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ABSTRACT
In this paper, we solve the problem of detecting the entries of
a sparse finite-alphabet signal from a limited amount of data,
for instance obtained by compressive sampling. While exist-
ing methods either rely on the sparsity property, the finite-
alphabet property, or none of those properties to solve the
under-determined system of linear equations, we capitalize
on both the sparsity and the finite-alphabet features of the sig-
nal. The problem is first formulated in a Bayesian framework
to incorporate the prior knowledge of sparsity, which is then
shown to be solvable using sphere decoding (SD) or semi-
definite relaxation (SDR) for efficient Boolean programming.
A few toy simulations show how our method can outperform
existing works.

Index Terms— compressed sensing, sparsity, finite al-
phabet, sphere decoding (SD)

1. INTRODUCTION

Currently, there is a great interest in a range of detection prob-
lems where only a reduced set of data samples. e.g., obtained
from compressive sampling, is available to detect every en-
try of a sparse finite-alphabet signal, e.g., a signal contain-
ing entries in {0, 1}. Such problems appear in many fields
such as localization of multiple emitters/targets in a geograph-
ical area, spectrum sensing of active users in a wide spec-
trum band, object detection in imaging, and binary symbol
detection in digital communications. Note that the considered
problem differs from existing work on the detection of sparse
signals, where the reduced set of samples is merely used to
find out whether a sparse signal is present or not [1].
One way to deal with the considered problem is to view it

as an estimation problem and employ for instance a standard
minimum mean square error (MMSE) estimator followed by
a decision device. However, since the system of linear equa-
tions is under-determined, such a method generally does not
perform very well.
To cope with the limited amount of data samples, we have

to capitalize on the sparsity and/or the finite-alphabet property
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of the signal. Traditional approaches only rely on a single one
of those properties. l1-norm minimization for instance only
exploits the sparsity of the signal [2], whereas generalized
sphere decoding is developed to solve an under-determined
integer least squares problem for non-sparse constant modu-
lus signals [4]. The novel contribution of this work is that we
build on both the sparsity and the finite-alphabet features to
detect the entries of the signal. The new problem formula-
tion is deduced from the Bayesian framework, where a pri-
ori knowledge of the sparsity property can be incorporated
into the objective function. It can then be cast into either a
sphere decoding (SD) problem or a semi-definite relaxation
(SDR) problem, both of which yield near-optimal estimates
of finite-alphabet signals at affordable polynomial complex-
ity. Some toy simulations illustrate the improved performance
of the proposed method over existing techniques.

2. SIGNAL MODEL

Consider a system where a sparse finite-alphabet signal s ∈
{0, 1}N with M � N nonzero elements is transformed into
a real-valued output vector x ∈ RN as

x = Ψs + v (1)

where Ψ ∈ RN×N is the transformation matrix and v ∈
RN is a random noise vector. Further, we assume that only
K � N linear observations of x are available, e.g., obtained
through compressive sampling:

y = Φx = ΦΨs + Φv = Hs + w (2)

where Φ ∈ RK×N is the compressive sampling matrix.
Complex-valued linear systems can be expressed by (2) after
standard transformation. Now it is clear that ifK < M � N ,
it will be difficult to reconstruct s; on the other hand, if
M ≤ K � N , (2) is an under-determined system of lin-
ear equations that might be solvable if both the sparsity and
finite-alphabet constraints are exploited.
The above system model appears in several signal pro-

cessing applications, including signal “on-off” state detection
and binary symbol demodulation in digital communications.
These examples will be elaborated in Section 5.
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3. SIGNAL DETECTION TECHNIQUES

In this section, we give a brief overview of a few existing
approaches that could be adopted to extract s from y in (2).

