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Abstract—In this paper, new parametric models for wideband, time-
varying channels are developed. These models seek to describe multi-
scale, multi-lag channels. The new model is adapted from recently defined
scale-lag canonical models, which suffer from model mismatch issues
when employed with wavelet signaling. The main challenge ofthe scale-
lag canonical models is the fact that they are predicated upon baseband
signaling; whereas wavelet signaling is bandpass in nature. The new
model accommodates the bandpass nature of the signaling scheme and
enables the design of high-rate block transmission methodsover multi-
scale multi-lag wireless channels. Simulation results demonstrate the
accuracy of the new channel model, and illustrate the performance of
the related spectrally efficient communication scheme.

I. I NTRODUCTION

Wideband time-varying channels are of interest in a variety
of wireless communication scenarios including underwater acoustic
systems and wideband terrestrial radio frequency systems such as
spread-spectrum or ultrawideband. Due to the nature of wideband
propagation, such channels exhibit some fundamental differences
relative to so-callednarrowband channels. More specifically, in
narrowband time-varying channels, the transmitted signal experiences
multiple propagation paths each with a possibly distinct Doppler
frequencyshift, and thus these channels are also known asmulti-
Doppler shift, multi-lag channels. For wideband channels, on the
other hand, each propagation path experiences a distinct Doppler
scale, hence the term,multi-scale, multi-lag channel. For both types of
time-varying channels, so-calledcanonical channel models have been
proposed [1], [2], [3], [4], limiting the number of channel coefficients
required to represent the channel.

In particular, there has been significant success in the application
of canonical models to narrowband time-varying channels [1]. For
wideband time-varying channels a canonical model has been pro-
posed in [2], [3], [4], which we dub as thescale-lag canonical model.
This model has been adopted for direct sequence spread spectrum
(DSSS) communication systems [4] to develop a scale-lag RAKE
receiver to collect the diversity inherent in the multi-scale multi-
lag channel. In addition, this model has spurred the use of wavelet
signaling due to the fact that when the wavelets are “matched”
to the scale-lag model, the receiver structure is greatly simplified
– the signals corresponding to different scale-lag branches of the
model are orthogonal when a single wavelet pulse is transmitted. The
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single pulse case is examined in [3]. Multi-scale multi-lag wavelet
signaling is possible as well [5], although inter-scale and inter-delay
interference results. In [5], multiple receiver designs to combat such
interference are provided exploiting the banded nature of the resulting
interference.

We observe that prior art on wideband, time-varying channels often
adopted different channel models. A single-scale model is commonly
considered [6], [7], which greatly simplifies processing at the expense
of not always modeling the wideband channel well. Approximation
by a bank of multiple narrowband time-varying channels [8] can
be considered as well, wherein each sub-channel is modeled by a
multi-Doppler shift, multi-lag model. Finally, in [9], [10], [11], the
channel itself is modeled by wavelet (packet) transforms. Although
approached from a different viewpoint, these models can somehow
be related to the existing scale-lag canonical models.

However, recent research points to the accuracy of the scale-lag
canonical model for wideband time-varying channels. A challenge
with direct application of the models of [2], [3], [4] is that most
considered wavelets are badly matched to the scale-lag canonical
model as this model is based on baseband signaling, whereas wavelet
signaling is bandpass in nature. In this paper, we thus modify the
scale-lag canonical model by exploiting the baseband feature of
the signaling scheme. First, the discretization and smoothing in the
scale domain is done as in [3]. This step actually reveals that we
are dealing with a virtual time-invariant multiple-input single-output
(MISO) system with as inputs different scaled versions of the original
input. Hence, we can treat every branch as a time-invariant bandpass
communication link, which we can bring back to baseband before
we perform discretization and smoothing in the time domain. This
finally leads to a new parametrization of the channel that better fits
bandpass signals. Based on this model, we then also develop a high-
rate signaling scheme and related receiver processing steps.

The outline of this paper is as follows. In Section II, we review
the original scale-lag canonical channel model and demonstrate the
wavelet signaling problem using this model. We solve this issue
in Section III, where we adapt the original scale-lag canonical
model. We use this model to develop a spectrally efficient signaling
scheme in Sections IV and V. Simulation results and conclusions are
presented in Sections VI and VII, respectively.

