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a b s t r a c t

Differentially modulated ultra-wideband (UWB) systems have recently attracted a lot
of attention since they can avoid the costly channel estimation required by coherent
schemes. The conventional differential-detector (DD), however, shows an inevitable 3 dB
performance loss and suffers from multiple access and intersymbol interference. Multiple
symbol differential detection (MSDD) provides an attractive solution that alleviates the
SNR loss, but still calls for accurate timing recovery. In this paper, we show how to
relax the severe timing requirements of the MSDD thereby only relying on symbol-level
synchronization. Further, the detection complexity can be kept at an affordable level by
pursuing a sphere decoding approach. Simulation results corroborate the effectiveness of
the proposed system when operating in typical dense multipath propagation scenarios.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Ultra-wideband (UWB) impulse radios have been at-
tracting a growing interest in the field of next-generation
wireless communications [1,2]. Conveying information
over a stream of ultrashort pulses at very low spectral den-
sity, several attractive features are promised including fine
timing resolution, robustness against multipath, high user
capacity, coexistence with legacy services via frequency-
overlay, low probability of interception and detection and
precise positioning capability [1]. These appealing features
have designated UWB signaling as a viable candidate to
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efficiently meet the strict requirements imposed by sev-
eral applications, such as short-rangehigh-rate indoor con-
nectivity, location-aware wireless networks and low-rate
communications with high-resolution ranging [2].
The harsh multipath propagation conditions typically

occurring in wireless environments, however, hamper the
extensive deployment of UWB systems. Each transmitted
pulse, indeed, arrives at the receiver over tens or even
hundreds of delayed paths [3], with possibly severe per-
pulse shape distortion due to diffraction and scattering
effects [4]. In such operating environments, exploiting the
rich diversity of UWB channels is evidently revealed as be-
ing very difficult, especially in view of the limited afford-
able receiver complexity. The well-known Rake receiver
can collect a significant fraction of the received energy
scattered over a dense multipath [5]. But as a matter of
fact, its choice is practically impeded by the large required
number of correlator-based fingers combined with the in-
tensive computational load involved in the estimation of
channel parameters [6]. Viable yet sub-optimal alterna-
tives for efficient energy capture have been recently pro-
posed in the formof transmitted reference (TR), differential
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detector (DD) schemes and their variants [7–10]. In the for-
mer, the received waveform resulting from ‘‘information-
free’’ reference pulse(s) is used as noisy template in a
simple correlation receiver for data detection, whereas
in the latter differential encoding of information data al-
lows one to detect the current symbol using as noisy tem-
plate a replica of the signal waveform received within
the previous symbol interval. These detectors can gather
energy from all multipath components bypassing costly
path-by-path channel estimation, but still suffer from
several considerable drawbacks, amongwhich the fact that
the template waveform recovered from the received signal
is neither noise-free nor interference-free. As a result, both
of them experience poor detection performance when op-
erating in the presence of severemultiple access and inter-
symbol interference.
The need for circumventing the inherent weaknesses

of the TR and DD methods has thus prompted the de-
velopment of improved non-coherent receivers. A recent
solution is based on the idea of jointly detecting a block of
consecutive differentially-encoded symbols experiencing
the same unknown channel, which is termed as multiple
symbol differential detection (MSDD) [11–13]. The efficacy
of theMSDD approach is confirmed by the considerable re-
silience to severe multipath fading and multiple access in-
terference (MAI). The detection performance obtainable by
the MSDD at a reasonable complexity exhibits only a small
gap from the (impractical) conventional Rake process-
ing, say around 3–4 dB, and favorably combines with the
capability ofworking independently of the pulse shape dis-
tortion and the knowledge of the channel response. The
advantages of the MSDD can be attained, however, only
provided that timing information is appropriately recov-
ered from the received signal [13]. But designing synchro-
nization algorithms for UWB receivers (that in practice
means to identify at frame level where the first frame in
each symbol starts, and then, to find at the pulse level
where a pulse is located within a frame) is quite a real and
demanding task, exacerbated also by the adoption of ex-
tremely narrow and low-amplitude pulses. This is demon-
strated by the large effort spent so far in the literature
on this topic, for example, [14–19]. These synchroniza-
tion techniques offer adequate estimation accuracy in the
presence of both dense multipath and severe MAI level.
Nevertheless, the strong limitation they incur is the ne-
cessity of training sequences or accumulation of long seg-
ments of the received signal that often combines with a
heavy computational load. Clearly, such issues disagree
with the UWB philosophy that calls for as simple and fast
as possible receiver processing schemes.
Starting from the baseline illustrated above, one is well

