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Abstract—In this paper we focus on compressive sampling
(CS) based ultra wideband (UWB) differential detection. We
formulate an optimization problem to jointly recover the sparse
received UWB signals as well as the differentially encoded data
symbol. We utilize an alternating direction method of multipliers
(ADMoM) to solve this joint optimization problem. Our proposed
joint recovery method outperforms the straightforward separate
recovery method, which recovers the sparse received UWB signals
in a first step and then detects the differentially encoded symbol
based on the recovered signals.

Index Terms—compressive sampling, ultra-wideband, differen-
tial detection, ADMoM

I. I NTRODUCTION

Ultra wideband (UWB) communications has opened the
door for short range communications with increased capacity,
robustness against multipath fading, fine timing resolutions, etc
[1]. A number of modulation techniques have been proposed
to help achieve these goals. The most common modulation
scheme is pulse position modulation (PPM) [2]. However,
another useful non-coherent modulation scheme is the bi-
phase modulation scheme in which case the pulse is inverted
to create an opposite phase [2], [3]. This is also known as
the differential modulation (DM) scheme. Since DM is an
antipodal modulation method, it has a3 dB gain in power
efficiency over PPM [2]. Noncoherent detectors for differ-
entially modulated UWB have been proposed in literature,
e.g., in [4] and [5]. In [4], classical differential detection
(DD) has been considered, whereas in [5], a performance
improvement is obtained by using multiple symbol differential
detection (MSDD). The performance of this MSDD scheme
is comparable to the conventional Rake receiver. Moreover,
to alleviate the strict conditions of timing recovery for this
MSDD scheme, a novel approach has been proposed in [6] to
rely on symbol-level synchronization only.

One big hurdle though in the implementation of any detec-
tion scheme for UWB (including [6]) is the high sampling rate
required for an all-digital implementation. Since UWB signals
have an extremely high bandwidth, the Nyquist sampling
criterion demands analog to digital converters (ADCs) with
a high sampling rate. Thus the realization of all-digital low-
power UWB receivers becomes quite difficult. In the past few
years, the idea of compressive sampling (CS) [7], [8] has
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been advocated as an effective means to reduce the sampling
rate of sparse signals much below the Nyquist rate without
large performance losses. The basic concept is to representthe
signal with only a few measurements via random projections
that are carried out in the analog domain. Based on these
measurements, the sparse signal is then reconstructed through
any sparse recovery method. Since the received UWB signals
can be considered sparse, a CS based approach might be
very useful here, and this has already been demonstrated for
coherent UWB receivers in [13].

In this paper we propose a CS based detector for differen-
tially modulated UWB signals. We formulate our cost function
as a composition of sparse regularized least squares errorsfor
the sparse received UWB signals and a DD error. We then pro-
vide an efficient method, namely alternating direction method
of multipliers (ADMoM) [9], to minimize the cost function. As
a benchmark, we also consider the straightforword approachin
which we first minimize the sparse regularized least squares
errors for the sparse received UWB signals, and then apply
DD based on the recovered signals.

Notation: ℓp norm of a vectorx is denoted as||x||p =

(
∑N−1

i=0 |xi|
p)1/p, [.]T is the transpose,[.]H is the hermitian,

I is the identity matrix,sign(xi) is the sign function which
takes values−1 and 1 depending on the polarity ofxi, and
E(.) is the expected value.

II. SIGNAL MODEL

Let sk (−1 or +1) be the transmitted symbol at time instant
k. Assuming a symbol period ofT , the received signal during
the kth symbol period can then be written as

r(t+ kT ) = h(t)sk + v(t+ kT ), t ∈ [0, T ),

where v(t) is the additive noise andh(t) is the composite
channel impulse response, including the transmitted pulseand
the receive filter. Note that we implicitly assume that the
support ofh(t) is included in [0, T ), which obviously puts
some constraints on synchronization and the delay spread
of the channel. For DM, the transmitted symbolssk can be
written as

sk = bksk−1,

where bk (−1 or +1) is the data symbol at time instantk.
Suppose now that the Nyquist rate is given by1/Ts = N/T ,
and thatr(t + kT ) is sampled within[0, T ) at Nyquist rate,



leading tork = [r(kT ), r(Ts+kT ), . . . , r((N−1)Ts+kT )]T .
We then obtain the model

rk = hsk + vk

= xk + vk, (1)

where h = [h(0), h(Ts), . . . , h((N − 1)Ts)]
T and vk is

similarly defined asrk. For simplicity we will assume thatvk

is a zero-mean white vector sequence with coveriance matrix
E(vkv

T
k ) = σ2I. The instantaneous SNR is defined as

η =
‖h‖22E(s

2
k)