Notation: We use(·)T for transpose,⌈·⌉ for integer ceiling, and
⌊·⌋ for integer flooring. We reservej for the imaginary unit,ℜ{·}
for the real part, andℑ{·} for the imaginary part.



II. SCALE-LAG CANONICAL CHANNEL MODEL

A general multi-scale multi-lag wireless channel can be described
as [12]

r(t) =

∞
∫

0

∞
∫

−∞

h(α, τ)
√
αx(α(t− τ))dτdα, (1)

where x(t) is the transmitted signal,r(t) is the received signal,
and h(α, τ) is the wideband spreading function [12]. This model
reflects the fact that the received signalr(t) can be represented
by a superposition of differently delayed (byτ ) and scaled (byα)
versions of the transmitted signal (

√
α is a normalization factor).

Due to physical restrictions,τ andα can, without loss of generality,
be limited to τ ∈ [0, τmax] and α ∈ [1, αmax] by appropriately
delaying and scaling the received signal. The parametersτmax > 0
andαmax − 1 > 0 respectively represent the delay and scale spread.

Under certain circumstances, which we will highlight in the sequel,
it has been shown that this model can be approximated by the
following finite-dimensional discrete multi-scale multi-lag model,
which we refer to as thescale-lag canonical model [2], [3], [4],

rSL(t) =

R⋆
∑

r=0

L⋆(r)
∑

l=0

hr,la
r/2
⋆ x(ar⋆(t− lT⋆/a

r
⋆)), (2)

whereT⋆ is the arithmetic time resolution anda⋆ is the geometric
scale resolution of the model. Further, the scale orderR⋆ is given by
R⋆ = ⌈lnαmax/ ln a⋆⌉, and the delay order related to therth scale
L⋆(r) is given byL⋆(r) = ⌈ar⋆τmax/T⋆⌉.

In [4], the time and scale resolutions of the canonical model are
linked to the ambiguity functionχ(α, τ) =

∫

x(t)
√
αx(α(t−τ))dt,

which is assumed to decay in scale and time. More specifically,T⋆

is defined as the first zero-crossing ofχ(1, τ) whereasa⋆ as the first
zero-crossing ofχ(α, 0). However, we follow the approach of [3],
where it is assumed thatx(t) has a limited bandwidth and Mellin
support1. This leads toT⋆ = 1/W⋆, whereW⋆ is the bandwidth
of x(t), anda⋆ = e1/M⋆ , whereM⋆ is the Mellin support ofx(t).
Under these conditions,hr,l = hSL(ar⋆, lT⋆/a

r
⋆), wherehSL(α, τ) is

the scale-lag-smoothed version ofh(α, τ):

hSL(α, τ) =

∫ αmax

1

∫ τmax

0

h(α′, τ ′)

× sinc

(

lnα− lnα′

ln a⋆

)

sinc

(

α
τ − τ ′

T⋆

)

dτ ′dα′. (3)

The approach of [2] is related to the approach of [3]. However, in [2]
the limited bandwidth and Mellin support are explicitly obtained by
operators. More specifically, whereas [3] implicitly assumes band-
width and Mellin support limitations at the transmitter, [2] assumes
the frequency support is limited at the transmitter while the Mellin
support is limited at the receiver, which leads to a scale-lag-smoothed
version ofh(α, τ) that is slightly different from (3).

As proposed in [3], [5], assume we use the model (2) to develop a
wavelet signaling scheme based on a unit-energy orthogonal wavelet
ψ(t) showing orthogonality over a time shift ofT (called base time)
and scale shift ofa (called base scale). A set of symbolssn is then
modulated onψ(t) at a symbol rate ofT as

x(t) =
∑

n

snψ(t− nT ).

1The Mellin support of a signalx(t) is the support of the Mellin
transform of x(t) which is given by M(x(t)) = XM(s) =∫
∞

0 1/t1/2x(t)ej2πs ln(t/tnorm)dt, wheretnorm is a normalization time.
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Fig. 1. Power spectral density of the Haar and Shannon mother wavelets.

