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Abstract—We consider a combined sleeping and censoring
scheme for energy-efficient spectrum sensing in cognitive sensor
networks. We analyze the detection performance of this scheme
by theoretically deriving the global probabilities of detection and
false-alarm. Our goal is to minimize the energy consumption
incurred in distributed sensing, given constraints on the global
probabilities of detection and false-alarm, by optimally designing
the sleeping rate and the censoring thresholds. Using specific
transceiver models for sensors based on IEEE 802.15.4/ZigBee,
we show the energy savings achieved under an optimum choice
of the design parameters.

I. INTRODUCTION

The family of wireless networks - sensor networks, personal
area networks, local area networks, cellular networks etc
has seen tremendous growth recently, resulting in demand
for radio spectrum. Traditionally, radio spectrum allocation
has been based on exclusive, licensed use of portions of
spectrum to wireless systems. This has resulted in a perceived
dearth of spectrum available for use for newer wireless net-
works and applications. Radio spectrum measurements [13]
however indicate that large portions of spectrum licensed to
wireless systems remain under-utilized. Consequently there
is a growing interest in unlicensed use of empty portions
in order to improve spectrum utilization [3], [5], [17]. A
promising approach for such secondary spectrum access is
the use of cognitive radios. A cognitive radio can alter its
radio transmission parameters autonomously based on active
monitoring of spectrum in order to access spectrum on a
secondary basis while coexisting with licensed systems or
other unlicensed systems.

In this paper, we consider a cognitive sensor network
that performs spectrum sensing in order to determine empty
radio channels and limits its transmissions on channels that
are found vacant in order to reduce harmful interference to
licensed systems. Our study is motivated by recent devel-
opments in regulatory and standardization bodies aimed at
permitting the use of portable devices and low-power sensors
to operate on a secondary basis in VHF-UHF bands licensed
to television broadcasting systems. In this context, reliable
spectrum sensing that is energy efficient is critical.

The cognitive sensor network comprises of a fusion center
(FC) and a number of cognitive sensors that carry out sensing

in dedicated, periodic sensing slots. Channel sensing is done
using energy detection, which is a common approach to the
detection of unknown signals [3], [8]. The results of the
sensing are collected at a fusion center that makes a global
decision using an OR fusion rule on the occupancy of the
channel. Distributed spectrum sensing aims at exploiting the
inherent spatial diversity to alleviate local shadowing condi-
tions that may result in unreliable detection at an individual
cognitive sensor. Distributed spectrum sensing schemes based
on soft and hard fusion have been considered in the past
[10] (the reader is also referred to literature in distributed
detection [14]). Although the global detection performance
improves, so does the energy consumption in the cognitive
sensor network. There is considerable literature on different
distributed spectrum sensing schemes and their performance,
limited attention has however been paid to schemes that
are energy-efficient. A clustering-based approach to energy-
efficient distributed sensing was proposed in [9]. However this
approach is only suitable for tree-structured cognitive sensor
networks.

We propose a combination of sleeping and censoring as an
energy saving mechanism in spectrum sensing. When in sleep
mode, a cognitive sensor switches off its sensing transceiver
and incurs no observation costs or transmission costs. Cen-
soring involves transmitting detection results only when they
are in a certain information region. Our goal is to minimize
the average energy incurred by the cognitive sensor network to
perform spectrum sensing while maintaining a global detection
performance by determining the optimum sleeping rate and
censoring region. The constraint on detection performance
is specified by a minimum target probability of detection
and a maximum permissible probability of false-alarm. We
first provide a theoretical framework to analyze the combined
sleeping and censoring scheme and obtain the optimum design
parameters. We then consider a sensor network based on IEEE
802.15.4/ZigBee radios to validate the theoretical analysis.
Simulation results show orders of magnitude in energy savings
in comparison to traditional spectrum sensing schemes.

In the context of wireless sensor networks, sleeping and
censoring schemes have been individually shown as effective
ways to achieve energy efficiency, with the exception of [16].
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Fig. 1. Distributed spectrum sensing topology.

