10] a solution to this problem Ceomp = 5 lly1 = b2yl (10)



which has a simple closed form solution solutions can then be written as
(1)

by = sign(yZy1) ay T mm‘(x“xg DAY e
xg) = arg Inlnﬁ(xg Q,u(7 1)71271_1),17&7:_1)) (15)
Clearly this approach does not take any advantage of the . ) L)y
sparsity of the signal and does not involve the reconstincti b2 = arg mln L(x17,%3",b2) (16)
of x; andx,, therefore its performance may not be optimal. ;) (i—1)
We shall compare the performance of (11) with our proposed "1 = 2r8 mmﬁ( xi? g, 107Y) 17)
method by means of simulations. ( )y = arg m1n£(x2 g, 1@ 1)) (18)

IV. JOINT RECOVERY and the resulting ADMoM iterations are

. —1

_ X0 = (@@ + (c+a)1)

Augmented Lagrangian methods have been suggested in

literature for optimizing cost functions which are not st (<I>1 y1+cul ™ 107D 4 abéi’l)xéi’l)) (19)
convex [9]. It adds a quadratic penalty to the cost functiod a

it is then solved by using the so-called method of multiglier

which carries out successive minimizations of the costtionc Xgi) — (@51(1,2 + (c+ a[b(i—l)]2)1) -

till convergence. These successive approximations caultres

in an optimal solution. In [9] one such method of multipliers (‘I>2 y2 + cu(l D 15171) + abg’l)xgl’l)) (20)
has been suggested which they named as alternating directio
method of multipliers (ADMoM). In ADMoM, the augmented @ Xgi)Txgi)
Lagrangian is minimized with respect to one set of variables by’ = OIS (21)
and then with respect to the other set of variables and finally e 12
the multipliers are updated. This cycle continues till aamv ‘ TGV
gence. The application of ADMoM in sparse signal recovery Q- shrmk( + , 1) (22)
has for instance been successfully demonstrated in [1H. Th ¢ ¢
context in [11] is different but their cost function is adiya (i-1)
very much related to our convex cost function (7). Here, we 1 — shrink (X(i) n L /\2> (23)
will apply ADMoM to our non-convex cost function (9). 2 2 e
Let us first introduce twaV x 1 auxiliary vectorsu; and o
u, and rewrite the cost function (9) as and updates for the Lagrange multipliers are
. . 1 =10 e (x —u?) (24)
=5 llyr = ®uxaly + A1 flwafy
; 1 =10 e (x5 - ) (25)
+35 My — ®oxa3 + Az 2], e

a 2 where shrink., .) is the soft thresholding operator which can
= —b 12 ' ’
* 2 1 = baxallz (12) be defined as in [10]
which we will then minimize subject to the equality consttai shrink(z,v) = sign(z)(|z| — 7)+

u; = x; anduy, = x,. The augmented Lagrangian function

z—v if z>0andy < |z|
L(x1,%2,u1,u2,1y,15,b5) can then be expressed as

=qz+v ifz<0andy < |z]|. (26)
1 ) 0 if v > |2

=3 [y1 — ®1xaly + Ax [Jul; o

1 , The initial values fora; @, uy@, 1,9, 1,(9 and b( ) can be

+ 3 ly2 = Boxall; + A2 fJuaf], chosen arbitrarily, and fox; © and XQ(O different types of

P (e —a) 1 (%0 — uo) warm starts can be cho;en. Co.nvergence results for ADMoM
c ) ) can be found in [9] which basically state that agoes to

+ 3 (||x1 —w |+ Ix2 — u2||2) infinity, convergence to a local optimum is obtained. Notz th

in practice though very few iterations are needed to get good

results. Thus we can solve (9) by using (19-25). Note that the

finite-alphabet estimate fdr,, which we will denote a§2, is

where vectord; andl, are the Lagrange multipliers andis finally obtained by taking the sign (bél) obtained in the last

an arbitrary constant. The successive approximationshier titeration.

«
+5 %1 — boxo3 (13)



V. SEPARATE RECOVERY

We compare the performance of our joint recovery approa : | | | | — rsfereﬁce symbol
with the separate recovery approach, which has been destus ol e . 1
earlier. In a first step, we have to minimize (7) for andx,,
which can be solved for example by usi@yX (a package . 1
for specifying and solving convex programs [12]). Howeve ‘

to make a fair comparison between the two approaches, it

more appropriate that we solve (7) by ADMoM as well. Hence ' T T

in this section, we will propose the ADMoM solution for (7). . b T
Using a similar method as in Section IV, we can writt PRl

the augmented Lagrangian functiof{x;,x2,u;,us,1;,15) ‘

for (7) as D!

1 2
=5 [y1 — ®1xaly + Ar [Ju ]y

1
5 llyz = Baxa5 + A s,
+11H(X1 —111)+12H(X2 —112) 4 . . . . | |

c 5 9 0 5 10 15 20 25 30 35
+ 5 (e = w3 + l1xz — w3 27

and the ADMoM iterations can be derived as Figure 1. Reconstruction using the joint ADMoM detectiopagach method

i -1 i— i— at =4 dB
xg) = ((I)fliﬁ + CI) (<I>11Hy1 + cug D_ 1§ 1)) (28) !