A critical element of such a wavelet signaling scheme is that the
base timeT and base scalea of ψ(t) can be properly matched to
the time resolutionT⋆ = 1/W⋆ and scale resolutiona⋆ = e1/M⋆ of
the channel, in which case the model (2) becomes

rSL(t) =
R
∑

r=0

L(r)
∑

l=0

hr,la
r/2x(ar(t− lT/ar)), (4)

where R = ⌈lnαmax/ ln a⌉, L(r) = ⌈arτmax/T ⌉, and hr,l is
defined as before but withT⋆ and a⋆ replaced byT and a,
respectively. However, such a matching can only be achieved ifψ(t)
has a bandwidth of1/T and a Mellin support of1/ ln a. However,
most wavelets do not satisfy this property. For instance, the Haar
and Shannon mother wavelets (with base timeT = 1 and base scale
a = 2, or dyadic), although having a Mellin support close to1/ ln 2,
their bandwidth is much larger than1/T = 1 (≈3 for Haar and2
for Shannon), as illustrated in Figure 1.

The main reason for this problem is that wavelets are bandpass
in nature in order to provide orthogonality in the scale domain. In
contrast, the scale-lag canonical model has been derived assuming
baseband signaling. This issue will be tackled in the next section,
where we explicitly take the bandpass nature of the transmitted signal
into account.

III. PROPOSEDCHANNEL MODEL

In contrast to [3], we here assume the transmitted signalx(t) is
a bandpass signal with carrier frequencyfc and effective bandwidth
W̃⋆ (soW⋆ = 2fc+W̃⋆), and it has a Mellin support ofM⋆. Our first
step is similar to [3], and consists of discretizing the scale domain
and approximating (1) by

rS(t) =

R⋆
∑

r=0

∫ τmax

0

hr(τ)a
r/2
⋆ x(ar⋆(t− τ))dτ, (5)

wherea⋆ = e1/M⋆ , R⋆ = ⌈lnαmax/ ln a⋆⌉, andhr(τ) = hS(ar⋆, τ),
with hS(α, τ) the scale-smoothed version ofh(α, τ):

hS(α, τ) =

∫ αmax

1

h(α′, τ)sinc

(

lnα− lnα′

ln a⋆

)

dα′. (6)

Observing (5), we can now interpret this system as a virtual time-
invariant multiple-input single-output (MISO) system withR⋆ + 1
branches, where therth branch is characterized by the channelhr(t)



and has as input a scaled version of the original transmitted signal,
i.e., ar/2⋆ x(ar⋆t), which has a carrier frequency ofar⋆fc and an
effective bandwidth ofar⋆W̃⋆.

We consider these branches of the virtual MISO system separately,
and model therth branch as

rSr (t) =

∫ τmax

0

hr(τ)a
r/2
⋆ x(ar⋆(t− τ))dτ.

This looks like a traditional time-invariant bandpass communication
link, and can thus also be represented by its complex baseband
equivalent form as

r̄Sr (t) =

∫ τmax

0

h̄r(τ)a
r/2
⋆ x̄(ar⋆(t− τ))dτ, (7)

where r̄Sr (t), h̄r(τ), and x̄(t) are the complex baseband equivalent
representations ofrSr (t), hr(τ), and x(t), respectively, or in other
words:

rSr (t) = ℜ{r̄Sr (t)ej2πfca
r

⋆
t},

hr(t) = ℜ{h̄r(t)e
j2πfca

r

⋆
t},

x(t) = ℜ{x̄(t)ej2πfct}.

Next, we discretize the time domain. Due to the fact thatx̄(t) has
a limited bandwidth ofW̃⋆ (or x̄(ar⋆t) has a limited bandwidth of
ar⋆W̃⋆), we can approximate (7) as

r̄SLr (t) =

L̃⋆(r)
∑

l=0

h̄r,la
r/2
⋆ x̄(ar⋆(t− lT̃⋆/a

r
⋆)),

whereT̃⋆ = 1/W̃⋆, L̃⋆(r) = ⌈ar⋆τmax/T̃⋆⌉, andh̄r,l = h̄L
r (lT̃⋆/a

r
⋆),

with h̄L
r (τ) the lag-smoothed version of̄hr(τ):

h̄L
r (τ) =

∫ τmax

0

h̄r(τ
′)sinc

(

ar⋆
τ − τ ′

T̃⋆

)

dτ ′. (8)

Finally, the adapted scale-lag canonical channel model is given by

rSL(t) =

R⋆
∑

r=0

ℜ{ej2πfca
r

⋆
tr̄SLr (t)}

=

R⋆
∑

r=0

ℜ







ej2πfca
r

⋆
t

L̃⋆(r)
∑

l=0

h̄r,la
r/2
⋆ x̄(ar⋆(t− lT̃⋆/a

r
⋆))







.

