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Abstract—Consider the problem of estimating the position and
the velocity of an emitter given time and frequency differences of
arrival acquired by a passive sensor array. By jointly eliminating
the non-linear nuisance parameters of the model using an appro-
priate orthogonal projection, we obtain a least squares estimator
of the parameters of interest. The advantage of the proposed
estimator is the reduction of the computational complexity by an
order of the number of sensors in the array.

1. INTRODUCTION

Emitter localization using a passive sensor array continues

to attract attention and interest due to its variety of applications

including radar, sonar, wireless communications, satellites,

airborne systems, and acoustics [1], [2], [3], [4]. The conven-

tional estimation approach is based on two steps: First, one or

more parameters (e.g., angle or time of arrival, signal strength

or Doppler shift) are measured by the array. Then, the central

processing unit of the array determines the emitter parameters

(position and/or velocity) by exploiting their mathematical

relations to the former intermediate parameters. The approach

in [5], [6], on the other hand, estimates the emitter parameters

directly from the observations. The focus of the current work

is on the former approach.

We consider the case of a moving emitter observed by a

stationary passive sensor array. The transmitted signal of the

emitter is observed with different times of arrival and Doppler

frequency shifts by each of the sensors of the array. Since the

transmitted signal of the emitter is assumed to be unknown,

a common approach to determine its position and velocity is

by measuring the time differences of arrival (TDOAs) and

frequency differences of arrival (FDOAs) between pairs of

observed signals (for example, by maximizing the ambiguity

function [7]). By selecting a reference sensor (e.g., the first

sensor), the goal is to estimate the source position and velocity

given the differences with respect to that sensor.

Several approaches were suggested to this estimation prob-

lem. Weinstein proposed an estimation technique which is

applicable for a linear array only and assumes a source in the

far-field region [8]. Ho and Xu proposed a two-step estimation

procedure [9]. By introducing two nuisance parameters (the
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range and range rate associated with the reference sensor and

the source), they obtain a set of linear equations. In the first

step, a weighted least squares (WLS) solution is proposed to

estimate the position and velocity of the source together with

these nuisance parameters, and in the second step, the relations

between the nuisance parameters and the parameters of interest

are used to solely estimate the position and velocity using

another WLS minimization. The performance of this method

was shown to be close to the Cramér-Rao lower bound (CRLB)

[9]. Friedlander suggested to estimate the source position and

velocity by extending his least squares (LS) method which was

developed to locate a stationary source given TDOAs only

[10]. The LS position estimate of a stationary source relies

on an orthogonal projection matrix to eliminate the nuisance

parameter (range between the reference sensor and the source).

The idea of Friedlander’s extension was to use two similar

orthogonal projections in a subsequent manner as follows: first

obtain the LS source position as previously explained, and then

eliminate the second nuisance parameter (range-rate between

the reference sensor and the source) using the same orthogonal

projection to get the LS velocity estimate.

In the current work we propose a LS estimator of the

source position and velocity which is obtained from using

a joint elimination (a single orthogonal projection) of the

two nuisance parameters. We develop a model which linearly

depends on the parameters of interest (position and velocity

vectors of the source), and the nuisance parameter vector

(range between the source and the first (reference) sensor,

and the corresponding range rate). The proposed approach is

based on eliminating the term in the model which depends

on the nuisance parameter vector by pre-multypling with

an orthogonal projection matrix. This mathematical operation

leads to a linear model which solely depends on the parameter

vector of interest (position and velocity vectors of the source),

and we thus obtain a LS estimate of it. We note that this

LS estimator is closely related to the first step of the WLS

estimate in [9] following the results in [11].

The performance of the proposed estimator is evaluated

with simulations for a source in the near-field and the far-field

regions versus the noise variance using a circular sensor array

configuration, and versus the number of sensors in the array.

The simulations show good results for the proposed estimator



compared with the two-step approach [9], the subsequent

projection technique [10], and the CRLB. In the full version

of our work [12] we also provide a detailed analysis of

the theoretical covariance matrix of the proposed estimator

and we show that the estimates are asymptotically unbiased.

We also compare in [12] the computational complexities of

the proposed estimator and the two-step estimator, and we

show that the complexity of the proposed estimator increases

quadratically with respect to the number of sensors, whereas

the complexity of the two-step method [9] increases cubically.

2. THE TDOA AND FDOA MEASUREMENTS

We assume that M stationary sensors and a moving trans-

mitter are located in a q-dimensional Cartesian coordinate

system (q = 2 or q = 3). We denote by

p̄s
∆
= [pT

s , ṗT
s ]T (1)

the 2q×1 vector, where ps and ṗs are the q×1 true unknown

position and velocity vectors of coordinates of the source. We

also define the known q × 1 vector of coordinates of the mth

sensor by pm, m = 1, 2, ...,M .