The design of censoring regions under different optimization
settings related to detection performance has been considered
in [2], [12]. In [16], the problem of maximizing the mutual
information between the state of signal occupancy and the
decision state of the fusion center by choosing an appropriate
sleeping and censoring policy was considered. As shall be
shown, the optimization problem resulting in our work differs
from these past works.

The remainder of the paper is organized as follows. In
Section II, we describe distributed spectrum sensing based
on sleeping and censoring and formulate energy-efficient
distributed sensing as an optimization problem. Expressions
for the global probability of detection and probability of
false-alarm are then derived in Section III. We then show
that network energy minimization is a convex optimization
problem. We present simulation results to show the energy
savings obtained by the proposed scheme in Section IV.
Conclusions are presented in Section V.

II. SYSTEM MODEL

The cognitive sensor network comprises of N cognitive
sensors and an FC in a parallel fusion topology as shown
in Figure 1. Under this setting, using local decisions made by
the cognitive sensors, the FC has to solve a binary hypothesis
testing problem, i.e. determine whether a licensed system
is transmitting, given by hypothesis H1, or not, given by
hypothesis H0. Each of the cognitive sensors is controlled
by two policies. A sleeping policy determines whether or not
it is awake and a censoring policy determines whether or
not it transmits its detection result, given that it is awake.
Denote μ to be the sleeping rate, i.e. the probability that a
cognitive sensor is in the “off” state. Each cognitive sensor
that is awake performs detection in a dedicated sensing slot
using T0 observation samples. Energy detection with censoring
is employed at each cognitive sensor. Censoring thresholds
λ1 and λ2 are applied at each of the cognitive sensors. At
the i-th cognitive sensor, denoting Ei to be the received
energy measured using the T0 observation samples, the local
censoring decision rule is given as follows:⎧⎨

⎩
send 1, declaring H1 if Ei ≥ λ2

no decision if λ1 < Ei < λ2

send 0, declaring H0 if Ei ≤ λ1.
(1)

We assume that the received signal-to-noise ratio (SNR) at
each cognitive sensor is the same, denoted by γ. Consequently
the probabilities of false-alarm and detection for each cognitive
sensor are the same, denoted respectively by Pf and Pd. It is
well known [8] that Ei follows a central chi-square distribution
with 2T0 degrees of freedom under H0 and a non-central
chi-square distribution with 2T0 degrees of freedom and non-
centrality parameter 2γ under H1.

Based on the above decision rule, the probabilities of false
alarm and detection can be respectively written as

Pf = Pr(Ei ≥ λ2|H0) =
Γ(T0,

λ2
2 )

Γ(T0)
(2)

and
Pd = Pr(Ei ≥ λ2|H1) = QT0(

√
2γ,

√
λ2), (3)

where Γ(a, x) is the incomplete gamma function given by
Γ(a, x) =

∫ ∞
x

ta−1e−tdt, with Γ(a, 0) = Γ(a) representing
the gamma function and Qu(a, x) is the generalized Marcum

Q-function, Qu(a, x) = 1
au−1

∫ ∞
x

tue−
t2+a2

2 Iu−1(at)dt, with
Iu−1(.) being the modified Bessel function of the first kind
and order u − 1.

We assume that the respective prior probabilities, π0 =
Pr(H0) and π1 = Pr(H1), of the hypotheses H0 and H1 are
known. In practice, estimates of π0 and π1 can be obtained
via spectrum measurements. In this case, we can follow the
definition of [12] for the censoring rate

ρ = Pr(λ1 < Ei < λ2)
= π0Pr(λ1 < Ei < λ2|H0) + π1Pr(λ1 < Ei < λ2|H1)
= π0δ0 + π1δ1 (4)

where δ0 and δ1 can be written using (2) and (3) as

δ0 = Pr(λ1 < Ei < λ2|H0)

=
Γ(T0,

λ1
2 )

Γ(T0)
− Γ(T0,

λ2
2 )

Γ(T0)
, (5)

δ1 = Pr(λ1 < Ei < λ2|H1)

= QT0(
√

2γ,
√

λ1) − QT0(
√

2γ,
√

λ2). (6)

Denote Csi
and Cti

to be the energy consumed by the i-
th cognitive sensor in sensing and transmission respectively.
Our cost function is given by the average energy consumed in
distributed sensing in the network,

CT = (1 − μ)
N∑

i=1

(Csi
+ Cti

(1 − ρ)). (7)

The sensing energy Csi
constitutes the energy consumed in

listening and collecting the T0 observation samples, as well as
the signal processing involved in making a local decision. The
transmission energy Cti

is the energy required to transmit the
one-bit local decision to the FC.