E(‖vk‖22)
=

‖h‖22
Nσ2

. (2)

In UWB, xk is generally sparse due to the fact that the chan-
nel is sparse and/or the delay spread of the channel is much
smaller than the symbol period. Thus according to the CS
theory [7], [8] it can be represented byM linear measurements
with M ≪ N . These measurements are generally obtained
through analog processing ofr(t) [14], but for convenience,
we model them here as an operation that is carried out on the
Nyquist rate sampled version ofr(t).

The compressed received signal can be modeled as

yk = Φkrk

= Φkxk +Φkvk

= Φkxk + nk, (3)

where theM ×N matrixΦk is the transform operator or mea-
surement matrix at time instantk with M linear functionals
as its rows. Note that this matrixΦk changes with time in its
most general form, but this is not required.

The compression ratioδ is defined asδ = M/N where
δ ∈ (0, 1]. It has a direct impact on the performance of CS.
A higher value ofδ implies a higher value ofM and hence a
better result but obviously we would like to have acceptable
performance with minimumM so as to decrease the sampling
rate.

III. S IGNAL RECOVERY

Let us first look at a single time instantk, and focus
on the reconstruction ofxk. To simplify notation, we omit
the time indexk here. A naive way to reconstructx is by
adopting ordinary least squares (OLS). An estimate forx is
then obtained as

x̂ols = argmin
x

‖y −Φx‖
2
2 (4)

but sinceΦ is fat (M ≪ N ) and thus not full column rank, the
solution is not unique. One way to circumvent this problem is
to use Tikhonov’s regularization which penalizes the OLS cost
function with a quadratic penalty (ℓ2 regularization), leading
to

x̂reg = argmin
x

‖y −Φx‖
2
2 + λ ‖x‖

2
2 , (5)

whereλ is the Lagrangian constant. Though this regularization
results in a unique solution, it pays no respect to the sparsity
of x. Tibshirani proposed in [10] a solution to this problem

under the name least-absolute shrinkage and selection oper-
ator (LASSO), by suggesting anℓ1 regularization term. The
estimate can then be written as

x̂lasso = argmin
x

‖y −Φx‖
2
2 + λ ‖x‖1 , (6)

whereλ is again the Lagrangian constant. Theℓ1 regulariza-
tion forces sparsity and some of the coefficients ofx̂ will turn
out to be exactly zero. This technique has been extensively
used for reconstructing sparse signals.

For differentially modoulated UWB signals, the decision is
made on two consecutive symbols (assume the time instants
k = 1 andk = 2 are considered). The sparse received UWB
signals then have to be reconstructed and their polarities have
to be compared in order to make a decision. Therefore, there
are basically two cost functions to consider. One is relatedto
the ℓ1 regularized OLS cost function for the two consecutive
symbol periods:

Ca =
1

2
‖y1 −Φ1x1‖

2
2 + λ1 ‖x1‖1

+
1

2
‖y2 −Φ2x2‖

2
2 + λ2 ‖x2‖1 , (7)

whereas the other one is related to the differential detection
error:

Cb =
1

2
‖x1 − b2x2‖

2
2 . (8)

There are now two ways to proceed. We can follow the rather
straightforward separate recovery approach, in which we first
minimize (7) overx1 andx2 and then minimize (8) overb2
using the previously estimated received UWB signalsx1 and
x2. Both problems are convex, which makes this approach
easy to solve. But since it is a two-step approach, it might
not be the most optimal thing to do. We will come back to
the separate recovery approach in Section V. In this paper, we
advocate a joint recovery approach, where we jointly try to
estimatex1, x2, andb2. To achieve this, we will minimize a
weighted sum of (7) and (8):

C =
1

2
‖y1 −Φ1x1‖

2
2 + λ1 ‖x1‖1

+
1

2
‖y2 −Φ2x2‖

2
2 + λ2 ‖x2‖1

+
α

2
‖x1 − b2x2‖

2
2 (9)

whereα is the weighting factor. Clearly (9) is not convex, and
thus we cannot use ordinary convex optimization techniques
to determinex1, x2, andb2. In the next section, we derive an
algorithm that can lead us to a local minimum of (9).

