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ABSTRACT

We address ranging energy optimization for an unsynchro-

nized localization system, which features robust sensor posi-

tioning, in the sense that specific accuracy requirements are

fulfilled within a prescribed service area. Optimization prob-

lems related to the ranging energy of a sensor and beacons are

proposed, after which a practical algorithm based on semidef-

inite programming is presented. The effectiveness of the al-

gorithm is illustrated by a numerical experiment.

Index Terms— Cramér-Rao bound, semidefinite program-

ming, localization

1. INTRODUCTION

As an important component of a wireless sensor network, sen-

sor localization has been attracting intensive research interest.

To position an untethered sensor, algorithms based on ranging

and fusion are commonly used [1, 2, 3]. More specifically,

ranging is first performed to estimate the distances between

sensors and beacons with known positions. Then, the sensor

positions are estimated by fusion in a centralized or multi-hop

manner. Thanks to the superior multipath resolution capa-

bility of ultra-wideband (UWB), time-of-arrival (TOA) based

ranging using UWB pulses is practically preferred [2]. Partic-

ularly, the TOA-based two-way ranging (TWR) is supported

by the IEEE 802.15.4a standard [1].

For the ranging-and-fusion type of algorithms, the posi-

tioning accuracy improves if the ranging energy of sensors

and beacons is enhanced [2, 3]. In real scenarios, a beacon

might have a reliable power supply so its ranging energy can

be easily increased, but the ranging energy of an untethered

sensor must be reduced in order to prolong the system life-

time. Therefore, the positioning accuracy is actually domi-

nated by the sensor ranging energy, which should be small but

sufficiently high to fulfill prescribed accuracy requirements.

This motivates us to investigate the following ranging energy

optimization problem: how to allocate the ranging energy to

the sensors and beacons, so that the sensor ranging energy is

minimized and specific accuracy requirements are fulfilled as

well?

We will address this problem for an unsynchronized ro-

bust sensor positioning (RSP) system, which consists of power-

supplied beacons connected to a central processing unit (CPU),

as well as sensors randomly deployed within a prescribed ser-

vice area. The positioning is implemented by TOA-based

TWR between the beacons and a sensor, followed by a fu-

sion at the CPU to produce a position estimate. In particular,

this system features RSP, in the sense that specific accuracy

requirements are fulfilled within the service area. To reduce

the implementation complexity, the ranging energy of both

the sensor and beacons, is fixed and determined in the system

design phase.

We assume that the most favorable TOA and position esti-

mators are used. It is well known that the Cramér-Rao bound

(CRB) sets a lower bound on the variance of any unbiased

estimator, and the maximum likelihood estimator asymptoti-

cally attaining the CRB produces an unbiased estimator with

Gaussian distribution [4]. Consequently, we will assume the

considered system produces unbiased and Gaussian distributed

TOA and position estimates achieving the CRB. The opti-

mization result can be used as a benchmark to evaluate the

energy efficiency of other localization algorithms.

The rest of this paper is organized as follows. In the next

section, we will derive the positioning CRB, as well as a suf-

ficient condition for RSP. Then, Section 3 will formulate the

considered optimization problems and propose a practical al-

gorithm based on semidefinite programming (SDP). In Sec-

tion 4, we will illustrate the effectiveness of the proposed al-

gorithm by a numerical experiment. Finally, we wrap up this

paper by some conclusions in Section 5.

2. RSP SYSTEM SETUP AND PERFORMANCE

In this section, the RSP system is first described. Then, the

TOA-based TWR procedure is introduced, and the position-

ing CRB is formulated. Finally, a sufficient condition for RSP

is derived.

2.1. RSP system setup and parameters

We consider a 2D RSP system, with M beacons deployed and

connected to a CPU through wired or radio links (M ≥ 3).
The m-th beacon is deployed at a known coordinate pm =
[xm, ym]T , (m = 1, 2, · · · , M ) and the sensor at an unknown

coordinate u = [x, y]T within a prescribed service area S.

In addition, the clocks of the sensor and beacons are unsyn-

chronized but run at the same pace. We assume the two-sided
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power spectral density of the additive white Gaussian noise at

the sensor and the beacons is respectively Ns/2 and Nb/2.

