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ABSTRACT

We present a compressive wide-band spectrum sensing scheme for
cognitive radios. The received analog signal at the cognitive ra-
dio sensing receiver is transformed in to a digital signal using an
analog-to-information converter. The autocorrelation of this com-
pressed signal is then used to reconstruct an estimate of the signal
spectrum. We evaluate the performance of this scheme in terms of
the mean squared error of the power spectrum density estimate and
the probability of detecting signal occupancy.

Index Terms— Compressive sampling, Wide-band spectrum
sensing, Cognitive radio, Spectrum estimation.

1. INTRODUCTION

It has been widely recognized that utilization of radio spectrum by li-
censed wireless systems, e.g., TV broadcasting, aeronautical teleme-
try, is quite low [6]. In particular, at any given time and spatial re-
gion, there are frequency bands where there is no signal occupancy.
That is, licensed signal transmissions are sparse in frequency do-
main. There has been recent interest in improving spectrum utiliza-
tion by permitting secondary usage using cognitive radios [1], [6],
[12]. Cognitive radios use spectrum sensing to determine frequency
bands that are vacant of licensed signal transmissions and transmit
on such portions to meet regulatory constraints of avoiding harmful
interference to licensed systems.

Future cognitive radios will be capable of scanning a wide band
of frequencies [1], in the order of a few GHz, and employ adaptive
waveforms for transmission depending on the estimated spectrum of
licensed systems. In this paper, we address the problem of estimating
the spectrum of the wide-band signal received at the cognitive radio
sensing receiver using compressive sampling.

Compressive sampling (CS) is a method for acquisition of sparse
signals at rates significantly lower than Nyquist rate; signal recon-
struction is a solution to an optimization problem [2], [5]. In [11],
a spectrum sensing scheme based on compressive sampling was in-
troduced which works for special signals whose fourier transform is
real. For the scheme in [11] to work for a larger class of signals, we
first consider the following extension. The signal received from the
licensed system at the cognitive radio sensing receiver is sampled,
albeit at the Nyquist rate. The autocorrelation of the resulting sig-
nal is compressively sampled. An estimate of the spectrum is then
obtained using a wavelet edge detector after CS reconstruction, thus
determining the spectrum occupancy of the licensed system. This
scheme still requires an analog-to-digital converter (ADC) to oper-
ate at Nyquist rate or higher and takes a paradoxical approach to CS.
Wide-band ADCs operating at sampling rates of the order of several
giga-samples/s are thus a major challenge with such a scheme.

We consider a spectrum sensing scheme based on compres-
sive sampling of the wide-band analog signal using an analog-to-
information converter (AIC). An AIC directly relates to the idea of
sampling at the information rate of the signal. Practical approaches
to AIC design have been considered in [8], [10]. An estimate of
the original signal spectrum is then made based on CS reconstruc-
tion using a wavelet edge detector along the approach in [11]. We
evaluate the resulting power spectrum density (PSD) estimate us-
ing the mean squared error (MSE) and the probability of detecting
spectrum occupancy, and compare the performance with the scheme
based on [11]. We note that for the scheme based on [11], CS is
done on the autocorrelation of the discrete-time signal obtained by
Nyquist-rate sampling. In our approach, CS is directly performed on
the wide-band analog signal.

2. PRELIMINARIES

Let x(t) be the wide-band analog signal received at the cognitive
radio sensing receiver. We consider the frequency range of interest
to be comprised of P non-overlapping contiguous subbands. The
bandwidth and channelization of the subbands need not in general
be known to the cognitive radio.