(9)

A schematic overview of this model is shown in Figure 2.

IV. SIGNALING SCHEME

Suppose now that we modulate a set of symbolssn on a carrier
with frequencyfc using a unit-energy pulse shapep(t) at symbol
rate T̃ . The baseband signal̄x(t) introduced in Section III can then
be expressed as

x̄(t) =
∑

n

snp(t− nT̃ ),

and the related passband signal becomes

x(t) =
∑

n

ℜ{snp(t− nT̃ )ej2πfct}

=
∑

n

ℜ{sn} cos(2πfct)p(t− nT̃ )

−ℑ{sn} sin(2πfct)p(t− nT̃ ).

Further, given thatp(t) has a bandwidth ofW̃⋆, we can define a
scale parametera for which the different branches of the virtual

MISO system are not overlapping in the frequency domain, hence
are orthogonal:

a =
2fc + W̃⋆

2fc − W̃⋆

. (10)

Crucial to our model is now that the symbol period̃T matches
the time resolutionT̃⋆ = 1/W̃⋆ and thata matchesa⋆ = e1/M⋆ , in
which case the model (9) can be written as

rSL(t) =

R
∑

r=0

ℜ







ej2πfca
rt

L̃(r)
∑

l=0

h̄r,la
r/2x̄(ar(t− lT̃ /ar))







,

(11)
whereR = ⌈lnαmax/ ln a⌉, L̃(r) = ⌈arτmax/T̃ ⌉, and h̄r,l is de-
fined as before but with̃T⋆ anda⋆ replaced byT̃ anda, respectively.

We can then separate the different branches of the virtual MISO
system by downconversion and matched filtering. More specifically,
therth branch can be obtained by downconverting the received signal
with frequencyarfc and matched filtering withar/2p(art). For the
complex baseband equivalent representation of therth branch, this
leads to

ȳSLr (t) =

∫

ar/2p(art′)r̄SLr (t− t′)dt′

=

L̃(r)
∑

l=0

h̄r,l

∫

ar/2p(art′)x̄(ar(t− t′ − lT̃ /ar))dt′

=
∑

n

sn

L̃(r)
∑

l=0

h̄r,l

∫

arp(art′)p(ar(t− t′ − (l + n)T̃ /ar))dt′

=
∑

n

sn

L̃(r)
∑

l=0

h̄r,lqr,l(t− nT̃/ar),

where

qr,l(t) =

∫

arp(art′)p(ar(t− t′ − lT̃ /ar))dt′.

SamplingȳSLr (t) at ratear/T̃ , we obtain

ȳr,m = ȳSLr (mT̃/ar) =
∑

n

sn

L̃(r)
∑

l=0

h̄r,lqr,l((m− n)T̃ /ar)

=
∑

n

snḡr,m−n,

where

ḡr,n =

L̃(r)
∑

l=0

h̄r,lqr,l(nT̃/a
r). (12)

Hence, we obtain a standard discrete-time convolution after sampling
every branch with its appropriate sampling rate, i.e., the sampling rate
of the rth branch will be equal toar times the symbol rate1/T̃

The crucial question that now remains is whether we can find a
waveform p(t) for which T̃ is matched toT̃⋆ = 1/W̃⋆ and a to
a⋆ = e1/M⋆ . It turns out that these matching problems can be solved
by takingp(t) equal to a unit-energy sinc function:

p(t) = W̃ 1/2
⋆ sinc(W̃⋆t) = 1/T̃ 1/2

⋆ sinc(t/T̃⋆). (13)

First of all, a natural choice for the symbol period related to this
p(t) is given byT̃ = T̃⋆ = 1/W̃⋆. Further, it turns out that for this
p(t), the a defined in (10) satisfiesa ≈ a⋆ = e1/M⋆ , whereM⋆ is
the Mellin support ofcos(2πfct)p(t) or sin(2πfct)p(t), as indicated
before.
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Fig. 2. Adaptation of the scale-lag canonical model to bandpass signals.