Let ∆tm,1 and ∆fm,1 be the true TDOA and FDOA

between the signals received by the mth sensor and the first

(reference) sensor. The signal propagation speed and the car-

rier frequency of the signal are given by c and fc, respectively.

The true range rm,1 and range-rate ṙm,1 differences are then

given as

rm,1
∆
= c∆tm,1 = dm,s − d1,s (2)

ṙm,1
∆
=

c

fc

∆fm,1 = ḋm,s − ḋ1,s (3)

where the range and range-rate between the mth sensor and

the source, respectively, are defined as

dm,s
∆
= ‖ps − pm‖ (4)

ḋm,s
∆
=

(pm − ps)
T ṗs

dm,s

(5)

We next define the 2(M − 1) × 1 vector r̄ as

r̄
∆
= [rT , ṙT ]T

r
∆
= [r2,1, . . . , rM,1]

T
(6)

ṙ
∆
= [ṙ2,1, . . . , ṙM,1]

T

where r and ṙ are (M − 1) × 1 vectors containing the true

TDOAs and FDOAs, respectively.

In the presence of additive noise, we are given the noisy

2(M − 1) × 1 measurements vector,

ˆ̄r = r̄ + δ (7)

where

ˆ̄r
∆
= [r̂T , ˆ̇rT ]T

r̂
∆
= [r̂2,1, . . . , r̂M,1]

T (8)

ˆ̇r
∆
= [ˆ̇r2,1, . . . , ˆ̇rM,1]

T

where r̂ and ˆ̇r are vectors containing the noisy measurements

of the range and range-rate differences, respectively. The

2(M − 1) × 1 vector δ representing the additive noise is

deefined as

δ
∆
= [ǫT , ξT ]T

ǫ
∆
= [ǫ2,1, . . . , ǫM,1]

T (9)

ξ
∆
= [ξ2,1, . . . , ξM,1]

T

where ǫ and ξ are (M −1)×1 vectors representing the errors

of the TDOA and FDOA measurements.

The problem we consider herein is: Given the vector of

measurements ˆ̄r, determine the vector of interest p̄s.

3. THE LINEAR MODEL AND THE PROPOSED ESTIMATOR

The development of the linear model is based on the

derivations introduced in [10]. Define the (M − 1)× q matrix

S and the (M − 1) × 1 vector u as,

S
∆
= [p2 − p1, · · ·pM − p1]

T
(10)

u
∆
=

1

2
[‖p2‖

2 − ‖p1‖
2 − r2

2,1, . . . ,

‖pM‖2 − ‖p1‖
2 − r2

M,1]
T (11)

Follwoing [10, Eq. (7a)] we get that,

Sps = u − d1,sr (12)

Next, we define the (M − 1)× 1 time derivative vector of u,

denoted by u̇, and the 2 × 1 vector d̄1,s as

u̇
∆
= [−r2,1ṙ2,1, . . . ,−rM,1ṙM,1]

T
(13)

d̄1,s
∆
= [d1,s, ḋ1,s]

T (14)

Taking the derivative of (12) with respect to time results in

[10, Eq. (60)],

Sṗs = u̇ − [ ṙ r ]d̄1,s (15)

The two models in (12) and (15) were considered separately

in [10]. We emphasize that most of the work in [10] focused

on estimating the position of a stationary source, and therefore

the first model was mainly discussed, while the second model

was presented as a possible extension to the case of a moving

source.

In the current work, on the other hand, we note that these

two models contain the vectors of interest, i.e., the position

and the velocity of the source. Thus, by combining (12) and

(15) we get a linear model with respect to p̄s given as,

Fp̄s = ū − Hd̄1,s (16)

where the 2(M − 1)× 1 vector ū, the 2(M − 1)× 2q matrix

F, and the 2(M − 1) × 2 matrix H are defined as

ū
∆
= [uT , u̇T ]T (17)

F
∆
= I2 ⊗ S (18)

H
∆
=

[

r 0M−1

ṙ r

]

(19)



where In is an n×n identity matrix, ⊗ is a Kronecker product,

and 0n is an n × 1 vector of zeros.

The linear model in (16) contains both the unknown non-

linear nuisance vector d̄1,s (range and range-rate of the source

with respect to the reference sensor) and the unknown vector

of interest p̄s. In [9] the approach is to first estimate d̄1,s

together with p̄s, and then to use the relation between the two

vectors to further refine the previous estimate of p̄s. In [10] the

estimation is based on two subsequent steps: 1) eliminating the

term associated with d1,s in (12), with an orthogonal projection

matrix [10, Eq. (8)], and obtaining the LS solution for ps;

2) eliminating the term associated with ḋ1,s in (15), using

the same orthogonal projection matrix [10, Eq. (8)], and then

obtaining the LS solution for ṗs (where d1,s involved in the

latter solution is calculated using the estimate of ps obtained

after the first step).