We shall first follow [2], [5] and [11] to describe a scheme for
wide-band spectrum sensing based on CS principles. Let the analog
signal x(t), 0 ≤ t ≤ T , be represented as a finite weighted sum of
basis functions (e.g., Fourier) ψi(t) as follows

x(t) =

N∑
i=1

siψi(t) (1)

where only a few basis coefficients si are much larger than zero due
to the sparsity of x(t). In particular, with a discrete-time CS frame-
work, consider the acquisition of an N × 1 vector x = Ψs, where
Ψ is the N × N sparsity basis matrix and s an N × 1 vector with
K � N non-zero (and large enough) entries si. It has been shown
that x can be recovered using M = KO(log N) non-adaptive linear
projection measurements on to an M × N basis matrix Φ that is in-
coherent with Ψ [3]. An example construction of Φ is by choosing
elements that are drawn independently from a random distribution,
e.g., Gaussian, Bernoulli. The measurement vector y can be written
as

y = Φx = ΦΨs. (2)

Reconstruction is achieved by solving the following l1-norm opti-
mization problem

ŝ = arg min
s

‖s‖1 s.t. y = ΦΨs. (3)

Linear programming techniques, e.g., basis pursuit [4], or iterative
greedy algorithms [9] can be used to solve (3).
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2.1. Compressive spectrum sensing scheme based on [11]

Fig. 1. CS acquisition in spectrum sensing method of [11].

The compressive spectrum sensing approach presented in [11]
works under the assumption that the frequency response of the ana-
log signal input at the sensing receiver is real, with a relatively flat
response over its regions of support. To make the method of [11] to
work in practice, we consider the following simple extension. Figure
1 depicts the CS acquisition employed. The basic idea of this ap-
proach is to view the entire wide-band spectrum as subbands where
subband edges indicate change in spectrum occupancy. These spec-
trum edges can be detected using a wavelet-based detector. The CS
method is applied to wide-band spectrum sensing as follows. The
received signal x(t) is sampled at Nyquist rate or higher and the
discrete-time signal stacked in to N × 1 vectors

xk = [xkN xkN+1 · · · xkN+N−1]
T , k = 0, 1, 2, . . . (4)

where T denotes the transpose operation. We assume the signal to be
zero-mean, wide-sense stationary. Denote the autocorrelation at lag
j as rx(j) = E[xnx∗

n−j ]. In practice, estimates of the autocorrela-
tion are obtained by averaging over several signal segments. Denote
the 2N × 1 autocorrelation vector of (4) as

rx = [0 rx(−N + 1) · · · rx(0) · · · rx(N − 1)]T . (5)

A wavelet-based smoothing is then performed, followed by taking
a Fourier transform to obtain the PSD. Denote the discrete counter-
parts of these operations by the 2N × 2N matrices W and F . The
derivative of the PSD then gives the edge spectrum. The deriva-
tive can be approximated by a first-order difference, given by the
2N × 2N matrix

Γ =

⎡
⎢⎢⎢⎣

1 0 · · · 0
−1 1 · · · 0

0
. . .

. . .
...

0 · · · −1 1

⎤
⎥⎥⎥⎦ .

Denote G = (ΓFW)−1. Note that G represents the transform do-
main where the autocorrelation vector rx has a sparse representation.
The 2N ×1 discrete component vector zs corresponding to the edge
spectrum can be related to rx by [11]

rx = Gzs (6)

Compressive sampling is now performed by means of a 2M × 2N
compressive matrix ΦI , giving rise to the 2M×1 measurement vec-
tor cx = ΦIrx. An estimate ẑs,1 of the edge spectrum is obtained
by solving the CS reconstruction problem:

ẑs,1 = arg min
zs

‖zs‖1 s.t. cx = (ΦIG)zs. (7)

An estimate of the wide-band spectrum can be obtained from ẑs,1 =
[ẑs,1(1) ẑs,1(2) · · · ẑs,1(2N)]T by computing a cumulative sum.
The discrete components of the PSD estimate are given by

Ŝx,1(n) =
n∑

k=1

ẑs,1(k). (8)

It is important to point out that this scheme results in a somewhat
paradoxical architecture since sub-Nyquist sampling is achieved by
first sampling the wide-band analog signal at Nyquist rate and then
applying CS on the autocorrelation vector rx.

3. COMPRESSIVE SPECTRUM SENSING WITH AIC

Fig. 2. CS acquisition in proposed spectrum sensing method.