The other interesting thing about selectingp(t) as in (13) is that
qr,l(t) = sinc(tar/T̃ − l) and thus̄gr,n = h̄r,n, which results in the
following simple discrete-time convolution input-output model:

ȳr,n =

L̃(r)
∑

l=0

h̄r,lsn−l. (14)

V. BLOCK TRANSMISSION

To aid block processing at the receiver, let us parse the information-
carrying symbolsbn in blocks of lengthN , separated from each other
by a cyclic prefix (CP) of lengthZ. For the first block of data, denoted
asb = [b0, . . . , bN−1]

T , this means that the transmitted symbolssn
satisfy sn = bn−Z for Z ≤ n < N and sn = bN+n−Z for 0 ≤
n < Z. To avoid interblock interference (IBI) on every branch of the
virtual MISO system, the CP lengthZ needs to satisfyZ ≥ L̃(r) for
r ∈ {0, 1, . . . , R}, or in other words,Z ≥ ⌈aRτmax/T̃ ⌉. Removing
the CP at the receiver, we can then obtain from (14) the following
relationship for the first block of data of therth branch of the virtual
MISO system:

ȳr = H̄rb,

where ȳr = [ȳr,Z , . . . , ȳr,N+Z−1]
T and H̄r is a circulant matrix

with [h̄r,0, . . . , h̄r,L̃(r), 0, . . . , 0]
T as its first column. Collecting the

outputs of all of the different branches of the virtual MISO system,
yields

ȳ = H̄b, (15)

whereȳ = [ȳT
0 , . . . , ȳ

T
R]

T andH̄ = [H̄T
0 , . . . , H̄

T
R]

T . Using discrete
Fourier transform (DFT) processing and maximum ratio combining
(MRC), b can then be easily recovered from̄y, even when noise is
present.

Note that so far we have only discussed transmission on a single
scale layer. In other words, we have limited ourselves to modulating
symbolssn on a single band of effective bandwidth̃W⋆ at carrier
frequencyfc. But similar to [5], we could consider transmitting on
multiple scale layers in parallel, and modulate symbols onK non-
overlapping bands, where thekth band has bandwithakW̃⋆ and
carrier frequencyakfc, with k ∈ {0, 1, . . . ,K − 1}. Of course,

in that case we obtain additional inter-scale interference and the
model (15) changes into a linear relationship described by a block
banded channel matrix. However, due to space limitations, we do not
provide this extension herein.

VI. COMPUTERSIMULATIONS

We first investigate the accuracy of the newly proposed model.
More specifically, we assume that a single symbols0 = 1 is sent as
described in Section IV, which means thatx̄(t) = W̃

1/2
⋆ sinc(W̃⋆t)

and x(t) = W̃
1/2
⋆ cos(2πfct)sinc(W̃⋆t). We then look at the

normalized mean square error (NMSE) of the received signal, given
by

ξ =

∫ τmax

0
|r(t)− rSL(t)|2dt
∫ τmax

0
|r(t)|2 , (16)

with rSL(t) defined in (11). Differentγ = fc/W̃⋆ ratios are
considered. Forγ = fc/W̃⋆ = 1.5, we obtain a special case since
thenx(t) is a Shannon wavelet with base timeT = 1/W̃⋆ (which
is not equal to1/W⋆!) and base scalea = 2, which also allows us
to compute the MSE of the received signal as in (16) but using the
rSL(t) defined in (4).

Figure 3 shows the NMSE results for a channel with a uniform
delay profile in the range[0, 2/W̃⋆) and scales picked asα = 1.2r for
r = 0, 1, 2, . . . . We clearly see that the adapted scale-lag canonical
model (11) is more accurate than the former model (4). We especially
observe a good fit whenγ = fc/W̃⋆ = 5.5, which yieldsa = 1.2
according to (10), since in that case the actual scalesα = 1.2r match
the scalesar of the scale-lag canonical model.

Using the same channel model as before but fixing theαmax to
αmax = 1.2 (so the actual channel only has two scales), we now
consider the block transmission scheme presented in Section V using
N = 16 and Z = 8. Figure 4 shows the BER performance for
different cases. As mentioned before, whenγ = fc/W̃⋆ = 5.5, our
channel model is more accurate and a much better performance is
obtained.
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VII. C ONCLUSIONS

In this paper, we have developed a new scale-lag canonical channel
model for general multi-scale multi-lag wireless channels. The model
is based on exploiting the bandpass nature of most communication
signals, and solves some of the issues that were present in existing
scale-lag canonical models. Furthermore, we developed a high-rate
signaling scheme that fits this new channel model and leads to
relatively simple receiver processing. The proposed channel model
is validated by means of the MSE of the impulse response as well
as the BER of the related communication scheme.
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