Apart from the both aforementioned scenarios, the cost
function can also be expressed in the form of compressed
symbols. Since the aim of differential detection is to make a
decision on the polarity of the next symbol, we can write the
cost function as

Ccomp =
1

2
‖y1 − b2y2‖

2
2 (10)



which has a simple closed form solution

b̂2 = sign(yT
2 y1) (11)

Clearly this approach does not take any advantage of the
sparsity of the signal and does not involve the reconstruction
of x1 andx2, therefore its performance may not be optimal.
We shall compare the performance of (11) with our proposed
method by means of simulations.

IV. JOINT RECOVERY

Augmented Lagrangian methods have been suggested in
literature for optimizing cost functions which are not strictly
convex [9]. It adds a quadratic penalty to the cost function and
it is then solved by using the so-called method of multipliers
which carries out successive minimizations of the cost function
till convergence. These successive approximations can result
in an optimal solution. In [9] one such method of multipliers
has been suggested which they named as alternating direction
method of multipliers (ADMoM). In ADMoM, the augmented
Lagrangian is minimized with respect to one set of variables
and then with respect to the other set of variables and finally
the multipliers are updated. This cycle continues till conver-
gence. The application of ADMoM in sparse signal recovery
has for instance been successfully demonstrated in [11]. The
context in [11] is different but their cost function is actually
very much related to our convex cost function (7). Here, we
will apply ADMoM to our non-convex cost function (9).

Let us first introduce twoN × 1 auxiliary vectorsu1 and
u2 and rewrite the cost function (9) as

C =
1

2
‖y1 −Φ1x1‖

2
2 + λ1 ‖u1‖1

+
1

2
‖y2 −Φ2x2‖

2
2 + λ2 ‖u2‖1

+
α

2
‖x1 − b2x2‖

2
2 , (12)

which we will then minimize subject to the equality constraints
u1 = x1 andu2 = x2. The augmented Lagrangian function
L(x1,x2,u1,u2, l1, l2, b2) can then be expressed as

L =
1

2
‖y1 −Φ1x1‖

2
2 + λ1 ‖u1‖1

+
1

2
‖y2 −Φ2x2‖

2
2 + λ2 ‖u2‖1

+ lH1 (x1 − u1) + lH2 (x2 − u2)

+
c

2

(

‖x1 − u1‖
2
2 + ‖x2 − u2‖

2
2

)

+
α

2
‖x1 − b2x2‖

2
2 (13)

where vectorsl1 and l2 are the Lagrange multipliers andc is
an arbitrary constant. The successive approximations for the

solutions can then be written as

x
(i)
1 = argmin

x1

L(x1,x
(i−1)
2 ,u

(i−1)
1 , l

(i−1)
1 , b

(i−1)
2 ) (14)

x
(i)
2 = argmin

x2

L(x
(i−1)
1 ,x2,u

(i−1)
2 , l

(i−1)
2 , b

(i−1)
2 ) (15)

b
(i)
2 = argmin

b2
L(x

(i)
1 ,x

(i)
2 , b2) (16)

u
(i)
1 = argmin

u1

L(x
(i)
1 ,u1, l

(i−1)
1 ) (17)

u
(i)
2 = argmin

u2

L(x
(i)
2 ,u2, l

(i−1)
2 ) (18)

and the resulting ADMoM iterations are

x
(i)
1 =

(

ΦH
1 Φ1 + (c+ α)I

)−1

×
(

ΦH
1 y1 + cu

(i−1)
1 − l

(i−1)
1 + αb

(i−1)
2 x

(i−1)
2

)

(19)

x
(i)
2 =

(

ΦH
2 Φ2 + (c+ α[b

(i−1)
2 ]2)I

)−1

×
(

ΦH
2 y2 + cu

(i−1)
2 − l

(i−1)
2 + αb

(i−1)
2 x

(i−1)
1

)