Figure 2 depicts the acquisition under the proposed method. The
analog baseband signal x(t) is sampled using an AIC. An AIC may
be conceptually viewed as an ADC operating at Nyquist rate, fol-
lowed by compressive sampling. Denote the N × 1 stacked vector
at the output of the ADC by

xk = [xkN xkN+1 · · · xkN+N−1]
T k = 0, 1, 2 . . . (9)

and the M ×N compressive sampling matrix by ΦA. The output of
the AIC denoted by the M × 1 vector

yk = [ykM ykM+1 · · · ykM+M−1]
T k = 0, 1, 2 . . . (10)

is given by
yk = ΦAxk. (11)

The respective N × N and M × M autocorrelation matrices of
the compressed signal and the input signal vectors in (10) and (9) are
related as follows

Ry = E[yky
H
k ] = ΦARxΦ

H
A (12)

where H denotes the Hermitian. The elements of the matrices in (12)
are given by: [Ry]ij = ry(i−j) = r∗y(j−i), [Rx]ij = rx(i−j) =
r∗x(j − i).

Denote the respective 2N×1 and 2M×1 autocorrelation vectors
corresponding to (9) and (10) as follows

rx = [0 rx(−N + 1) · · · rx(0) · · · rx(N − 1)]T , (13)

ry = [0 ry(−M + 1) · · · ry(0) · · · ry(M − 1)]T . (14)

To pose the CS reconstruction in the form of (3) and (7), we need
to first relate the autocorrelation vectors in (13) and (14). Note that
the components of these vectors lie on the first column and row of
the respective autocorrelation matrices. After some matrix algebraic
operations, we obtain the following result.

ry = ΦIIrx (15)

where ΦII is given as

ΦII =

[
ΦAΦ1 ΦAΦ2

ΦAΦ3 ΦAΦ4

]
. (16)

Denoting the (i, j)-th element of ΦA by φ∗
i,j , the M × N matrix

ΦA has its (i, j)-th element given by

[ΦA]i,j =

{
0 i = 1, j = 1, · · · , N,

φM+2−i,j i �= 1, j = 1, · · · , N,

and the N × N matrices Φ1,Φ2,Φ3,Φ4 are

Φ1 = hankel([0N×1], [0 φ∗
1,1 · · · φ∗

1,N−1])

Φ2 = hankel([φ∗
1,1 · · · φ∗

1,N ], [φ∗
1,N 01×(N−1)])

Φ3 = toeplitz([0N×1], [0 φ1,N · · · φ1,2])

Φ4 = toeplitz([φ1,1 · · · φ1,N ], [φ1,1 01×(N−1)]),

where hankel(c, r) is a hankel matrix (i.e., symmetric and constant
across the anti-diagonals) whose first column is c and whose last row
is r, toeplitz(c, r) is a toeplitz matrix (i.e., symmetric and constant
across the diagonals) whose first column is c and whose first row is
r, 0N×1 is a column of N zeros, and 01×(N−1) is a row of N − 1
zeros.

2338



Now using (6) and (15), we can formulate the CS reconstruction
of the edge spectrum as an l1-norm optimization problem

ẑs,2 = arg min
zs

‖zs‖1 s.t. ry = (ΦIIG)zs (17)

An estimate of the wide-band spectrum can now be obtained, as done
in Section 2.1, from ẑs,2 = [ẑs,2(1) ẑs,2(2) · · · ẑs,2(2N)]T by
computing a cumulative sum. The discrete components of the PSD
estimate are given by

Ŝx,2(n) =

n∑
k=1

ẑs,2(k). (18)

In [3], the mutual coherence parameter μ is defined as a measure
of the incoherence between the compressive sampling matrix Φ and
sparsity basis matrix Ψ involved in CS,

μ(Φ,Ψ) =
√

2N · max
1≤k≤2M,1≤j≤2N

|〈φk, ψj〉|, (19)

μ(Φ,Ψ) ∈ [1,
√

2N ]

where φk and ψj are respective columns of Φ and Ψ. The proposed
scheme incurs a reduced mutual incoherency due to the structure of
ΦII in (16). This has an impact on the performance of spectrum
estimation and subsequent detection, as will be shown via simulation
results.

