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Abstract—Equalizer designs for digital communications over
wireless channels exhibiting both multi-lag and multi-scale are
investigated. Such channel models are well-suited for underwater
acoustic communications and may have impact on the design of
systems for vehicle-to-vehicle communications. First, the impli-
cations of the multi-scale, multi-lag model on equalizer design
are highlighted. In particular, equalizers are time-varying as
a function of symbol index. Three suboptimal, low complexity
block equalizers (partial, truncated, and path-combining) are
compared to that of the full block equalizer and shown to offer a
good tradeoff between complexity and performance. These four
equalizers significantly outperform a simple matched filter which
performs no equalization.

I. INTRODUCTION

Design of digital communication systems for underwater
acoustic communication has recently gained increased in-
terest. Due to the nature of underwater signal propagation,
acoustic channels differ fundamentally from terrestrial radio
channels, thus requiring new transceiver designs. In particular,
underwater acoustic communication systems are wideband in
nature and time-varying. We will employ channel models
which reflect the multi-scale, multi-lag nature of the wideband
underwater acoustic propagation. The following works, among
others, point to the multiple Doppler scale model (and hence
wideband, multi-scale model) as being more accurate [1]–
[4] than that typically considered for underwater acoustic
communication.

There have been recent efforts devoted to developing signal
representations for time-varying signals using scale-lag charac-
terizations see e.g. [5]–[7]. We underscore that there has been
extensive research on the design of equalizers for time-varying
narrowband channels – we do not attempt to summarize such
efforts herein. We focus on equalizer designs for the multi-
scale, multi-lag (MSML) channel model. While [6], [7] studied
the wideband scattering function, which is the result of the
optimal matched filter receiver for the transmission of a single,
isolated pulse, the examination of receiver designs for the
transmission of a block of symbols does not appear to have
been examined; it is this problem that we examine herein.
We note that multi-scale Wiener filters were developed in [8]
for linear time-invariant multipath channels for non-stationary,
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multi-scale input signals. In contrast, our channels exhibit the
multi-scale feature.

The Doppler scaling effect typically studied in underwater
acoustic communications is the introduction of inter-carrier
interference in orthogonal frequency division multiplexing
(OFDM); resampling is commonly employed to mitigate this
effect. However, resampling is only optimal when there is a
single Doppler scale. In [9], [10], we characterized the optimal
resampling for multi-scale, multi-lag channels and developed
a blind estimation algorithm for the optimal resampling pa-
rameter.

Although our primary motivation is the design of
transceivers for underwater acoustic communications, our re-
sulting designs have potential application in vehicle-to-vehicle
(V2V) communication systems. Recent experimental work
(see e.g. [11], [12]) clearly shows that each path in most
wireless vehicular environments has its own unique Doppler
spectrum which is characterized by a completely distinct
maximum Doppler shift.

One of the main contributions of this work is to highlight the
need for new designs for equalizers for the multi-scale, multi-
lag channel and examine the impact of the channel model
on the equalizer structure. Several classical approaches are
investigated for the new channel model. Three suboptimal
equalizer structures, the partial, truncated, and path-combining
block equalizers are shown to provide a good tradeoff between
complexity and performance when compared to the full block
equalizer. As shown in the numerical results, all four of these
equalizers offer a measureable improvement in performance
over the case of no equalization, i.e. a simple matched filter.
The truncated block equalizer offers near full block equalizer
performance at the expense of more complexity than the other
two sub-optimal equalizers.

The rest of this paper is organized as follows. The signal
model is presented in Section II and the implications of this
model on equalizer design summarized in Section III. Equal-
izer designs for the multi-scale multi-lag channel are provided
in Section IV and their performance examined numerically in
Section V. Section VI concludes the paper.

II. SIGNAL MODEL

We adopt the scaling notation of [6], that is, a signal, s(t),
transmitted by a moving object over a wideband propagation
medium is received as

r(t) =
√
|a|s(a(t− τ)), (1)



where a is the Doppler scaling. If the velocity of the transmit-
ter is v and c is the speed of the communication medium1, then
a ≈ 1 + 2v

c . The propagation delay is given by τ = d
c , where

d is the transmission range. When the Doppler scale is such
that a > 1, then the scatterer is approaching the transmitter
and the transmitted signal is compressed with respect to time;
in contrast, when 0 < a < 1, the received signal is dilated and
the scatterer is moving away from the transmitter2.