We adopt a different estimation approach. The notion is

to jointly eliminate the unknown non-linear nuisance vector

d̄1,s in (16) using an appropriate orthogonal projection matrix

which leads to an equation that solely depends on the unknown

vector of interest p̄s. We emphasize that this operation consid-

ers the two vectors d̄1,s and p̄s as independent, and therefore

ignores the fact that they are mathematically related.

We define the 2(M − 1)× 2(M − 1) orthogonal projection

matrix of H as,

P⊥ = I2(M−1) − H
(

HT H
)−1

HT (20)

By pre-multiplying (16) with P⊥ we obtain a linear model

which only depends on the vector of interest p̄s,

P⊥Fp̄s = P⊥ū (21)

In the presence of noise we replace the true vectors and

matrices in (21) by their noisy versions, since we will adopt

the noisy measurements vector ˆ̄r given in (7). For notation

simplicity we denote by x̂ the noisy version of the true vector

(or matrix) x. This results in the approximated model

P̂⊥Fˆ̄ps
∼= P̂⊥ ˆ̄u (22)

The LS estimate of p̄s is obtained by the following minimiza-

tion,

ˆ̄ps = argmin
p̄s

∥

∥

∥
P̂⊥(Fp̄s − ˆ̄u)

∥

∥

∥

2

= Q̂ˆ̄u (23)

where Q̂ is a 2q × 2(M − 1) matrix defined as,

Q̂
∆
= (FT P̂⊥F)−1FT P̂⊥ (24)

This concludes the derivation of the proposed position and

velocity estimator.

4. APPROXIMATED BIAS AND COVARIANCE MATRIX

In [12] we provide detailed analysis of the bias and of

the covariance matrix of the estimator in (23). Herein, we

present the final results only. In the presence of small errors,

the position and the velocity estimates in (23) are

ˆ̄ps
∼= p̄s + ∆p̄s (25)

where ∆p̄s is the first order approximation of ˆ̄ps (we neglect

higher order error terms of ˆ̄ps which depend on products of

errors). The first order approximation of the bias is E[∆p̄s],
and the first order approximation of the covariance matrix is

E[(∆p̄s − E[∆p̄s])(∆p̄s − E[∆p̄s])
T ].

To obtain these first order approximations we consider the

estimate in (23) and perform the following steps. We express

the noisy matrix Q̂ and the noisy vector ˆ̄u using first order

approximations as Q̂ = Q + Q̃ and ˆ̄u = ū + ˜̄u, respectively.

After several mathematical steps we get that [12]

∆p̄s = Q̃Hd̄1,s + Q˜̄u

= QJδ (26)

where in the second passing we used the explicit expressions

that we derive for the first order approximations Q̃ and ˜̄u in

[12], and the 2(M − 1) × 2(M − 1) matrix J is defined as

J
∆
= −

[

D(r + d1,s1) 0M−10
T
M−1

D(r + d1,s1) D(r + d1,s1)

]

(27)

where D(x) is a diagonal matrix with the elements of the

vector x on the main diagonal, and Ḋ(x) is the derivative of

the matrix D(x) with respect to time.

Assume that δ is a zero mean Gaussian random vector.

We conclude that the first order approximation of the bias

of the estimate ˆ̄ps is zero. The first order approximation of

the covariance matrix of ˆ̄ps is therefore given by

E[ˆ̄ps ˆ̄pT
s ] = QJE[δδT ]JT QT (28)

Notice that this covariance matrix can be used as a weighting

matrix to refine the estimate in (23) using a weighted LS

approach.

5. SIMULATION RESULTS

To demonstrate the performance of the proposed method,

we present the results of simulated experiments. We show the

root mean square error (RMSE) of the position and velocity

estimates using independent Monte-Carlo trials (5000 trials)

where in each trial a different noise realization is considered.

We compare the position RMSE and the velocity RMSE of

the proposed LS estimator with those of the two-step method

[9]. We evaluate the CRLB according to the derivation in [9,

Appendix C], and the theoretical position RMSE and velocity

RMSE of the proposed estimator [12], and those of the two-

step estimator according to [9, Eq. (25)].