(20)

b
(i)
2 =

x
(i)T
2 x

(i)
1

‖x
(i)
2 ‖22

(21)

u
(i)
1 = shrink

(

x
(i)
1 +

l
(i−1)
1

c
,
λ1

c

)

(22)

u
(i)
2 = shrink

(

x
(i)
2 +

l
(i−1)
2

c
,
λ2

c

)

(23)

and updates for the Lagrange multipliers are

l
(i)
1 = l

(i−1)
1 + c

(

x
(i)
1 − u

(i)
1

)

(24)

l
(i)
2 = l

(i−1)
2 + c

(

x
(i)
2 − u

(i)
2

)

(25)

where shrink(., .) is the soft thresholding operator which can
be defined as in [10]

shrink(z, γ) = sign(z)(|z| − γ)+

=











z − γ if z > 0 andγ < |z|

z + γ if z < 0 andγ < |z|

0 if γ ≥ |z|

. (26)

The initial values foru1
(0), u2

(0), l1
(0), l2

(0) andb(0)2 can be
chosen arbitrarily, and forx1

(0) andx2
(0), different types of

warm starts can be chosen. Convergence results for ADMoM
can be found in [9] which basically state that asi goes to
infinity, convergence to a local optimum is obtained. Note that
in practice though very few iterations are needed to get good
results. Thus we can solve (9) by using (19-25). Note that the
finite-alphabet estimate forb2, which we will denote aŝb2, is
finally obtained by taking the sign ofb(i)2 obtained in the last
iteration.



V. SEPARATE RECOVERY

We compare the performance of our joint recovery approach
with the separate recovery approach, which has been discussed
earlier. In a first step, we have to minimize (7) forx1 andx2,
which can be solved for example by usingCVX (a package
for specifying and solving convex programs [12]). However,
to make a fair comparison between the two approaches, it is
more appropriate that we solve (7) by ADMoM as well. Hence,
in this section, we will propose the ADMoM solution for (7).

Using a similar method as in Section IV, we can write
the augmented Lagrangian functionL(x1,x2,u1,u2, l1, l2)
for (7) as

L =
1

2
‖y1 −Φ1x1‖

2
2 + λ1 ‖u1‖1

+
1

2
‖y2 −Φ2x2‖

2
2 + λ2 ‖u2‖1

+ l1
H(x1 − u1) + l2

H(x2 − u2)

+
c

2

(

‖x1 − u1‖
2
2 + ‖x2 − u2‖

2
2

)

(27)

and the ADMoM iterations can be derived as

x
(i)
1 =

(

ΦH
1 Φ1 + cI

)−1 (

ΦH
1 y1 + cu

(i−1)
1 − l

(i−1)
1

)

(28)

x
(i)
2 =

(

ΦH
2 Φ2 + cI

)−1 (

ΦH
2 y2 + cu

(i−1)
2 − l

(i−1)
2

)

(29)

u
(i)
1 = shrink

(

x
(i)
1 +

l
(i−1)
1

c
,
λ1

c

)

(30)

u
(i)
2 = shrink

(

x
(i)
2 +

l
(i−1)
2

c
,
λ2

c

)

(31)

l
(i)
1 = l

(i−1)
1 + c

(

x
(i)
1 − u

(i)
1

)

(32)

l
(i)
2 = l

(i−1)
2 + c

(

x
(i)
2 − u

(i)
2

)

(33)

In a second step, we then minimize (8) overb2 using the
estimatesx(i)

1 and x
(i)
2 obtained in the last iteration of the

first step. Taking into account the finite-alphabet constraint,
this leads to

b̂2 = sign(x
(i)T
2 x

(i)
1 ). (34)

VI. VALIDATION

Values of parametersα and λ can impact the optimal
solution of (9).λ enforces sparsity andα puts more weight
on the decision ofb2. A very large value ofλ can eliminate
important components of the symbol and a very small value
can allow a lot of noise components to effect the decision.
Similarly small values ofα may not help much in making a
right decision and large values can render sparsity irrelevant.
One way of choosing the values forλ andα is by means of
training and/or decision directed symbols. By observing the
bit error rate (BER) results, appropriate values can then be
selected.
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Figure 1. Reconstruction using the joint ADMoM detection approach method
at η = 4 dB.