In our multi-scale, multi-lag channel model, multiple paths
will individually scale the received signal as described in (1).
The complex, baseband, received signal at the destination is
given by,

r(t) =
M−1∑
m=0

b(m)qm(t) + n(t) (2)

qm(t) =
L∑

l=1

vl
m(t) (3)

vl
m(t) = hl

√
alp

(
al(t− τl)−m

T

al

)

×ej2πfc((al−1)t−alτl), (4)

where L is the number of paths and al, τl, and hl are the
Doppler scaling, delay and tap coefficient, respectively for path
l and are assumed known. The packet, or block size, is given
by the integer, M . The transmitted pulse shape is p(t) and
is assumed to have support on [0, T ) and be of unit energy.
The transmitted data sequence is denoted by b(m) assumed to
be PSK and equally likely, i.i.d., the original symbol duration
is T , and the associated carrier frequency of the transmitted
signal is fc. The noise process, n(t) is modeled as a white,
Gaussian random process. The function, qm(t) is then the
effective channel function for symbol m, whereas the vl

m(t)
are the contributions to qm(t) due to path l.

The channel coefficients will be modeled as Rayleigh, and
independent from path to path. Future research will examine
the design of channel estimation and adaptive equalizers for
this time-varying environment. In the current study, we seek
to determine the performance limits of practical processing.

III. IMPLICATIONS OF MULTI-SCALE, MULTI-LAG MODEL

We first observe that the support of the effective channel
function qm(t) changes with the symbol index, m and thus so
does the effective channel memory. In fact, if at least one of
the Doppler scalings induces dilation (al < 1 for some value
of l), then the support is increasing with time. The support of
qm(t) is given by

Tm =
(

min
l

(
(m− 1)T

al
+ τl

)
, max

l

(
mT

al
+ τl

)]
.(5)

If the Doppler spread is significant, then it is possible for the
contributions due to individual paths, of a particular symbol

1For example, the speed of light is 3 × 108 m/s, whereas the speed of
sound in water is 1500 m/s.

2For the underwater acoustic communication application it is possible that
v > c and thus a could be positive or negative; however, for exposition we
will maintain the convention that a > 0.

index m, to be mutually orthogonal in time. This time-
varying memory is irrespective of the delays of the individual
multipath. Thus, any traditional equalizer, optimized according
to some metric, would be time-varying as a function of the
symbol index of interest. If the Doppler shifts per path were
common (al = a, ∀ l), then the memory of the effective
channel would be fixed and due to a combination of the
multipath delays and the common Doppler scale. Finally, we
observe that even if all path delays were zero (τl = 0, ∀ l),
one would still need to perform equalization due to the ISI
induced by the Doppler scaling.

IV. MSML EQUALIZER DESIGNS

Herein we examine equalizer structures for sequence b .=
[b(0), b(1), . . . , b(M−1)]T . We shall focus on minimum mean
squared error (MMSE) equalizers. To compute the probability
of error conditioned on the channel h .= [h1, h2, . . . , hL]T

for BPSK modulation, we shall treat the residual interference
after equalization as colored Gaussian noise [13]. Let P be a
general equalizer that we apply to a set of measurements y.
Then we observe that due to the use of linear equalization, we
can write the equalized signal as follows,

Py = Bb + w (6)
w ∼ N (

0, σ2W
)
. (7)

If we now define B̄ .= B − BD, where BD is the matrix
comprised only of the diagonal elements of B along the
diagonal, then the conditional probability of error is given by

Pe (m|h) = Q

(√
|B(m,m)|2

B̄B̄H(m,m) + σ2W(m, m)

)
, (8)

where Q(x) = 1√
2π

∫∞
x

e
−t2
2 dt. The probability of error is

determined by averaging over the complex Gaussian channel
gains, h. We underscore that the equalizer structures developed
in the sequel are dependent on knowledge of the channel
parameters, though this dependence is notationally suppressed
in order to preserve clarity.

