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ABSTRACT

We propose a sensor positioning scheme for a wireless sensor net-

work consisting of beacons as well as collaborative anchors (CA) to

help sensors within a prescribed service area to locate themselves.

We assume a robust performance is achieved in the sense that a pre-

scribed location accuracy requirement is fulfilled within the service

area. Under the assumption that the time-of-arrival and location es-

timators adopted achieve the associated Cramér-Rao bound, the per-

formance of the location scheme is derived and analyzed. A ranging

energy optimization problem is proposed, and a practical algorithm

is presented. The effectiveness of this algorithm is illustrated by nu-

merical experiments.

Index Terms— Wireless sensor network, localization, Cramér-

Rao bound.

1. INTRODUCTION

Sensor positioning is an important task of location-aware wireless

sensor networks (WSNs). In practice, it is costly to equip each sen-

sor with a global positioning system (GPS). Instead, a few beacons or

anchors, which are fusion centers or sensors with known positions,

are encompassed in most WSNs for locating sensors of interest. In

general, a location scheme is carried out to first produce position-

dependent measurements such as range, range-difference, and angle-

of-arrival between a sensor and beacons, and then these measure-

ments are conveyed somewhere for position estimation. To obtain

these measurements, sensors and beacons usually need to emit rang-

ing signals to each other.

The design of a location scheme highly depends on the feature of

hardware available as well as application requirements. For instance,

let’s consider locating a sensor with unsynchronized beacons. When

the beacons are connected to a central processing unit (CPU) and the

application requires the CPU to know the sensor position, this CPU

may initiate two-way ranging to obtain range measurements between

the sensor and beacons, and then estimate the sensor position [1]. If

the application requires the sensor to be aware of its position, the

sensor may initiate two-way ranging to obtain these measurements

and then estimate its own position.

Determining the ranging energy for sensors and beacons is an-

other important issue. On the one hand, the ranging energy should

be sufficiently high to produce reliable measurements. On the other

hand, the ranging energy should be reduced to prolong system life-

time, especially for sensors and beacons supported by a battery.

Ranging energy optimization has been addressed in [1] for a robust

sensor positioning system based on two-way ranging between a

sensor and beacons.

In this paper, we consider sensor positioning in a WSN consist-

ing of beacons as well as collaborative anchors (CA) to help sensors

within a prescribed service area to locate themselves. The sensor po-

sitioning features a robust performance in the sense that a prescribed

accuracy requirement is fulfilled within the service area. In particu-

lar, this paper contains the following contributions:

• We propose a location scheme for the considered WSN. In

particular, beacons and CAs are required to emit ranging

signals, while sensors only need to estimate TOAs of these

signals, and produce a set of range-difference measurements

to estimate their own positions. Under the assumption that

the time-of-arrival (TOA) and location estimators adopted

achieve the associated Cramér-Rao bound (CRB), the perfor-

mance of this location scheme is derived and analyzed.

• We propose a ranging energy optimization problem as well as

a practical algorithm. Though we assume an optimistic sce-

nario where the associated CRBs are achieved, the optimiza-

tion results set lower bounds to the ranging energy required in

more realistic scenarios, and give a sense of how much rang-

ing energy has to be allocated at least.

The rest of this paper is organized as follows. In the next sec-

tion, we describe the considered WSN. In Section III, we elaborate

on the location scheme and study its performance. After that, we

propose a ranging energy optimization problem, as well as a practi-

cal algorithm in Section IV. In Section V, numerical experiments are

presented. Finally, some conclusions wrap up this paper.

2. SYSTEM DESCRIPTIONS

We consider a 2-dimensional WSN with M beacons, and beacon

m is located at a known coordinate pm = [xb,m, yb,m]T (m =
1, · · · , M). Note that M should be no smaller than 2, which will be

explained in the next section. In addition, there are N CAs which

help locating sensors unaware of their positions. Specifically, CA n,

which is located at a known coordinate qn = [xc,n, yc,n]T , is re-

sponsible for collaborating with the beacons such that sensors lying

within a service area Sn can locate themselves. In practice, the CAs

may be the cluster heads equipped with GPS or manually installed

in clustered WSNs.