Assume the channel between the sensor and beacon m has

a line of sight (LOS) path, which incurs a propagation delay

dm(u)/c and an attenuation am. Here, c and dm(u) repre-

sent the signal propagation speed and the distance between

the sensor and beacon m, respectively. In addition, we as-

sume a2
m = αdm(u)−β , where α and β refer to the path gain

at 1m and the path-loss coefficient, respectively. During the

ranging phase, both the beacons and the sensor will broadcast

ranging signals, which consist of UWB pulses modulated by

known data symbols and seperated sparsely, in order to elim-

inate multipath interference and improve the TOA estimation

from the LOS signal component. More specifically, the sen-

sor (or beacon m) broadcasts a pulse train of energy Es (or

Em). The TOA estimation CRB at beacon m (or the sensor)

can be expressed as σ2
s→m(σ2

m→s) [2]:

σ2
s→m =

Nb

2a2
mω2

s Es
, σ2

m→s =
Ns

2a2
mω2

bEm
(1)

where ωs =
√∫

ω2|S(ω)|2dω∫ |S(ω)|2dω
and ωb =

√∫
ω2|B(ω)|2dω∫ |B(ω)|2dω

rep-

resent respectively the root-mean-square frequency associated

with |S(ω)|2 and |B(ω)|2. Here, S(ω) and B(ω) are the spec-

trum of the UWB pulses used by the sensor and beacons, re-

spectively.

2.2. TOA-based TWR and positioning CRB

During the TOA-based TWR, d̂m(u) is produced as an esti-

mate of dm(u) [1]. First, the CPU schedules the beacons to

broadcast ranging signals sequentially, so that they are seper-

ated when arriving at the sensor. Let’s say beacon m broad-

casts a ranging signal of energy Em at time Tm,0, and the

sensor estimates its TOA as Tm,1 + em,1, where Tm,1 and

em,1 represent the exact TOA and the estimation error, re-

spectively. After the sensor has generated all the TOA’s, it

broadcasts back a ranging signal of energy Es at time Ts to

the beacons. The associated TOA at beacon m is estimated as

Tm,2 + em,2, where Tm,2 and em,2 represent the exact TOA

and the estimation error, respectively. We assume the calibra-

tion can be perfectly accomplished so that Tm,0 and Ts are

precisely known by beacon m and the sensor, respectively.

Finally, both the processing delay Ts − (Tm,1 + em,1) pro-

duced by the sensor, and the total delay (Tm,2 +em,2)−Tm,0

generated by beacon m, are transmitted through data packets

to the CPU, which evaluates d̂m(u) as:

d̂m(u) = c
2 [(Tm,2 + em,2 − Tm,0) − (Ts − Tm,1 − em,1)]

= dm(u) + c(em,2+em,1)
2

(2)

We assume the TOA estimators attain the CRB with an

unbiased Gaussian distribution. This means that em,1 and

em,2 are zero mean Gaussian random variables with variance

σ2
m→s and σ2

s→m, respectively. In addition, em,1 and em,2 are

independent since they are estimated using independent sig-

nals at the sensor and beacon m, respectively. Consequently,

d̂m(u) is Gaussian distributed with mean dm(u) and variance

κ2
m(u) expressed as:

κ2
m(u) = c2

4 (σ2
s→m + σ2

m→s)
= ρa−2

m (E−1
s + γE−1

m )
(3)

where ρ = c2Nb
8ω2

s
and γ = Ns

Nb

ω2
s

ω2
b

. In fact, γ represents the

TOA estimation accuracy at the sensor relative to that at bea-

con m when Es = Em (γ < 1 means that the TOA estimation

at the sensor is more accurate).

After TWR, we have a set of independent data {d̂m(u)}M
m=1

for estimating u. The associated CRB can be evaluated as

the inverse of the corresponding Fisher information matrix

F(x,u), which is formulated as [3]:

F(x,u) =
M∑

m=1

(u − pm)(u − pm)T

(κm(u)dm(u))2
=

M∑
m=1

xmFm(u)

(4)

where Fm(u) = αρ−1dm(u)−β−2(u − pm)(u − pm)T and

x = [x1, · · · , xM ]T . Here, xm = (E−1
s + γE−1

m )−1 can be

regarded as the effective energy that blends the effects of Es

and Em on the CRB. Notice that xm ≤ min{Es,
Em

γ }, and

xm is an increasing function of both Es and Em.

2.3. A sufficient condition for RSP

We assume the position estimate û is Gaussian distributed

with mean u and covariance F(x,u)−1. The RSP require-

ment we consider is that, the estimation error e = u − û
should fall within a circle C = {e|eT e ≤ R2

c} with a prob-

ability higher than Pc for any u ∈ S, where Rc is the radius

specified by the regulation authority. It is shown in [5] that e
falls within the ellipse E = {e|eT F(u)e ≤ φ = −2ln(1 −
Pc)} with probability Pc. This ellipse has a major principal

axis of length
√

φ/λmin(x,u), where λmin(x,u) denotes

the minimal eigen-value of F(x,u). Therefore, a sufficient

condition for RSP is that, ∀u ∈ S, Rc ≥
√

φ/λmin(x,u), or

equivalently, ∀u ∈ S, λmin(x,u) ≥ λc = −2ln(1−Pc)/R2
c .