Denote QD and QF to be the respective global probability
of detection and global probability of false-alarm. The target
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detection performance is then quantified by: QF ≤ α and
QD ≥ β. Here, α and β are pre-specified detection design
parameters. For reliable detection, it is desirable to have α
close to zero and β close to unity. Our goal is to determine the
optimum sleeping rate μ and the censoring thresholds λ1 and
λ2 such that CT in (7) is minimized subject to the constraints
QF ≤ α and QD ≥ β. Hence our optimization problem can
be reformulated as follows:

min
(μ,λ1,λ2)

CT

s.t. QF ≤ α, QD ≥ β.
(8)

In the following section, we derive analytically the expressions
for QD and QF .

III. DISTRIBUTED DETECTION PERFORMANCE ANALYSIS

Each cognitive sensor that is awake listens on the channel
periodically in dedicated sensing slots. An awake cognitive
sensor computes the received signal energy and locally decides
on the presence or absence of the licensed system based on
the decision rule in (1). If it comes up with a decision, then
it sends its decision result to the FC. The FC employs an OR
rule to make the final decision. That is, DFC = 1 if the FC
receives at least one local decision declaring 1, else DFC = 0.
Let the number of awake cognitive sensors be K, and let L
out of K such cognitive sensors send their decision to the FC.

The global probability of false-alarm, QF , can now be
written as

QF = Pr(DFC = 1, L ≥ 1,K ≥ 1|H0)

=
N∑

K=1

Pr(DFC = 1, L ≥ 1,K|H0)

=
N∑

K=1

Pr(K|H0)Pr(DFC = 1, L ≥ 1|H0,K)

=
N∑

K=1

(
N
K

)
μN−K(1 − μ)K

×
K∑

L=1

Pr(DFC = 1, L|H0,K)

=
N∑

K=1

(
N
K

)
μN−K(1 − μ)K

×
K∑

L=1

Pr(L|H0,K)Pr(DFC = 1|H0,K, L)

=
N∑

K=1

(
N
K

)
μN−K(1 − μ)K

×
K∑

L=1

(
K
L

)
δK−L
0 (1 − δ0)L[1 − (1 − Pf )L] (9)

where Pf is given by (2).
Equation (10) can be further simplified using the binomial

expansion theorem. After some algebraic manipulation, we
obtain

QF = 1 − {1 − (1 − μ)(1 − δ0)Pf}N
. (10)

The global probability of detection, QD, can be derived in
a similar way. We have

QD = Pr(DFC = 1, L ≥ 1,K ≥ 1|H1)

=
N∑

K=1

Pr(DFC = 1, L ≥ 1,K|H1)

=
N∑

K=1

Pr(K|H1)Pr(DFC = 1, L ≥ 1|H1,K)

=
N∑

K=1

(
N
K

)
μN−K(1 − μ)K

×
K∑

L=1

Pr(DFC = 1, L|H1,K)

=
N∑

K=1

(
N
K

)
μN−K(1 − μ)K

×
K∑

L=1

Pr(L|H1,K)Pr(DFC = 1|H1,K, L)

=
N∑

K=1

(
N
K

)
μN−K(1 − μ)K

×
K∑

L=1

(
K
L

)
δK−L
1 (1 − δ1)L[1 − (1 − Pd)L]

= 1 − {1 − (1 − μ)(1 − δ1)Pd}N
. (11)

where Pd is given by (3).
The optimization problem (8) can now be rewritten as

follows.

min
(μ,λ1,λ2)

(1 − μ)
∑N

i=1 [Csi
+ Cti

(1 − ρ)]

s.t. 1 − {1 − (1 − μ)(1 − δ0)Pf}N ≤ α,

1 − {1 − (1 − μ)(1 − δ1)Pd}N ≥ β.