We assume that the transmitted signal is a white process

with variance σ2
s , independent of the noise processes which

are all white, independent processes with variance σ2
n. Also,

the attenuations of the intercepted signal at all sensors are

identical. We consider the covariance matrix of the noise

vector δ as given in [8, Section II] [8, Eq. (8), Section II])

E[δδT ] = Diag(E[ǫǫT ], βE[ǫǫT ]) (29)

where Diag(Z1, · · · ,ZN ) is a block diagonal matrix where

the matrices Z1, · · · ,ZN are on the main diagonal, β
∆
= 12

T 2



and T is the observation time, and [8, Eq. (10), Eq. (14)]

E[ǫǫT ]
∆
= γ(IM−1 + 1M−11

T
M−1) (30)

γ
∆
=

3πc2

TW 3

1 + MSNR

MSNR2 (31)

SNR
∆
= σ2

s/σ2
n (32)

It is noteworthy to mention that this covariance matrix assumes

that the transmitted signal is a Gaussian random process with

a known power spectrum density. Other covariance matrices

for different models, which are obtained from analyzing the

CRLB, can also be used instead. For example, the covariance

matrix given in [13] assumes that the transmitted signal and

the attenuations to the sensors are known, and the covariance

matrix given in [14] assumes that the signal is deterministic but

unknown and also the attenuations to the sensors are unknown.

We evaluate the position RMSE and velocity RMSE

versus the parameter γ for a sensor array with a circu-

lar configuration. We consider the case where a source

is located in the far-field region and the case where the

source is located in the near-field region. In the far-

field case the position and the velocity vectors of the

source are ps = [10000 cos(π/3), 10000 sin(π/3)]T [meter]

and ṗs = [30 sin(π/3), 30 cos(π/3)]T [meter/sec], respec-

tively. While in the near-field the position of the source

is ps = [1000 cos(π/3), 1000 sin(π/3)]T [meter] with the

same velocity vector. The number of sensors in the array

is eight and the positions of the sensors are pm = 100 ·
[cos

(

2πm
8

)

, sin
(

2πm
8

)

]T [meter], m = 1, . . . , 8. We vary

the parameter 10log10(γ) from −50[dB meter2] to −20[dB

meter2] (in case the source is in the near-field region) and

from −80[dB meter2] to −50[dB meter2] (in case the source

is in the far-field region). We assume that β = 0.1 [Hz2].

We normalize the position RMSE by the distance between

the source position and the origin, and normalize the velocity

RMSE by the Euclidean norm of the source velocity vector.

The normalized RMSE of the position and the normalized

RMSE of the velocity of the source using the proposed

LS estimator, and the two step-approach are shown in Fig-

ure 1, where the CRLB is also plotted. We also simulated

the approach suggested in [10, Section V]. The normalized

theoretical position RMSE and velocity RMSE of the two-

step method and the suggested approach obtained from their

approximated covariance matrix are also plotted. As can be

seen, the RMSE of the LS solution is close to that of the

two-step approach and the CRLB, while the RMSE of the

subsequent orthogonal projection approach in [10] are worse

compared to the LS estimator and the two-step method.

We next evaluated the position RMSE and velocity RMSE

versus the number of sensors in the array. We consider a

circular configuration as in the first example and a source in the

far-field region. The position and the velocity vectors of the

source are ps = [10000 cos(π/3), 10000 sin(π/3)]T [meter]

and ṗs = [30 sin(π/3), 30 cos(π/3)]T [meter/sec], respec-

tively. We vary the number of sensors in the configuration from

8 to 32 with a step of 4. We consider a source in the far-field
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Fig. 1. Normalized theoretical and simulated RMSE of the estimated position
and velocity of the source in the far-field and near-field regions versus γ for
an array with eight elements in a circular configuration, using the LS proposed
method, the two-step approach, and the subsequent projection method [10],
all compared with the CRLB.

region, and set 10log10(γ) = −40[dB meter2], and β = 0.1
[Hz2]. We normalized the position RMSE and velocity RMSE

as is explained for the previous simulation. The normalized

RMSE of the position and the normalized RMSE of the

velocity of the source using the proposed LS estimator and the

two step-approach are shown in Figure 2, where the CRLB is

also plotted, together with the normalized theoretical RMSE

of the two-step method and the suggested method. Observe

that compared to the two-step approach, the decrease of the

RMSE of the LS method with respect to the number of

sensors is smaller. In other words, the proposed approach

provides increasingly worse accuracy (relative to the two-step

approach) as the number of sensors in the array increases.

On the other hand, as the number of sensors increases, the

proposed approach becomes more computationally efficient.

6. CONCLUSIONS

We presented a method to estimate the position and the

velocity of a moving transmitting source. The source signal is

intercepted by an array of sensors. By collecting the TDOAs

and FDOAs measurements obtained from the intercepted sig-

nals, we proposed a closed-form least squares estimator which

is based on jointly eliminating the unknown nuisance param-

eters (range and range-rate differences between the reference

sensor and the source) using an orthogonal projection matrix.

The main benefit of using the proposed estimator is reducing

the computational complexity by an order of the number of

sensors in the array.
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Fig. 2. Normalized theoretical and simulated RMSE of the estimated position
and velocity of the source in the far-field and near-field regions versus the
number of sensors in an array with a circular configuration, using the LS
proposed method and the two-step approach, both compared with the CRLB.
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