We want the considered system to fulfill this RSP constraint.

3. RANGING ENERGY OPTIMIZATION

In this section, we will first formulate a few ranging energy

optimization problems. Then, we will present a practical al-

gorithm.

3.1. Ranging energy optimization problems

Since λmin(x,u) is a non-decreasing function of xm
1 , the

RSP constraint can be sastisfied by increasing entries of x,

which is in turn accomplished by enhancing Es and Em. One

1This can be proved using Corollary 4.3.3 in [6].
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of the optimization problems we consider is to find the thresh-

old sensor energy Eth, above which RSP becomes feasible.

Mathematically, this problem can be formulated as:

min Es

s.t. Es ≥ 0, Em ≥ 0, m = 1, · · · , M
λmin(x,u) ≥ λc, ∀u ∈ S

(5)

To solve the above problem, consider an absolute value

of Es that is feasible. This means that there exists at least

one x that fulfills both the RSP constraint and the constraint:

||x||∞ ≤ Es, where ||x||∞ denotes the l∞-norm, namely the

maximal entry of x. Then, we can further enhance each entry

of x to its maximal possible value Es, by increasing every Em

to be infinitely high. As a result, x = [Es, · · · , Es]T enables

RSP as well, since λmin(x,u) is non-decreasing with every

xm. Therefore, Eth can be evaluated as the optimal Es for

the following problem:

min Es

s.t. xm = Es ≥ 0, m = 1, · · · , M
λmin(x,u) ≥ λc, ∀u ∈ S

(6)

The optimal Es for the above problem can be expressed

as: Eth = λc
minu∈S{λmin(X(u))} , where λmin(X(u)) refers

to the minimal eigen-value of X(u) =
∑M

m=1 Fm(u). It is

important to notice that Eth is actually the minimal l∞-norm

of any x achieving RSP. This implies that at least one Em has

to be infinitely high, when Es is reduced to the level Eth.

In real scenarios, the beacon energy Em is usually con-

strained by EB because of implementation difficulties, e.g.,

limited ranging duration and power due to the power-amplifier

nonlinearity. Notice that EB must be no less than γEth to

achieve RSP. In such cases, the optimization problem is to

find the minimal Es and associated Em which makes RSP

feasible. Mathematically, this problem can be formulated as:

min Es

s.t. Es ≥ 0, EB ≥ Em ≥ 0, m = 1, · · · , M
λmin(x,u) ≥ λc, ∀u ∈ S

(7)

The solution to the above problem can be constructed by:

Es = (E−1
th − γE−1

B )−1, Em = γ(x−1
m − E−1

th + γE−1
B )−1

(8)

where xm is the m-th entry of x, which belongs to the set

Ψ = {x : ||x||∞ = Eth andλmin(x,u) ≥ λc,∀u ∈ S}.

The above solution is justified as follows. First of all, it is

feasible for (7). Second, (E−1
th − γE−1

B )−1 is the optimal

value of Es, because for any smaller value of Es RSP will not

be possible, since the associated ||x||∞ is smaller than Eth.

Third, when Es = (E−1
th − γE−1

B )−1, every xm is no greater

than Eth since Em ≤ EB. To make RSP possible, x must

belong to Ψ, therefore the optimal value of Em is constructed

as in (8).

It is interesting to notice that xt = [Eth, · · · , Eth]T ∈ Ψ
is the worst one for building a solution to (7), since every other

x ∈ Ψ results in a solution using less beacon energy. In order

to build a solution with more efficient use of beacon energy,

we can find a better x ∈ Ψ as the solution to the following

problem:

min wT x
s.t. Eth ≥ xm ≥ 0, m = 1, · · · , M

λmin(x,u) ≥ λc, ∀u ∈ S
(9)

where w = [w1, · · · , wM ]T is a weighting vector, and wm

denotes the priority assigned to Em. Specifically, a greater

wm represents a higher priority to reducing Em. One special

case is to set all entries of w to zero except for wm = 1. Using

the associated optimal x for (9), the constructed solution to

(7) reduces Em to its minimal possible value.

In general, no closed-form solutions exist for (9). Nev-

ertheless, λmin(x,u) ≥ λc is equivalent to the linear ma-

trix inequality F(x,u) � λcI. Here, I denotes the 2 × 2
identity matrix, and X � Y means that X − Y is positive

semidefinite. Using this equivalence, (9) actually belongs to

the class of SDP problems, which can be solved numerically

with convex-optimization techniques [7].

3.2. A practical algorithm

To evaluate Eth and solve (9), the main difficulty lies in the

fact that S is in general a continuous area. A practical method

is to replace S with a discrete grid set G = {gn}N
n=1 within S.