4. SIMULATION RESULTS

In this section we evaluate the performance of the proposed AIC-
based spectrum sensing scheme (Architecture II) with that presented
in Section 2.1 (Architecture I). We consider, at baseband, a wide
frequency band of interest ranging from -40 to 40 MHz, containing
10 non-overlapping channels of equal bandwidth of 8 MHz. Each
channel is possibly occupied by a licensed system transmission sig-
nal that uses OFDM modulation according to the DVB-T standard.
Each 8 MHz OFDM symbol has 8192 frequency tones and a cyclic
prefix length of 1024. The number of OFDM symbols used for spec-
trum sensing is 1. The over-sampling factor is 16, i.e. the sampling
rate is 16 × 8MHz. The occupancy ratio of the total 80 MHz band is
50%, i.e., 5 out of 10 channels are occupied by licensed transmission
signals and the remaining 5 channels are unoccupied. The received
signal is corrupted by additive white Gaussian noise (AWGN) with
a variance of σ2

n = 0.2. The received signal to noise ratios (SNR) of
the 5 active channels are 7dB, 4dB, 7dB, 7dB, and 4dB, respectively.
A Gaussian wavelet function is used for smoothing. For compressed
sensing, N is 256 and the compression rate M/N is set to vary from
1% to 100%. The entries of the compressive sampling matrix Φ are
Gaussian distributed with zero mean and variance 1/M .

The estimated / recovered PSD: Figure 3 shows the estimated
PSD based on our proposed approach. The top plot shows the orig-
inal PSD of the received wide-band signal. The middle plot shows
the estimated edge vector ẑs,2 in (17) using a tree-based Matching
Pursuit recovery from the CS measurements with M/N=0.5. The

bottom plot shows the recovered PSD Ŝx,2 vectors whose elements
are defined as in (18) via cumulative sum of the estimated edge vec-
tor.

MSE performance: We compare the normalized MSE of the es-
timated PSD of our approach and that of [11]. The normalized MSE
is defined as

MSEi = E{‖Ŝx,i − Sx‖2
2

‖Sx‖2
2

}, i = 1, 2 (20)

where Sx denotes the PSD estimate vector based on the periodogram

using the signals sampled at Nyquist rate, Ŝx,1 the PSD estimate
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Ŝx,2 [dB]

f [MHz]

Fig. 3. Spectrum estimation: (a) Nyquist rate PSD; (b) recovered
edge spectrum; (c) recovered PSD from edges
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Fig. 4. MSE performance

vector based on the approach of [11], and Ŝx,2 the PSD estimate
vector based on our approach. We can see from figure 4 that for both
approaches the signal recovery quality (via tree-based Matching Pur-
suit) improves as the compression rate M/N increases. While the
MSE performance of our approach is a bit worse than that of the
method described in Section 2.1 due to the reduced mutual inco-
herency of ΦII in (16), a reduced sampling rate is employed in our
approach.

Probability of Detection Performance: We evaluate the proba-

bility of detection Pd based on the estimated PSD Ŝx,i, i = 1, 2.
The decision of the presence of a licensed transmission signal in a
certain channel is made by an energy detector using the estimated
frequency response over that channel, i.e., the test statistic is

Tp =

pK∑
k=(p−1)K+1

Ŝx,i(k), p = 1, 2, . . . , 10 (21)

where p is the channel index, k is the frequency subcarrier index,
and K = 25 is the number of PSD samples of each channel. The

2339



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Compression rate [M/N]

D
et

ec
tio

n 
pe

rfo
rm

an
ce

Pd (Architecture I)

Pd (Architecture II)

Pfa (Architecture I)

Pfa (Architecture II)

Fig. 5. Detection performance

PSD estimate can be written as

Ŝx,i(k) =
1

Q

Q∑
q=1

|Xq(k)|2, (22)

where Xq(k) is the Fourier transform of the q-th block of the re-
ceived time-domain signal xq(n), n denoting the time sample index,
each block containing 2N time samples, and Q = 288 is the number
of blocks. Substituting (22) into (21) we get

Tp =
1

Q

pK∑
k=(p−1)K+1

Q∑
q=1

|Xq(k)|2 (23)

The decision rule is given by

Tp

H1
≷
H0

γ, p = 1, 2, . . . , 10 (24)

where H1 and H0 denote the hypotheses of primary signal be-
ing present and absent, respectively, and γ is the decision thresh-
old. Note that under H0, Tp/(σ2

n/Q) is centralized Chi-square dis-
tributed with 2KQ degrees of freedom [7]. The false alarm proba-
bility Pfa can be expressed as

Pfa = Fr(
γ

σ2
n/Q

) (25)

where Fr is the right-tail integral of the χ2
2KQ distribution.