(i) I -1/ (i=1)  (i—1) VII. SIMULATION RESULTS
Xy = (‘I’z P, + cI) (‘I’z y2+ecuy -1 ) (29) _ _ _
In this section, we shall illustrate the performance of our

. N (G Y detection approach by means of simulations. For the purpose

u§‘> = shrink (x(l” + L 1) (30) ofillustration we consider a toy example. We assume that the
received symbol can be represented with= 32 Nyquist rate
( ( o, 1(1 1) /\2> samples. The received symbol is compressed using a random
shrink

)
C

(31) Gaussian measurement mat@ix(where® = ®; = ®,) with
M = N/2 rows. Soé = 0.5 and we are sampling at half the
Nyquist rate.

c

1 =107+ C( % u?)) (32) From the reduced set of samples we reconstruct the two
consecutive symbols as well as the data symbol using the join

1< 0 1(1 D4 C( Q) ug“) (33) ADMoM detection a(p?roach as descrlbed in Section IV. The
initial values u!”, u p 1(0) 1, and 5" are taken equal

In a second step, we then minimize (8) overusing the to zero. Forx\” andx\”, an ordinary least squares estimate
estimatesx{” and x” obtained in the last iteration of thehas been utlllzed but solutions of other problems, e.g., the
first step. Taking into account the finite-alphabet constrai solutions of (5) or (6) can also be utilized as a warm start.
this leads to X o Figure 1 shows one realization of the reconstructed redeive

by = sign(x$""x{M). (34) UWB signals that were obtained using the joint ADMoM
detection approach at an SNR gf= 4 dB and A = 0.1893
(where A = A\ = X2). We use the ADMoM iterations for

Values of parametersy and A can impact the optimal a tolerance level ofil0~* with a maximum limit of 10000
solution of (9).\ enforces sparsity and puts more weight iterations. Samples labeled as 'reference symbol’ show the
on the decision ob,. A very large value of\ can eliminate true received UWB signal without noise which contains the
important components of the symbol and a very small valeemposite channel impulse response including the tratesnit
can allow a lot of noise components to effect the decisiopulse and the receive filter. It provides a reference as to how
Similarly small values ofx may not help much in making awell ADMoM can reconstruct the received symbol. Clearly,
right decision and large values can render sparsity iragiev the reconstructed samples labeledxasandx, seem to have
One way of choosing the values farand « is by means of the opposite polarity, so for this realization, we haye= —1.
training and/or decision directed symbols. By observing thWe also notice that many small components of the noisy
bit error rate (BER) results, appropriate values can then kexeived UWB signals have been forced to zero. The nonzero
selected. reconstructed entries have an energy that is comparableto t

V1. VALIDATION



® —= reference symbol

Xy

it o

Figure 2. Reconstruction using separate ADMoM detectigr@grh method SNR [dB]
atn =4 dB.

Figure 3. BER comparison of varying valuescofor joint ADMoM detection
approach.

reference signal.

Figure 2 shows the reconstructed symbels and x, by
utilizing the separate ADMoM approach at an SNRnof 4
dB andX = 0.1893. Clearly the performance is not as optimal
as that of the joint ADMoM approach.

For our simulations of joint ADMoM detection, we have
verified the optimak through bit error rate (BER) curves for
different values ofa by fixing A = 0.1893. Figure 3 shows
the BER results of the joint ADMoM detection for varying
values ofa. We can see that initially the BER decreases wit
increase ina but aftera = 102, it starts increasing. Thus
minimum BER is achieved for an optimal value @f= 103.

To demonstrate the performance of our detection approa
we show simulation results for the BER of both the join
and separate ADMoM detection approaches. We comp:
the ADMoM performance with the compressed detectic
approach (11) (i.e., without reconstructirg andxs) as well.
Figure 4 compares the BER results for these three appraact
We takea = 103 and A = 0.1893. It is clear that the e oo
ADMOoM approaches perform better than the detection throus —*— ADMoM joint detection
compressed symbols. Also the joint detection approach
performing even better than the separate detection agprtiac . ‘ ‘ ‘ ‘ ‘
is also clear that both ADMoM approaches are good enou 0 E 2 A L] 4 5 6
to be used for differential detection of UWB signals.

To assess the performance of CS, we carry out SirT]Lllatiolzri]gsure 4. Instantaneous BER comparison for compressed,aepsdMoM
to find the BER for different values af/. We vary ¢ from  ,q'ioint ADMoM detection approaches. '
0.25 to 1, so M varies from8 to 32 for N = 32. We plot
BER curves form = 1,2,3 dB. We see that even at such low
SNR, we get reasonable performance.
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Figure 5. BER versus varying for SNR»n = 1,2,3 dB

VIIl. CONCLUSIONS

In this paper we have proposed compressive sampling based
UWB differential detectors to reduce the sampling rate much
below the Nyquist. We have also proposed joint and separate
detection approaches based on the ADMoM method. We have
shown with the help of simulations that our joint detection
approach outperforms the separate and compressed symbol
detection approaches.
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