motivated to make a further step toward an efficient de-
tector that ensures competitive performance levels at even
lower complexity while avoiding both channel estima-
tion and accurate timing synchronization. To this end, this
paper develops a new UWB detector within the MSDD
framework under the relaxed assumption that timing in-
formation is roughly acquired at the symbol level only,
or in other words, the initial timing resolution can be as
large as one symbol period [20]. Bypassing accurate tim-
ing estimation, we come upwith a novel multi-symbol de-
tection scheme, in the sequel referred to as MSDD based
on symbol-level synchronization or SLS-MSDD for short,
that departs from previous works thanks to the following
distinct features.

(1) The SLS-MSDD adopts an optimization criterion based
on the generalized likelihood ratio test (GLRT), in
which the likelihood function is maximized not only
with respect to the symbols to be searched for, but
also over all the finite-energy received template
waveforms. As such, both the channel response and the
timing offset are treated by the receiver as unknown
quantities and hence do not need to be explicitly
acquired.

(2) By virtue of the GLRT-based optimization approach,
the expensive channel estimation task is bypassed
without affecting the received energy capture mech-
anism.

(3) Dealing implicitly with the mistiming effect (within
the detection process itself) allows detection of the
burst data only from the easy-to-get information of
where the symbol boundaries are roughly located,
rather than requiring costly timing synchronization at
frame or even at pulse level.4

(4) The implementation of the SLS-MSDD scheme via ex-
haustive search exhibits exponential complexity that
quickly becomes impractical as the burst length in-
creases. Consequently, in order to exploit the perfor-
mance advantages expected at large data block sizes,5
a proper reformulation of the proposed detector based
on sphere decoding (SD) [23] suggests a fast iterative
scheme that attains the desired performance of the
original formulation but at an appealing polynomial
complexity.

The fast SLS-MSDD algorithm can conveniently make
salient tradeoffs in performance versus complexity via the
choice of the data block size and the (floating-point or
integer-based) arithmetic format adopted in the computa-
tion of the SD metrics. Extensive simulation results under
typical multipath indoor propagation environments cor-
roborate the effectiveness of our scheme.
The rest of the paper is organized as follows. Section 2

presents the UWB system model, Section 3 derives the
novel SLS-MSDD receiver, while the fast algorithm based
on SD is developed in Section 4. Section 5 is devoted
to evaluating performance and complexity via computer
simulations, followed by concluding remarks in Section 6.

2. Systemmodel

In UWB impulse radio signaling, each symbol is
conveyed over a block of Nf frames with one pulse p(t)
per frame. The symbol, frame and pulse durations are
denoted as Ts, Tf and Tp respectively, satisfying Ts = Nf Tf ,
Tf � Tp, and Tp being on the order of (sub-)nanoseconds.

4 Accurate timing recovery is mandatory in conventional UWB
receivers so as to maintain adequate system throughput and capacity
performance [21,22].
5 This is due to improved averaging over the noise and MAI
components.
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Concurrent channel access is enabled by employing
user-specific pseudo-random time hopping (TH) codes
{cj}

Nf−1
j=0 ∈ [0,Nc − 1], which time-shifts pulse positions

at multiples of the chip period Tc , with NcTc < Tf . Assume
that pulse amplitudemodulation (PAM) is adopted and the
independent information-bearing symbols ai ∈ {±1} are
transformed into the channel symbols bi ∈ {±1} through
the differential encoding rule bi = aibi−1. The transmitted
signal relevant to a burst ofM information symbols can be
written as

x(t) =
M∑
i=0

bips(t − iTs), (1)

where the symbol-long waveform ps(t) is

ps(t) =
Nf−1∑
j=0

p(t − jTf − cjTc). (2)

After traveling through a slow-fading multipath channel,
assumed to be time-invariant within each block and with
L paths each with gain αl and delay τl, the received signal
in the interval 0 ≤ t ≤ (M+1)Ts can be written according
to (1) as

y(t) =
M∑
i=0

bius(t − iTs − τ)+ w(t). (3)

The timing offset τ in (3) is the delay of the first path
due to the signal propagation from the transmitter to
the receiver, the additive noise component w(t) accounts
for the contribution of both the thermal noise and MAI,
whereas

us(t) =
Nf−1∑
j=0

u(t − jTf − cjTc) (4)

is the received symbol-level waveform with non-zero
support less than Ts, i.e., ISI-free condition is satisfied,
depending on the channel impulse response through

u(t) =
L−1∑
l=0

αlp(t − τl,0), (5)

where τl,0 , τl − τ .