The threshold γ is found by fixing Pfa to 0.01, i.e., γ =
F−1

r (0.01)σ2
n/Q. The probability of detection Pd is calculated as

Pd =
1

5

p5∑
p=p1

Pr{Tp > γ} (26)

where pi, i = 1, . . . , 5 denote the indices of five active channels.
Figure 5 shows Pd versus different values of compression rate M/N
under a fixed Pfa of 0.01. When M/N < 0.13, Pd of our approach
is a bit worse than that of the method in Section 2.1 due to obtaining
a worse estimate of the PSD. When M/N > 0.13, Pd under both
approaches is close to 1. Pfa is around 0.01 as we designed for.
Although the MSE performance of our approach is slightly worse
compared to the method in Section 2.1 for all compression rates,
the detection performances are similar under both approaches for
compression rates of interest.

5. CONCLUSIONS

We presented a compressive wide-band spectrum sensing scheme
wherein an AIC operates on the received analog signal. Spectrum
estimation is done based on CS reconstruction using the autocor-
relation vector of the resulting compressed signal. The spectrum
estimate was used to determine the spectrum occupancy of the li-
censed system. Performance evaluation using MSE and probability
of detection showed that the proposed scheme performs compara-
bly to the scheme based on [11]. The loss in incoherence thus does
not substantially affect spectrum estimation and spectrum occupancy
detection.

6. REFERENCES

[1] D. Cabric, I. D. O’Donnell, M. S.-W. Chen and R. W. Brodersen,
“Spectrum sharing radios,” IEEE Circuits and Systems Maga-
zine, pp. 30-45, 2006.

[2] E. Candes, J. Romberg and T. Tao, “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete fre-
quency information,” IEEE Trans. on Information Theory, vol.
52, no.2, pp. 489-509, Feb 2006.

[3] E. Candes and J. Romberg, “Sparsity and Incoherence in Com-
pressive Sampling,” Inverse Problems, 23(3), pp. 969-985, June
2007.

[4] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic de-
composition by basis pursuit,” SIAM Journal on Scientific Com-
puting,vol. 43, No. 1, pp. 129159, 2001.

[5] D. L. Donoho, “Compressed Sensing,” IEEE Trans. on Infor-
mation Theory, vol. 52, no.4, pp. 1289-1306, Apr 2006.

[6] Federal Communications Commission - First Report, and Order
and Further Notice of Proposed Rulemaking, “Unlicensed oper-
ation in the TV broadcast bands,” FCC 06-156, Oct. 2006.

[7] S. M. Kay, Fundamentals of Statistical Signal Processing, Vol-
ume 2: Detection Theory, Prentice Hall, 1998.

[8] S. Kirolos, T. Ragheb, J. Laska, M.F. Duarte, Y. Masssoud,
and R. G. Baraniuk, “Practical issues in implementing analog-
to-information converters,” IEEE International Workshop on
System on Chip for Real Time Applications, pp. 141-146, Dec
2006.

[9] C. La and M. Do, “Signal reconstruction using sparse tree
representations,” SPIE Wavelets XI, vol. 5914, pp. 59140W.1-
59140W.11, Sept 2005.

[10] J. Laska, S. Kirolos, Y. Massoud, R. Baraniuk, A. Gilbert,
M. Iwen, and M. Strauss, “Random sampling for analog-to-
information conversion of wideband signals,” IEEE Dallas Cir-
cuits and Systems Workshop, pp. 119-122, Oct 2006.

[11] Z. Tian and G. B. Giannakis, “Compressed sensing for wide-
band cognitive radios,” Proc. of the International Conference
on Acoustics, Speech, and Signal Processing, pp. IV/1357-
IV/1360, Apr 2007.

[12] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum ac-
cess,” IEEE Signal Processing Magazine, pp. 79-89, May 2007.

2340