A. Full Block Equalizer

A set of sufficient statistics for the demodulation of b
is formed by matched filtering the received signal with the
effective channel associated with each symbol, that is,

y(m) =
∫

q∗m(t)r(t)dt. (9)

Defining y .= [y(0), y(1), . . . , y(M − 1)]T , we then obtain

y = Rb + n, R(i, j) =
∫

q∗i (t)qj(t)dt, (10)

where n ∼ CN (
0, σ2R

)
; the noise is a zero-mean, complex

Gaussian noise vector with covariance σ2R. The data vector is
straightforwardly equalized using the standard MMSE equal-
izer, with the following matrices required for probability of



error computation in (8):

PFB =
(
R + σ2I

)−1
(11)

BFB =
(
I + σ2R−1

)−1
(12)

WFB =
(
R + σ2I

)−1
R

(
R + σ2I

)−1
. (13)

While the full block equalizer requires a matrix inversion of
dimension M ×M , as the correlation matrix is banded, lower
complexity implementations of the exact full block equalizer
are possible by adapting the methods of [14] to the current
scenario.

B. Partial Block Equalizer

To reduce the complexity associated with the full-block
equalizer we consider partially truncating the matched filters
associated with the demodulation of symbol m. The key
window is determined by the non-zero support of the effective
channel associated with the symbol of interest, m, Tm defined
in (5). Due to the fact that the received signal is filtered with
partial effective channel functions, we connote this equalizer
as the partial block equalizer.

We first determine the set of symbols whose effective
channels have some support in the interval Tm:

Mm = {∀ i : ∃ t 3 qi(t) 6= 0 t ∈ Tm} . (14)

For the sequel, we observe that Mm can be written as Mm ={
k : kmin

m ≤ k ≤ kmax
m

}
thereby forming a closed interval3.

We then form the potentially truncated versions of the
effective channel functions:

q̃k(t) = qk(t)It∈Tm , k ∈Mm, (15)

where It∈Tm is the indicator function: it is equal to zero for t /∈
Tm and unity for t ∈ Tm. Then, the partial channel correlation
matrix for symbol m is given by

R̃m(i− kmin
m + 1, k − kmin

m + 1)

=
∫

q̃∗i (t)q̃k(t)dt i, k ∈Mm. (16)

Let b̃m = [b(kmin
m ), . . . , b(kmax

m )]T . The received signal
r(t) is matched filtered with the possibly truncated effective
channel functions q̃k(t), k ∈ Mm, yielding the statistics
vector,

ỹm = R̃mb̃m + ñm ỹm(k) =
∫

q̃∗k(t)r(t)dt k ∈Mm

where ñm ∼ CN
(
0, σ2R̃m

)
; the noise is a zero-mean,

complex Gaussian noise vector with covariance σ2R̃m.
The MMSE equalizer has the same form as the full-block

equalizer except that the correlation matrices change, that is
Rm is replaced by R̃m in (11). A similar substitution is
done for computing the matrices needed to determine the
performance (see (12) and (13)) and the index of interest is
modified from m to m∗ = m− kmin

m + 1 in (8).

3For the case of τl = 0, ∀l, it is straightforward to show that kmin
m =

daL(m−1)+a1aL
a1

e and kmax
m = min

(
M, da1m

aL
e
)

.

C. Truncated Block Equalizer

To determine the truncated block equalizer, we truncate the
matched filter outputs instead of the time-domain signal as in
the partial block equalizer. The memory of interest remains
the same: defined by kmin and kmax as above. Adopting
Matlab notation, we form the following truncated matrices and
vectors:

y′m =
[
y(kmin

m ), . . . ,y(kmax
m )

]T
(17)

R′
m = R

(
kmin

m : kmax
m , :

)
(18)

→ y′m = R′
mb + n′m (19)

n′m ∼ CN (
0, σ2Rt

m

)
(20)

Rt
m = R

(
kmin

m : kmax
m , kmin

m : kmax
m

)
(21)

The matrix R′
m is a “wide” matrix of dimension Nm × M

where Nm = kmax
m −kmin

m +1 and M ≥ Nm. We underscore
that Rt

m 6= R′
m; the former is a square matrix of dimension

Nm × Nm. We observe that the truncated block equalizer is
slightly more practical than the partial block equalizer as one
does not need to change the front-end matched filter processing
as much for each symbol.