3. Multiple symbol differential detection with symbol-
level synchronization

In this section, we derive the structure of a novel
MSDD scheme that aims at recovering M consecutive
differentially-encoded information symbols a , [a1, a2,
. . . , aM ]T from the received signal y(t) in the interval 0 ≤
t ≤ (M + 1)Ts. The following main assumptions will be
adopted: (i) the timing offset τ is assumed to be within the
interval [0, Ts), thus meaning that the timing information
is acquired at symbol-level only through some form of
(rough) coarse synchronization; (ii) the data block size
(M + 1)Ts is smaller than the channel coherence time so
that hereinto the channel is considered as time-invariant;
(iii) the channel impulse response is unknown andwill not
be explicitly estimated during detection in order to reduce
the overall receiver complexity; (iv) the composite noise
w(t), including both ambient noise andMAI, is modeled as
a wide sense stationary white Gaussian process with two-
sided power spectral densityN0/2.
To cope with the lack of accurate pulse-level timing

information, our basic idea is to partition the received
symbol-level waveform us(t) in (4) into the two segments

u(0)s (t) ,

{
0, t ∈ [0, τ )
us(t − τ), t ∈ [τ , Ts)

,

u(1)s (t) ,

{
us(t + Ts − τ), t ∈ [0, τ )
0, t ∈ [τ , Ts)

, (6)

both of which rely on the unknown timing offset τ .
Making use of (6) and expressing the differentially-
encoded channel symbol as bi = b0

∏i
k=1 ak, i > 0, the

received signal (3) can be put in the following alternative
form

y(t) =
M∑
i=0

biu(0)s (t − iTs)+
M+1∑
i=1

bi−1u(1)s (t − iTs)+ w(t)

=

M∑
i=0

i∏
k=0

akq(t − iTs)+
M+1∑
i=1

i−1∏
k=0

akg(t − iTs)+ w(t), (7)

where both q(t) , b0u
(0)
s (t) and g(t) , b0u

(1)
s (t) have non-

zero support Ts and contain the channel parameters, the
timing offset and the initial channel symbol b0.
Now, the fact that q(t) and g(t) are both unknown to

the receiver suggests detecting the information symbols a
following the GLRT rule. This amounts to maximizing the
log-likelihood metric (LLM)

Λ
[
y(t)|ã, q̃(t), g̃(t)

]
= 2

∫ (M+1)Ts

0
y(t)s̃(t)dt

−

∫ (M+1)Ts

0
s̃2(t)dt (8)

over ã =
[
ã1, ã2, . . . , ãM

]T and the finite-energy functions
q̃(t) and g̃(t)with support in [0, Ts], where

s̃(t) =
M∑
i=0

i∏
k=0

ãkq̃(t − iTs)+
M+1∑
i=1

i−1∏
k=0

ãkg̃(t − iTs) (9)

is the signal corresponding to the trial values of ã, q̃(t) and
g̃(t). Exploiting the finite support of q̃(t) and g̃(t) in [0, Ts),
we can obtain∫ (M+1)Ts

0
y(t)q̃(t − iTs)dt =

∫ Ts

0
y(t + iTs)q̃(t)dt, (10)∫ (M+1)Ts

0
y(t)g̃(t − iTs)dt =

∫ Ts

0
y(t + iTs)g̃(t)dt, (11)

and∫ (M+1)Ts

0
q̃(t − iTs)g̃(t − jTs)dt

=


∫ Ts

0
q̃(t)g̃(t)dt, i = j

0, i 6= j.
(12)
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Hence, using (10)–(11) yields

∫ (M+1)Ts

0
y(t)s̃(t)dt

=

∫ Ts

0

[
q̃(t)

M∑
i=0

i∏
k=0

ãky(t + iTs)+ g̃(t)
M+1∑
i=1

i−1∏
k=0

ãky(t + iTs)