3.1. Minimum Mean Square Error (MMSE) Estimator

Suppose that w is white Gaussian noise with zero mean and
covariance σ2

wI. In that case, we can solve (2) by an MMSE
estimator followed by a thresholding decision device:

s̃ = (HT H + σ2
wI)−1HT y (3a)

ŝ = (s̃ ≥ ζ); ζ = 0.5. (3b)

Here, ζ is a decision threshold set to a nominal value 0.5. It
is possible to choose ζ based on some applicable detection
principle, e.g., the Neyman-Pearson rule for binary hypothe-
sis tests.
The MMSE estimator yields a linear receiver with rela-

tively low complexity. However, it does not perform well
for under-determined systems. Clearly, we need to exploit
the sparsity and/or finite-alphabet properties of s to improve
the detection performance. The next two subsections review
some existing methods that could be used in this respect.

3.2. l1-norm Convex Optimization

To cope with under-determined systems, the sparsity property
of s can be capitalized through an l1-norm minimization for-
mulation as follows [2]:

s̃ : min
s̃∈RN

||s̃||1, s.t. y = Hs̃ (4a)

ŝ = (s̃ ≥ ζ); ζ = 0.5. (4b)

The linear constraint in (4a) yields simple convex linear pro-
gramming which is also termed the Basis Pursuit (BP) method
[3], but reduces the robustness of this method against addi-
tive noise. Noise resilience can be improved by adopting a
quadratic constraint ||y−Hs||22 ≤ δ in (4a) for a proper value
of δ, yielding the BP de-noising (BPDN) method [3]. In both
methods, the finite-alphabet nature of s is overlooked.

3.3. Generalized Sphere Decoding

Sphere decoding (SD) is a computationally-efficient search
algorithm for solving an integer least squares problem. When
the linear system is under-determined, several versions of
generalized SD (GSD) have been developed [4]. For a
non-sparse constant modulus signal b ∈ {−1, 1}N pass-
ing through the same linear system y = Hb + w as in (2),
one approach is to regularize the rank-deficient matrixHT H

by adding a small diagonal loading term εI, which amounts
to imposing an l2-norm constraint on b, as follows [4]:

min
b∈{−1,1}N

||y − Hb||22 + ε||b||22. (5)

It is shown in [4] that (5) can be transformed into the fol-
lowing equivalent form:

b̂ = arg min
b∈{−1,1}N

||R(ρ − b)||22. (6)

where ρ := G−1HT y with G := HT H + εI, and R is an
upper triangular matrix satisfying G = RT R. Because R

is now of full rank for any ε > 0, the standard SD search
steps applies directly on (6). This GSD algorithm utilizes the
finite-alphabet constraint on b to search for a near-optimal
solution at polynomial complexity. Nevertheless, its detec-
tion performance for under-determined systems exhibits an
inevitable gap from full-rank systems.

4. SPARSE SIGNAL RECOVERY UNDER
FINITE-ALPHABET CONSTRAINT

We aim to utilize both the sparse nature and the finite alpha-
bet property of the input vector s to derive an accurate signal
recovery algorithm with polynomial computational complex-
ity. The sparsity property can be viewed as a priori knowl-
edge and incorporated into the objective function under the
Bayesian framework. Meanwhile, the finite-alphabet prop-
erty constrains the search space for s on a lattice.
In the absence of the finite-alphabet constraint, a sparsity-

constrained optimization formulation for recovering s can be
expressed as1

min
s∈RN

||y − Hs||22 + λ||s||ll. (7)

Sparsity is induced by the l-norm penalty term λ||s||ll for l ∈
[0, 2), while exact sparsity corresponds to l = 0 [2, 3]. Setting
l = 1 and viewing λ as a Lagrange multiplier, (7) subsumes
several noted l1-regularization algorithms, including LASSO
[6] and BPDN [3]. When l = 2, (7) no longer results in
a sparse representation of s, but the expression resembles to
that of GSD in (5) except for the different search spaces.
For s ∈ {0, 1}N , it holds that

||s||0 = ||s||1 = ||s||22; and ||s||1 = sT 1 = 1T s. (8)

Note that the nonlinear, non-differentiable l1-norm function
reduces to a linear form, which is amenable to gradient-based
algorithms. Setting l = 1 and choosing 0 < ε ≤ λ, we re-
write (7) as

min
s∈{0,1}N

||y − Hs||22 +
λ − ε

2

(
sT 1 + 1T s

)
+ ε||s||22. (9)

In (9), the second term is a linear representation of the
sparsity-inducing l1-norm on s, and the third term of the
l2-norm is useful in regularizing the rank-deficiency issue
of the measurement matrix H. Our goal next is to develop
computationally-efficient algorithms that solve (9).