Let us now design the MMSE equalizer based on the signal
model developed in (17)-(21). Due to the “wide” nature of
R′

m, the MMSE equalizer basically consists of a regularized
inverse of R′

m (see e.g. [15]), that is, we employ the following
equalizer:

PRT
m =

(
R′

m
HRt

m
−1R′

m + σ2I
)−1

R′
m

HRt
m
−1 (22)

= R′
m

H(R′
mR′

m
H + σ2Rt

m)−1, (23)

where H denotes the complex conjugate transpose and I is the
M × M identity matrix. The related equalizer performance,
conditioned on the channel gains, is determined as follows,

BRT = PRT
m R′

m (24)

WRT = PRT
m Rt

mPRT
m

H
. (25)

It is clear that the complexity involved in (23) is smaller than
the one needed to compute (22), due to the dimensions of
the matrix that needs to be inverted. However, note that the
M×M matrix inversion in (22) can be reduced in complexity
by observing that we invert a scaled identity matrix plus a low-
rank matrix. The truncated block equalizer offers near-optimal
performance.

D. Path-Combining Equalizer

We further reduce complexity by considering a set of p
correlators matched to each path for a particular symbol.
However, in contrast to effective channel matched filtering
which would be achieved by summing these path filter outputs
together, we optimally, in the MMSE sense, combine the



outputs. We form,

ŷm(l) =
∫

vl
m

∗
(t)r(t)dt (26)

R̂m(l, c) =
∫

vl
m

∗
(t)vk

n(t)dt (27)

l, k = 1, · · · , p, n ∈ Mm, c = k + n(p− 1)− kmin + 1
ŷm = R̂m (INm

⊗ 1p)︸ ︷︷ ︸
R̆m

b + n̂m (28)

n̂m ∼ CN
(
0, σ2R̂p

m)
)

(29)

R̂p
m = R̂m(1 : p,m(p− 1) + 1 : mp). (30)

The MMSE equalizer is given below and the matrices
needed for performance computation in (8) follow,

PPC
m = R̆H

m

(
R̆mR̆H

m + σ2R̂p
m

)−1

(31)

BPC = PPC
m R̆m (32)

WPC = PPC
m R̂p

mPPC
m

H
. (33)

This equalizer is potentially of significantly less complexity
than the prior two suboptimal equalizers as it forms only
the matched filter outputs matched to the paths associated
with symbol m. The path-combining equalizer does achieve
good performance as it introduces degrees of freedom for ISI
suppression by using p filters per symbol instead of one as
is done in the previous sets of equalizers. One can increase
performance (and complexity) by increasing the number of
per-path correlators for symbols adjacent to the one of interest
and then performing MMSE equalization/path combining on
the increased set of path filter outputs. We observe that our
path-combining equalizer is distinctly different from the chip-
rate per-path MMSE filters of [16], [17] wherein per-path
MMSE equalizers are designed for a multiuser multipath
scenario and then maximal ratio combining is employed.

E. Performance Comparisons

As a performance comparison, and to underscore the ad-
verse effects of the ISI induced by both multipath and Doppler
scaling, we examine the performance of a simple matched
filter, that is b̂(m) = dec (y(m)). The performance of the
matched filter using a Gaussian approximation is given by
(8) with BMF = WMF = R. Matched filter performance
provides an upper bound to the performance of the various
equalizers described above. A lower bound is provided by the
matched filter bound, which is the optimal filter in the absence
of any other bits, but the one of interest. The conditional
probability of error is given by,

Pmfb
e (m|h) = Q

(√
R(m,m)

σ

)
. (34)

V. NUMERICAL RESULTS

Our numerical results are semi-analytic, in that we compute
the various conditional probabilities of error noted above for

a specific channel realization and then average over these
realizations. That is, for the demodulation of symbol m,

P̂e(m) =
1
N

N∑

i=1

Pe (m|h(ωi)) ,

where h(ωi) denotes the i’th realization of the channel. We
observe that closed form computation of the performance of
the MMSE-based equalizers is challenged by the fact that
the matrices to be inverted are a function of the channel
gains, which are random. We also observe that our sub-optimal
equalizers cannot be meaningfully analyzed by exploiting large
block lengths as their window of operation has been designed
to be small. Our definition of the signal-to-noise-ratio (SNR)

is given as follows, SNR =
E[‖h‖2]

σ2 . Due to the multi-scale,
multi-lag model, there is, in fact, no consistent measure of
SNR, as the norm of the effective channel function is changing
as a function of time.