Let’s say one of the sensors to be located within Sn has an un-

known coordinate un = [xs,n, ys,n]T . For the simplicity of nota-

tion, we refer to this sensor as sensor n hereafter. We assume that

the clocks of sensor n, CA n, and all beacons are unsynchronized

but run at the same pace. We denote the distance between beacon m
and sensor n by Dm,un = ‖pm − un‖2, the distance between CA

n and sensor n by dn,un = ‖qn − un‖2, and the distance between
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beacon m and CA n by Lm,n = ‖pm − qn‖2. We assume CA

n knows its own coordinate as well as all beacons’ coordinates, so

that {Lm,n}M
m=1 can be calculated by CA n itself. In addition, we

assume all beacons’ coordinates as well as CA n’s coordinate, are

known by sensor n.

We assume a robust performance is achieved for sensor posi-

tioning, in the sense that a prescribed location accuracy require-

ment is fulfilled for sensors within the service area associated with

each CA. Specifically, we adopt the accuracy requirement that ∀n ∈
{1, · · · , N}, ∀un ∈ Sn, ‖ûn − un‖2 should be smaller than Re

with probability higher than Pe, where ûn denotes an estimate of

un, and the value of Re and Pe is prescribed. Note that this form of

requirement was first introduced by FCC to regulate the localization

of mobile users.

We assume that the two-sided power spectral density of the ad-

ditive white Gaussian noise (AWGN) at sensor n and CA n is equal

to Ns
2

. We assume a LOS channel exists between any two nodes of

the set consisting of sensor n, CA n, and beacon m. In addition, this

LOS channel incurs a propagation delay d
c

and a path loss αd−β ,

where d is the propagation distance of this LOS channel, c stands

for the signal propagation speed, α represents the path gain at 1 m,

and β denotes the path loss exponent. We assume α and β are both

known by system designers, and each channel remains unchanged

during the localization process.

We assume either sensor n or CA n can estimate the TOAs of

incoming ranging signals. In addition, we assume both beacon m
and CA n are able to emit ranging signals. We assume beacons have

a reliable power supply. To reduce the complexity of the system

design, the ranging signals used by the beacons are all the same and

equal to sb(t) with energy Eb. We assume each CA has a weaker

power supply than the beacons, and the ranging signal used by CA n
is denoted by sc,n(t) with energy εn. In practice, these signals may

be preamble parts of communication signals.

We assume a ranging signal can be received reliably by a sensor

or a CA when its energy is above a threshold value Et. We assume

Eb is sufficiently high so that all sensors and CAs receive ranging

signals from every beacon reliably. Each sensor can be located with

the help of CA n if a ranging signal from CA n is received reliably.

We assume Sn and εn are chosen so that sensors within Sn can be

located with the help of CA n. In addition, sensors lying in the in-

tersection of more service areas choose the CA from which stronger

ranging signals are received. We assume {Sn}N
n=1, {εn}N

n=1, and

Eb are fixed and determined during the system design phase.

It has been shown that the CRB of TOA estimation depends on

the root-mean-square (RMS) angular frequency of the adopted rang-

ing signal. We assume all CAs’ ranging signals have the same RMS

angular frequency. To facilitate the following derivations, we define

the RMS angular frequency of sb(t) and sc,n(t) respectively as:

ωb =

√√√√
∫ +∞
−∞ |2πfSb(f)|2df
∫ +∞
−∞ |Sb(f)|2df (1)

ωc =

√√√√
∫ +∞
−∞ |2πfSc,n(f)|2df
∫ +∞
−∞ |Sc,n(f)|2df (2)

where Sb(f) and Sc,n(f) represent the spectrum of sb(t) and

sc,n(t), respectively.

pm

un

qn

Lm,n

Dm,un

dn,un

Fig. 1. An exemplary geometry related to beacon m, CA n, and

sensor n.

3. LOCATION SCHEME AND PERFORMANCE ANALYSIS

3.1. Procedure of the location scheme

The location scheme proceeds as follows. First, beacons broadcast

their ranging signals one after another. Let’s say beacon m broad-

casts sb(t) of energy Eb. At sensor n, the TOA of this signal

is denoted by tpm→un , but estimated by sensor n as t̂pm→un =
tpm→un + epm→un . At CA n, the TOA of this signal is denoted by

tpm→qn , but estimated by CA n as t̂pm→qn = tpm→qn+epm→qn .

Here, epm→un and epm→qn denote the TOA estimation error at

sensor n and CA n, respectively.

After estimating the TOAs of all the beacons’ ranging signals,

CA n emits sc,n(t) of energy εn at time tqn to sensor n. We assume

a perfect calibration is achieved so that tqn is precisely known by

CA n. At sensor n, the TOA of this signal is denoted by tqn→un ,

but estimated by sensor n as t̂qn→un = tqn→un + eqn→un , where

eqn→un denotes the TOA estimation error at sensor n.