1With l = 1, this is an MAP formulation assuming Gaussian noise and
sparsity-inducing Laplace prior on s [5].
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4.1. Algorithm 1: Sphere Decoding

Our first approach is to re-formulate (9) such that it is con-
ducive to the use of SD, even when H is rank deficient.
Adopting the definitionsG := HT H + εI andG = RT R as
in (6), we re-write the objective function in (9) as follows:

J(s) := ||y − Hs||22 +
λ − ε

2

(
sT 1 + 1T s

)
+ ε||s||22

= sT (HT H + εI)s − (yT H − λ − ε

2
1T )s

−sT (HT y − λ − ε

2
1) + yT y

= sT RT Rs − (yT H − λ − ε

2
1T )G−1RT Rs

−sT RT RG−1(HT y − λ − ε

2
1) + yT y

= ||R(ρλ − s)||2 + C, s ∈ {0, 1}N (10)

where ρλ := G−1(HT y− λ−ε
2 1) and C := yT y−ρ

T
λ Gρλ.

The standard SD algorithm can now be employed to
search for s that minimizes (10). In view of the sparsity-
related terms in the objective function, we term this algorithm
SD-CS (SD with Compressive Sampling).

4.2. Algorithm 2: Semi-Definite Relaxation

Alternatively, we express (9) in a quadratic form as follows:

J(s) = ||y − Hs||22 +
λ − ε

2

(
sT 1 + 1T s

)
+ ε||s||22

=

[
s

1

]T [
HT H + εI −HT y + λ−ε

2 1

−yT H + λ−ε
2 1T yT y

]
︸ ︷︷ ︸

Q̃s

[
s

1

]
︸︷︷︸

s̃

= s̃T Q̃ss̃, s̃ ∈ {0, 1}(N+1), s̃N+1 = 1 (11)

where Q̃s is a positive-semidefinite matrix for any ε ≥ 0.
The form in (11) is a Boolean quadratic programming

problem which permits several efficient algorithms, such as
the semi-definite relaxation (SDR) method [7]. To employ
SDR, we express J(s) as a function of b := 2s − 1 ∈
{−1, 1}N , yielding

J(b) = b̃T Q̃bb̃ = trace{Q̃bB̃}, (12)
where b̃ := [bT 1]T ∈ {−1, 1}(N+1);

B̃ := b̃b̃T , B̃nn = 1,∀n.

The SDR-based quasi-maximum-likelihood algorithm in [7]
can be applied to solving (12). It involves two steps: first, re-
lax the rank-1 constraint on B̃ and solve (12) with respect to
B̃ using semi-definite programming; second, find an approx-
imate Boolean solution to b̃ (hence s) via randomization.
The SDR algorithm is based on solving a convex opti-

mization problem; hence, it does not suffer from local min-
ima. Besides, it allows for ε = 0 and naturally takes care of
the rank-deficiency issue ofHT H.

5. EXEMPLARY APPLICATIONS

The problem of detecting sparse finite-alphabet signals ap-
pears in several signal processing applications. This section
gives two examples.

5.1. Detection of Multiple Sources

Suppose that there areM signal sources scattered in a sensing
field. Setting a grid of sampling points of adequate resolution,
the locations of these sources can be represented by the grid.
Indexing all the sampling points into a length-N sequence,
we define an N × 1 state vector s ∈ {0, 1}N to represent the
locations of signal sources. The index of a nonzero element
in s corresponds to a signal being ‘on’ at that sampling point;
hence, the known location of that sampling point reveals the
source location. Obviously, the number of 1’s in s isM .
There are K sensors employed to collect linear measure-