VII. S IMULATION RESULTS

In this section, we shall illustrate the performance of our
detection approach by means of simulations. For the purpose
of illustration we consider a toy example. We assume that the
received symbol can be represented withN = 32 Nyquist rate
samples. The received symbol is compressed using a random
Gaussian measurement matrixΦ (whereΦ = Φ1 = Φ2) with
M = N/2 rows. Soδ = 0.5 and we are sampling at half the
Nyquist rate.

From the reduced set of samples we reconstruct the two
consecutive symbols as well as the data symbol using the joint
ADMoM detection approach as described in Section IV. The
initial valuesu(0)

1 , u
(0)
2 , l

(0)
1 , l

(0)
2 , and b

(0)
2 are taken equal

to zero. Forx(0)
1 andx(0)

2 , an ordinary least squares estimate
has been utilized but solutions of other problems, e.g., the
solutions of (5) or (6) can also be utilized as a warm start.

Figure 1 shows one realization of the reconstructed received
UWB signals that were obtained using the joint ADMoM
detection approach at an SNR ofη = 4 dB andλ = 0.1893
(where λ = λ1 = λ2). We use the ADMoM iterations for
a tolerance level of10−4 with a maximum limit of 10000
iterations. Samples labeled as ’reference symbol’ show the
true received UWB signal without noise which contains the
composite channel impulse response including the transmitted
pulse and the receive filter. It provides a reference as to how
well ADMoM can reconstruct the received symbol. Clearly,
the reconstructed samples labeled asx1 andx2 seem to have
the opposite polarity, so for this realization, we haveb2 = −1.
We also notice that many small components of the noisy
received UWB signals have been forced to zero. The nonzero
reconstructed entries have an energy that is comparable to the
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Figure 2. Reconstruction using separate ADMoM detection approach method
at η = 4 dB.

reference signal.

Figure 2 shows the reconstructed symbolsx1 and x2 by
utilizing the separate ADMoM approach at an SNR ofη = 4
dB andλ = 0.1893. Clearly the performance is not as optimal
as that of the joint ADMoM approach.

For our simulations of joint ADMoM detection, we have
verified the optimalα through bit error rate (BER) curves for
different values ofα by fixing λ = 0.1893. Figure 3 shows
the BER results of the joint ADMoM detection for varying
values ofα. We can see that initially the BER decreases with
increase inα but afterα = 103, it starts increasing. Thus
minimum BER is achieved for an optimal value ofα = 103.

To demonstrate the performance of our detection approach,
we show simulation results for the BER of both the joint
and separate ADMoM detection approaches. We compare
the ADMoM performance with the compressed detection
approach (11) (i.e., without reconstructingx1 andx2) as well.
Figure 4 compares the BER results for these three approaches.
We take α = 103 and λ = 0.1893. It is clear that the
ADMoM approaches perform better than the detection through
compressed symbols. Also the joint detection approach is
performing even better than the separate detection approach. It
is also clear that both ADMoM approaches are good enough
to be used for differential detection of UWB signals.

To assess the performance of CS, we carry out simulations
to find the BER for different values ofM . We vary δ from
0.25 to 1, so M varies from8 to 32 for N = 32. We plot
BER curves forη = 1, 2, 3 dB. We see that even at such low
SNR, we get reasonable performance.
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Figure 3. BER comparison of varying values ofα for joint ADMoM detection
approach.

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 

compressed symbols detection
ADMoM separate detection
ADMoM joint detection

Figure 4. Instantaneous BER comparison for compressed, separate ADMoM
and joint ADMoM detection approaches.
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Figure 5. BER versus varyingδ for SNR η = 1, 2, 3 dB

VIII. C ONCLUSIONS

In this paper we have proposed compressive sampling based
UWB differential detectors to reduce the sampling rate much
below the Nyquist. We have also proposed joint and separate
detection approaches based on the ADMoM method. We have
shown with the help of simulations that our joint detection
approach outperforms the separate and compressed symbol
detection approaches.
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