Note that {tqn→un , t̂qn→un} and {tpm→un , t̂pm→un}M
m=1

are recorded with the internal clock of sensor n, while tqn and

{tpm→qn , t̂pm→qn}M
m=1 are recorded with the internal clock of

CA n. As a result, we can see that, tqn→un − tpm→un is equal

to the difference between the signal propagation time from bea-

con m to sensor n via CA n and that from beacon m to sensor

n directly. As illustrated in Figure 1, this difference is equal to
Lm,n+dn,un

c
+(tqn − tpm→qn)− Dm,un

c
. Note that the processing

delay tqn − tpm→qn at CA n is also taken into account. This means

that c(tqn→un − tpm→un) − [c(tqn − tpm→qn) + Lm,n] is equal

to dn,un − Dm,un . Though tqn→un , tpm→un , and tpm→qn are

unknown, their estimates can be used to produce a measurement

denoted by rm:

rm = c(t̂qn→un − t̂pm→un) − [c(tqn − t̂pm→qn) + Lm,n] (3)

It is easy to find that rm = dn,un − Dm,un + c(eqn→un −
epm→un + epm→qn), which is a measurement of the range differ-

ence dn,un −Dm,un . Motivated by the above analysis, the final step

of the location scheme is that, CA n evaluates a set of data {c(tqn −
t̂pm→qn)+Lm,n}M

m=1 and then transmits them to sensor n through

data packets. After receiving these data, sensor n produces a set of

range-difference measurements {rm}M
m=1, based on which sensor n

estimates its own position with qn and {pm}M
m=1. Note that the lo-

cation estimator using range-difference measurements needs at least

two measurements, and therefore M should be no smaller than 2.

3.2. Performance derivation

We assume the TOA estimates at sensor n and CA n are inde-

pendent of each other, and they achieve the associated CRBs with

unbiased Gaussian distributions. In fact, this can be asymptotically

accomplished by a maximum-likelihood estimator. The CRB of
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TOA estimation has been derived for similar scenarios in [1]. Using

the formulas given there, we can show that the CRBs of estimat-

ing tqn→un , tpm→un , and tpm→qn are equal to κγdβ
n,un

ε−1
n ,

κDβ
m,un

E−1
b , and κLβ

m,nE−1
b , respectively, where κ = Ns

2αω2
b

, and

γ =
ω2
b

ω2
c

. Therefore, eqn→un , epm→un , and epm→qn are Gaus-

sian distributed as N (0, κγdβ
n,un

ε−1
n ), N (0, κDβ

m,un
E−1

b ), and

N (0, κLβ
m,nE−1

b ), respectively.

Let’s stack all M measurements into a vector r = [r1, · · · , rM ]T .

According to our assumptions, r is Gaussian distributed. Let’s de-

note its mean and covariance by vun and Σun , respectively. It is

easy to show that the m-th entry of vun is equal to dn,un −Dm,un .

After simple manipulations, Σun can be expressed as:

Σun = c2κ(E−1
b Λun + γdβ

n,un
ε−1
n 1M1T

M ) (4)

where Λun is an M × M diagonal matrix with the m-th diagonal

entry equal to Dβ
m,un

+ Lβ
m,n, and 1M is an M × 1 column vector

with all entries equal to 1.

We assume the location estimator adopted by sensor n is unbi-

ased and achieves the associated CRB, i.e., the mean and covariance

of the produced location estimate are equal to un and F−1
un

, respec-

tively, where Fun denotes the Fisher information matrix. Note that

this can be achieved by methods based on semidefinite programming

as shown in [2].

In practice, the performance of a location scheme is usually eval-

uated by the mean square error (MSE) of the location estimator.

Therefore, the performance of the location estimator at sensor n can

be evaluated by Tr(F−1
un

), namely the trace of F−1
un

. In particular,

Fun can be evaluated by:

Fun = Er

[
(∇unLun)(∇unLun)T

]
(5)

where Er(·) denotes the ensemble average with respect to r, and

Lun is the log-likelihood function of r with respect to un:

Lun = − ln ((2π)M det (Σun)) + (r − vun)T Σ−1
un

(r − vun)

2
(6)

By some mathematical manipulations, we can show that:

Fun = ΦunΣ−1
un

ΦT
un

(7)

where Φun = ∇un(vT
un

) is a 2 × M matrix with the m-th column

equal to un−qn
dn,un

− un−pm
Dm,un

. Using the matrix inversion formula (J+

xyT )−1 = J−1 − J−1xyT J−1

1+yT J−1x
, we can further reduce (7) to:

Fun = ρEb(Aun − ηunBun) (8)

where ρ = κ−1c−2 and

Aun = ΦunΛ−1
un

ΦT
un

(9)

Bun = (Φungun)(Φungun)T . (10)

Here gun = Λ−1
un

1M , and ηun is expressed by:

ηun =
1

(εn/Eb)γ−1d−β
n,un +

∑M
m=1(L

β
m,n + Dβ

m,un)−1
(11)

3.3. Impact of ranging energy on performance

The MSE performance of the location estimator at sensor n can be

evaluated by: Tr(F−1
un

) = λ−1
un,1 + λ−1

un,2, where λun,1 and λun,2

denote the two eigenvalues of Fun (λun,1 ≤ λun,2). We have the

following theorems about the impact of Eb and εn on λun,1 and

λun,2:

Theorem 1 Both λun,1 and λun,2 are non-decreasing when εn in-
creases.

Proof: We can see that ηun reduces as εn increases. Suppose εn

is increased by a small amount. As a consequence, ηun becomes

η′
un

= ηun − δ where δ is a positive value, while Fun , λun,1,

and λun,2 become F′
un

= Fun + δρEbBun , λ′
un,1, and λ′

un,2

(λ′
un,1 ≤ λ′

un,2), respectively. Since Bun is positive semidefinite,

λ′
un,1 ≥ λun,1 and λ′

un,2 ≥ λun,2 hold according to Corollary

4.3.3 in [3]. Therefore, both λun,1 and λun,2 are non-decreasing

when εn increases. �

Theorem 2 Both λun,1 and λun,2 are non-decreasing when Eb in-
creases.

Proof: Suppose Eb is reduced by a small amount to E′
b. As a con-

sequence, Σun , Fun , λun,1, and λun,2 become Σ′
un

, F′
un

, λ′
un,1,

and λ′
un,2 (λ′

un,1 ≤ λ′
un,2), respectively.

Let’s define a series of matrices {Cm}M
m=0, where C0 = Σun ,

and Cm = Cm−1 + εmemeT
m when 1 ≤ m ≤ M . Here, εm =

ρ−1(E′−1
b −E−1

b )(Dβ
m,un

+Lβ
m,n) is positive, and em is an M ×1

all-zero column vector except that the m-th entry is equal to 1. Using

the matrix inversion formula, we can show that (1 ≤ m ≤ M):

C−1
m = C−1

m−1 − μmhmhT
m (12)

where hm = C−1
m−1em and μm = 1

ε−1
m +eT

mC−1
m−1em

.

We can see that CM = Σ′
un

. Using (12) successively, we can

show that:

Σ′−1
un

= Σ−1
un

−
M∑

m=1

μmhmhT
m (13)

Inserting (13) into (7), we can show that

F′
un

= Fun − Dun (14)

where Dun =
∑M

m=1 μm(Φunhm)(Φunhm)T .

Apparently μm is positive, and thus Dun is positive semidef-

inite. Therefore, λ′
un,1 ≤ λun,1 and λ′

un,2 ≤ λun,2 according to

Corollary 4.3.3 in [3]. This means that both λun,1 and λun,2 remain

unchanged or decrease as Eb reduces. Equivalently, both λun,1 and

λun,2 remain unchanged or increase as Eb increases. Therefore,

both λun,1 and λun,2 are non-decreasing when Eb increases. �
Based on the above two theorems, Tr(F−1

un
) is non-increasing as

Eb or εn increases, which means that the MSE performance at un

does not degrade as Eb or εn increases.

4. RANGING ENERGY OPTIMIZATION

To guarantee the robust performance for sensor positioning, i.e.,

∀n ∈ {1, · · · , N}, ∀un ∈ Sn, ‖ûn − un‖2 should be smaller than

Re with probability higher than Pe, we use the constraint

λmin ≥ λth (15)
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where λmin = min1≤n≤N minun∈Sn λFun
, with λFun

and λth

denoting the minimal eigenvalue of Fun and a threshold eigenvalue,

respectively. Specifically, λth = −2R−2
e ln(1 − Pe) if ûn is Gaus-

sian distributed, and λth = 2R−2
e (1−Pe)

−1 if ûn has an unknown

distribution. Note that this constraint was first derived in [1].