ments from theseM sources, yielding a K × 1 data vector y
that obeys the linear model in (2). In many cases, the mea-
surement matrix H is known based on the relative locations
between the sampling points and the sensors. Here,M can be
small, whereasN is typically set to a large value to attain high
resolution for a large sensing field. To save sensing resources,
the number of active sensors K can be smaller than N . As a
result, a compressed sensing problem arises.
Such a binary detection problem can be found in several

applications. For example: a) localization of multiple targets,
where the sensing field is a geographical area; b) spectrum
sensing of active transmitters emitting on multiple channels,
where the sensing field is a wide spectrum band [8]; c) object
detection in imaging, where the sensing field is the field of
view of an optical device.
We test the proposed SD-CS algorithm for a toy problem,

using parameters N = 10, M = 3, K = 5 and L = 500
simulation trials. In each trial, the measurement matrix H is
randomly generated with i.i.d. Gaussian-distributed entries of
zero mean and equal variance, where the variance is set ac-
cording to the signal-to-noise-ratio (SNR) value. The noise
w is Gaussian distributed with variance σ2

w = 1. In the
SD-CS algorithm in (10), the coefficients λ and ε reflect the
weights on sparsity-inducing l1-norm and diagonal-loading
l2-norm. We test two selections: i) SD-CS.i : λ = ε = σ2

w,
which uses diagonal loading only; ii) SD-CS.ii : ε = σ2

w and
λ = max{√2 log Nσw/||H||2, σ2

w}, where λ is an empirical
value suggested in [3] for the l1-norm penalty term on real-
valued s in (7). The MMSE, BP and BPDN are also tested for
comparison. It is shown from Figure 1 that SD-CS.i yields
better probability of detection (Pd) than SD-CS.ii, but the cor-
responding probability of false alarms (Pfa) is worse. When
comparing the probability of correct estimation (Pc), both al-
gorithms perform similarly, outperforming MMSE, BP and
BPDN (BP is not shown; it performs silimarly to BPDN). The
latter three algorithms ignore the finite-alphabet constraint,
which explains the performance loss.
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Fig. 1. Detection of multiple sources: Pd, Pfa and Pc.

The GSD algorithm in (5) is also applied to this detec-
tion problem after substituting the on-off state vector s by
a non-sparse polar vector b = 2s − 1 ∈ {−1, 1}N . Inter-
estingly, both the GSD and SD-CS.i have a similar form of
objective functions and perform similar lattice search steps,
but the GSD has worse Pc performance in low SNR region.
To explain this gap, we note that the l2-norm term in the re-
spective objective functions has different implications. For
GSD, ε||b||22 in (5) is a dummy term used to numerically reg-
ularize the rank-deficient channel covariance HT H; indeed,
b ∈ {−1, 1}N herein and hence ε||b||22 = εN is constant. For
SD-CS, ε||s||22 in (10) plays a dual role: to regularize HT H

and to induce sparsity on s ∈ {0, 1}N since ε||s||22 = ε||s||0.

5.2. Digital Communication with Binary Modulation

Consider a multiuser communication system using binary po-
lar modulation. The baseband input-output relationship can
be described by a linear model y = Hb + w, where H is
a K × N channel response matrix and b ∈ {−1, 1}N is the
transmitted symbol vector. This model also describes a gen-
eral filterbank transceiver [9].
When the system is overloaded, H is a fat matrix with

K < N . The GSD algorithm in (5) can be used to solve for
b. However, the bit-error-rate (BER) suffers due to system
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Fig. 2. Demodulation in binary communication: BER.

overloading. Alternatively, we substitute b by s := b+1
2 ∈

{0, 1}N , which results in an equivalent linear model y1 =
H1s + w where y1 = y + H1 and H1 = 2H. Probabilisti-
cally, half of the elements in s are zeros, which makes smuch
sparser than b. Capitalizing on the prior knowledge of spar-
sity, we resort to the SD-SC algorithm in (10) to solve for s.
Figure 2 plots the BER of the GSD and SD-CS algo-

rithms, for N = 16 and K = 10. The SD-CS performs
slightly better, again due to the sparsity knowledge it exploits.
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