Then, we can easily evaluate Eth and solve (9) numerically.

Let’s denote ΩS and ΩG as the set of x that achieves RSP over

S and G, respectively. Clearly, ΩG ⊇ ΩS. In order to keep

the solutions to the earlier optimization problems unchanged,

G should be carefully chosen such that ΩG = ΩS.

To find a way to generate G, consider the square cell

C� centered at gc with lateral length � within S. In the

appendix, we have shown that ∀x, λmin(x,u) is approxi-

mately a concave function of u within this cell, provided that

�	 dmin(gc), where dmin(gc) refers to the distance of gc

to the closest beacon. As a result, if λmin(x,u) ≥ λc is ful-

filled at each corner point, RSP is achieved for the cell C� as

well.

Based on the above analysis, a method for producing G is

introduced as follows. First, we divide S into L regions Sl,

l = 1, 2 · · · , L. Then, we sample Sl uniformly with a spacing

�l	minu∈Sl
dmin(u) in both vertical and horizontal direc-

tions to generate a discrete set Gl. Finally, G is produced

by combing all Gl as: G = G1 ∪ · · · ∪ GL. According to

the above analysis, for any x that achieves RSP over G, the

RSP is fulfilled for S as well, since RSP is attained for each

square cell formed by four adjacent points in G, and those

cells cover S. This means that ΩG ⊆ ΩS. Since ΩG ⊇ ΩS

is always true, ΩG = ΩS finally holds. This indicates that

the solutions to the earlier problems remain unchanged after

replacing S by the grid G generated by the aforementioned

method.
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Fig. 1. Ellipses and circles for randomly chosen points.

4. NUMERICAL EXPERIMENT

For illustration purposes, consider S as a square centered at

(0,0) with lateral length 2 m. There are three beacons located

at p1 = [0, 8]T , p2 = [−3,−3]T , and p3 = [3,−3]T , respec-

tively. The system parameters are set as: α = 1, β = 2, c =
3 × 108 m/s, Ns

2 = Nb
2 = 0 dBW/Hz, ωs

2π = ωb
2π = 8 GHz,

Rc = 10 cm and Pc = 0.8.

To generate G, we sample the whole S uniformly with a

spacing � = δ · d, where d = minu∈Sdmin(u) = 2.83 m.

During the evaluation, we find that when δ ≤ 1% the com-

puted Eth remains essentially unchanged at −9.45dBJ, which

implies that ΩG is quite close to ΩS beyond δ = 1%. Hence,

we set Eth = −9.45dBJ, and replace S with G produced by

δ = 1% for the following evaluations.

Assume Em is upper bounded by EB = 10dBJ, and

we would like to build a solution to (7) using (8). In addi-

tion, we hope this solution reduces E1 to its minimal possi-

ble value. To this end, we assign w = [1, 0, 0]T and com-

pute the optimal x for (9) by Sedumi [8]. The result is x =
[−10.1,−9.45,−9.45]T in dBJ, and the constructed solution

using (8) is Es = −9.4dBJ, E1 = −1.8dBJ, E2 = 10dBJ,

and E3 = 10dBJ.

To show the effectiveness of the above results, we ran-

domly select a set of points within S. Then, we plot the ellipse

{e|eT F(u)e = −2ln(1−Pc)} and the circle {e|eT e = R2
c}

for each point, using the x given above. It is shown in Figure

1 that each ellipse is enclosed by the associated circle, which

indicates that the RSP is indeed accomplished for those ran-

domly chosen points.

5. CONCLUSIONS

We have considered an RSP system, and proposed related

ranging energy optimization problems, which aim to mini-

mize sensor ranging energy as well as fulfill an RSP con-

straint. A practical algorithm based on SDP has been pre-

sented, and we have demonstrated its effectiveness through a

numerical experiment.

6. APPENDIX

When �	 dmin(gc), ∀u ∈ C�, λmin(x,u) can be approx-

imated as follows:

λmin(x,u) = min
v:vT v=1

M∑
m=1

xmvT Fm(u)v

≈ min
v:vT v=1

M∑
m=1

xmμm

∣∣vT (u − gc + gc − pm)
∣∣2

≈ min
v:vT v=1

M∑
m=1

xmμm

(
vT Zmv+

2vT (gc − pm)vT (u − gc)
)

where μm = αρ−1dm(gc)−β−2 and Zm = (gc − pm)(gc −
pm)T . Clearly, the expression inside the last bracket is an

affine function of u parameterized by v and x, so λmin(x,u)
is approximately a pointwise minimum of this function over

v. Therefore, ∀x, λmin(x,u) is a concave function of u [7].
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