We consider the scenario where {εn}N
n=1 and {Sn}N

n=1 are

prescribed. According to our assumptions, Sn should be a sub-

set of {un : αd−β
n,un

εn ≥ Et} = {un : dn,un ≤ (αεn
Et

)1/β}
so that sensors in Sn can receive the ranging signal of CA n
reliably. Note that to ensure the beacons’ ranging signals are re-

liably received by the CAs and the sensors, Eb should satisfy

αD−β
m,un

Eb ≥ Et, ∀Sn, ∀n, ∀m, or equivalently Eb ≥ Emin,

where

Emin = max
1≤m≤M

max
1≤n≤N

max
un∈Sn

{α−1Dβ
m,un

Et} (16)

For the considered scenario, we have the following theorem re-

garding the impact of Eb on λmin:

Theorem 3 λmin is non-decreasing when Eb increases.

Proof: Suppose Eb is increased to be E′
b, and λFun

and λmin be-

come λ′
Fun

and λ′
min, respectively. Let’s say λ′

min = λ′
Fzj

, where

zj denotes a position within the service area Sj (1 ≤ j ≤ N). Ac-

cording to Theorem 2, λ′
Fzj

≥ λFzj
. Apparently, λFzj

≥ λmin.

Therefore, λ′
min ≥ λmin holds, which means that λmin is non-

decreasing when Eb increases. �
According to the above theorem, (15) can be fulfilled by in-

creasing Eb. We consider the problem of finding the minimal Eb

fulfilling (15) and (16). A difficulty encountered is that each service

area is continuous. To address this problem, we uniformly sample

a set of grid points Gn = {gn,k}Kn
k=1 in Sn, and replace Sn with

Gn, ∀n, whenever computing λmin and Emin. If (15) is satisfied

when Eb = Emin, Emin is the output for the optimal Eb. Oth-

erwise, we find a sufficiently high value EH for Eb so that (15) is

fulfilled. Then, we use the following algorithm to find the optimal

Eb:

EU = EH; EL = Emin;

while |EU − EL| is smaller than a tolerance value do
EM = EU+EL

2
;

if λmin when Eb = EM is smaller than λth then
EL = EM;

else
EU = EM;

end if
end while
Output EM as the optimal Eb;

Note that this optimal Eb computed over {Gn}N
n=1 is smaller

than the true optimal one over {Sn}N
n=1, since the feasible set of Eb

enabling the robust positioning performance over {Sn}N
n=1 is a sub-

set of that over {Gn}N
n=1. However, it is a reasonable approximation

as the sampling distance is sufficiently small, since it approaches the

true optimal one as the sampling spacing reduces.

5. NUMERICAL EXPERIMENTS

We consider a WSN with 3 beacons located at p1 = [−3,−3]T ,

p2 = [3,−3]T , and p3 = [0, 3]T . There are two CAs located

at q1 = [−1, 0]T and q2 = [1, 0]T . The parameters are set as:

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x−axis (m)

y−
ax

is
 (

m
)

Randomly chosen point: +, Regulation circles: solid line, Confidence ellipses:dash line

CA1 CA2

Fig. 2. Confidence ellipses and regulation circles for randomly cho-

sen positions.

α = 0.5, β = 2, Et = 0.5 J, ωb
2π

= ωc
2π

= 1 GHz, Ns = 1 W/Hz,

c = 3 × 108 m/s, Re = 5 cm, and Pe = 0.8.

We assume S1 and S2 are two circular areas of radius 1 m and

centered at q1 and q2, respectively. We set ε1 = ε2 = 1 J so

that sensors in those areas receive ranging signals of associated CAs

reliably. We sample S1 and S2 with uniform spacing equal to 2 cm

to produce G1 and G2, respectively. We use G1 and G2 to replace

S1 and S2 respectively in numerical experiments.

The computed Emin is equal to 50 J. Assuming the location es-

timate of each sensor is Gaussian distributed, the minimal Eb fulfill-

ing the robust positioning performance is computed to be 221.3 J.

We randomly chose a set of positions, and for each position we plot

the regulation circle of radius Re as well as the confidence ellipse in

which the location estimate falls with probability Pe. It is shown that

each confidence ellipse is contained in the corresponding regulation

circle, which means that the accuracy requirement is fulfilled at each

position chosen.

6. CONCLUSIONS

We have proposed a sensor positioning scheme for a WSN consist-

ing of beacons as well as CAs to help sensors within a prescribed

service area to locate themselves. We assume a robust performance

is achieved in the sense that a prescribed location accuracy require-

ment is fulfilled within the service area. Assuming the associated

CRBs can be achieved, we have analyzed the performance of the lo-

cation scheme. A ranging energy optimization problem as well as

a practical algorithm have been proposed. The effectiveness of this

algorithm has been illustrated by numerical experiments.
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