(12)

Efficient algorithms for solving inequality-constrained opti-
mization problems can be found in [11].

IV. SIMULATION RESULTS

We consider an example transceiver, which is a Chipcon
CC2420 chip based on the IEEE 802.15.4/ZigBee standard [7],
to compute the energy consumption in sensing and transmis-
sion. This low-power radio is designed for wireless personal
area networks to provide a data rate up to 250 Kbps in
the range of 10 m - 70 m. Our cognitive sensor network
comprises of such radios arranged in a circular field with a
radius of 70 m, uniformly distributed along the circumference
with the FC located in the center. We model the wireless
channel between the cognitive sensor and the FC using a free-
space path loss model. That is, the signal power attenuation is
inversely proportional to the square of the distance d between
the transmitter and receiver.

We employ the transceiver model developed in [6] for
our analysis on energy consumption. The sensing energy for
each decision consists of two parts: the energy consumption
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involved in listening over the channel and making the decision
and the energy consumption of the signal processing part
for modulation, signal shaping, etc. The former contribution
depends on the number of samples taken during the detection
time. We choose T0 = 5, corresponding to a detection time
of 1 μs. The typical circuit power consumption of ZigBee
is approximately 40 mW. Therefore, the energy consumed for
listening is approximately 40 nJ. The processing energy related
to the signal processing part in the transmit mode for a data
rate of 250 kbps, a voltage of 2.1 V and current of 17.4 mA is
approximately 150 nJ/bit. Since we use one bit per decision,
the sensing energy of each cognitive sensor is Cs = 190 nJ.

The transmitter dissipates the energy to run the radio
electronics and the power amplifier. Following the model in
[6] and [1], to transmit one bit over a distance d, the radio
spends:

Ct(d) = Ct−elec + eampd
2 (13)

where Ct−elec is the transmitter electronics energy and eamp is
the amplification required to satisfy a given receiver sensitivity
level. Assuming a data rate of 250 kbps and a transmit power
of 20 mW, Ct−elec = 80 nJ/bit. The eamp to satisfy a receiver
sensitivity of -90 dBm at an SNR of 10 dB is 40.4 pJ/bit/m2.

Every simulation result in this section is averaged over
10000 realizations. Two sets of values were chosen for the
a priori probabilities: π0 = 0.2, π1 = 0.8 and π0 = 0.8, π1 =
0.2. In Figure 2, we show the energy consumed in spectrum
sensing for different values of probability of detection, QD.
Here, N = 5, SNR = 10 dB and α = 0.1. As is clear,
a combined sleeping and censoring scheme consumes less
than half the energy as would be consumed if a distributed
spectrum sensing such as in [10] were employed. In Figure
3, we show the average energy consumed as the number of
cognitive sensors in the network is increased. Here, α = 0.1
and β = 0.99. Without sleeping or censoring, the energy
consumed in spectrum sensing scales linearly with the number
of cognitive sensors. However with a sleeping and censoring
scheme, the energy consumption saturates to a level that is
several orders of magnitude lower. We clearly see that to
attain this desired detection performance level, only a small
fraction of the cognitive sensors need to participate in spectrum
sensing.

V. CONCLUSIONS AND REMARKS

We designed the optimum sleeping rate and censoring
thresholds in order to minimize the average energy consumed
in distributed spectrum sensing, under the constraint that
desired probabilities of detection and false-alarm are satisfied.
We showed that with an optimum choice of parameters,
our proposed scheme results in substantial energy savings in
comparison to a scheme where no sleeping or censoring is
employed.

In this work, we did not address the design of protocols
employed in the cognitive sensor network - in particular, the
protocol that individual sensors use to transmit their detection
results to the FC. Optimizing the design of the protocol with
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the sensing and censoring policies could lead to additional
energy savings.

Our analysis was based on the OR hard fusion rule. The
design of sleeping and censoring schemes with extensions to
other fusion rules and soft fusion is a subject of further study.
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