We consider a p = 3 path system, where the delays are fixed
to be: [0.2Ts, 0.5Ts, 0.8Ts] where Ts is the symbol duration
which is taken to be 10msec, and a carrier frequency fc =
10kHz. The pulse shape is a square-root raised cosine pulse
with a roll-off factor of 10%. We examined data blocks of
length M = 64. The number of Monte Carlo runs was 500.

In the first set of semi-analytic performance curves, we con-
sidered the following Doppler scales: [0.99, 1.00, 1.01], which
correspond to a fast fading environment. We note that there
is no relationship between delay and Doppler scaling. The
memory varied from two to four, with the bulk of the symbols
having a channel memory of four symbols. A larger delay
spread would increase the memory and thus the complexity
of the regularized truncated and partial block equalizers, but
not that of the path-combining equalizer. Due to the fact that
the middle path has zero delay and is neither compressed
nor dilated, the memory initially increases as a function of
symbol index, then decreases slightly as the effects of the
dilation/compression and the tap delays mutually interact.

Figure 1 depicts the performances of the full, partial, and
truncated block equalizers as well as the path-combining
equalizer versus the matched filter bound and the performance
of the matched filter, which performs no equalization for
symbol 32, which is in the middle of the block. We see that
the full block equalizer’s probability of error is essentially
that of the matched filter bound and the truncated and partial
block equalizers offer near optimal performance. The path-
combining equalizer which of the least complexity by a sig-
nificant amount has additional minor performance degradation.
All equalizers greatly outperform the matched filter. The
relative performance of these three suboptimal equalizers is
explained as follows: the partial and truncated block equalizers
compensate for the additional ISI after the matched filtering
with the partial or full channel functions, and it does not seem
to make a big difference whether the partial or full channel
functions are used. The path-combining equalizer collects all
of the signal energy due to the symbol of interest and exploits
the p degrees of freedom to perform additional interference
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Fig. 1. Average probability of error versus SNR for symbol index m = 32,
with Doppler scales [0.99, 1.00, 1.01].
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Fig. 2. Average probability of error versus symbol index for SNR = 15dB,
with Doppler scales [0.99, 1.00, 1.01].

suppression. Note that the degrees of freedom for the partial
and truncated block equalizers, Nm is matched to the number
of interfering symbols that must be suppressed.

The performance as a function of the symbol index is shown
next for SNR = 15dB in Figure 2. We see that the matched
filter and the path-combining equalizer are more sensitive to
the symbol index than the other equalizers.

Although not depicted for space considerations, we also
examined the Doppler scale scenario: [0.98, 1.00, 1.02]; herein,
the Doppler spread has been significantly increased. Interest-
ingly, the Doppler scale effects as exhibited in the residual
“modulation” behave as spreading functions which orthogonal-
ize the signal contributions due to each path, thus equalization
is not as important and all equalizers provide near-optimal
performance.

VI. CONCLUSIONS

A major goal of the current work is to introduce the problem
of channel equalization for channels which exhibit both multi-
lag and multi-scale effects. In such channels, optimized equal-

izers will be time-varying with symbol index. Classical equal-
izer structures are re-examined and meaningfully modified in
the context of such channels. As such, the full, partial and
truncated block equalizers are studied, as is a low complex-
ity path-combining equalizer. All equalizer structures greatly
outperform the matched filter which does no equalization.
We observed that the full block equalizer offers near-optimal
performance closely followed by the truncated block equalizer
and the partial block equalizer. The path-combining equalizer
offers the best tradeoff between complexity and performance.
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