]
dt, (13)

whereas according to (12), we get∫ (M+1)Ts

0
s̃2(t)dt = (M + 1)

∫ Ts

0

[
q̃2(t)+ g̃2(t)

]
dt

+ 2
M∑
i=0

M+1∑
j=1

i∏
k=0

ãk
j−1∏
l=0

ãl

∫ (M+1)Ts

0
q̃(t − iTs)g̃(t − jTs)dt

= (M + 1)
∫ Ts

0

[
q̃2(t)+ g̃2(t)

]
dt + 2

M∑
i=1

ãi

∫ Ts

0
q̃(t)g̃(t)dt. (14)

Therefore, substituting (13) and (14) into (8), the LLM
takes the form (we drop the influent multiplicative factor
M + 1)

Λ
[
y(t)|ã, q̃(t), g̃(t)

]
= 2

∫ Ts

0

[
q̃(t)z1(t; ã)+ g̃(t)z2(t; ã)

]
dt

−

∫ Ts

0

[
q̃2(t)+ g̃2(t)

]
dt − 2η(ã)

∫ Ts

0
q̃(t)g̃(t)dt, (15)

where

z1(t; ã) ,
1

M + 1

M∑
i=0

i∏
k=0

ãky(t + iTs), t ∈ [0, Ts) , (16)

z2(t; ã) ,
1

M + 1

M+1∑
i=1

i−1∏
k=0

ãky(t + iTs), t ∈ [0, Ts) , (17)

and

η(ã) ,
1

M + 1

M∑
i=1

ãi. (18)

Accordingly, the GLRT-based decision strategy on the
information symbols a can be formulated as

â = arg max
ã

{
max
q̃(t),g̃(t)

{
Λ
[
y(t)|ã, q̃(t), g̃(t)

]}}
. (19)

In order to solve (19), we first keep ã fixed and compute
the inner term

Γ
[
y(t)|ã

]
, max
q̃(t),g̃(t)

{
Λ
[
y(t)|ã, q̃(t), g̃(t)

]}
.

Toward this end, we can resort to standard variational
techniques by letting q̃(t) = q0(t) + λε(t) and g̃(t) =
g0(t)+µρ(t), q0(t) and g0(t) being the optimum solutions
to be found, and ε(t) and ρ(t) two generic functions with
support in [0, Ts). After taking the first-order derivatives of
Λ
[
y(t)|ã, q̃(t), g̃(t)

]
with respect to λ and µ and setting
them to zero, we get

∂Λ
[
y(t)|ã, q̃(t), g̃(t)

]
∂λ

∣∣∣∣∣
λ=0
µ=0

= 2
∫ Ts

0

[
z1(t; ã)− q0(t)− η(ã)g0(t)

]
ε(t)dt

= 0, ∀ε(t)
∂Λ

[
y(t)|ã, q̃(t), g̃(t)

]
∂µ

∣∣∣∣∣
λ=0
µ=0

= 2
∫ Ts

0

[
z2(t; ã)− g0(t)− η(ã)q0(t)

]
ρ(t)dt

= 0, ∀ρ(t).

(20)

This equation set is satisfied whenever{
q0(t)+ η(ã)g0(t) = z1(t; ã)
η(ã)q0(t)+ g0(t) = z2(t; ã),

(21)

that is,

q0(t) =
z1(t; ã)− η(ã)z2(t; ã)

1− η2(ã)
, (22)

g0(t) =
z2(t; ã)− η(ã)z1(t; ã)

1− η2(ã)
. (23)

Then, substituting the solutions (22)–(23) of (21) into (15)
yields (up to an irrelevant multiplicative factor)

Γ
[
y(t)|ã

]
=

∫ Ts

0

[
z21 (t; ã)+ z

2
2 (t; ã)− 2η(ã)z1(t; ã)z2(t; ã)

]
dt. (24)

Consequently, in line with (19) and with Γ
[
y(t)|ã

]
given

by (24), the proposed SLS-MSDD detection rule becomes

â = arg max
ã

{
Γ
[
y(t)|ã

]}
. (25)

A few remarks about (24)–(25) are now in order.

(1) Let us take into account the optimal estimates of the
unknown waveform segments q(t) and g(t) given by
(22) and (23), respectively. Making use of

y(t + iTs) = [q(t)+ aig(t)]
i∏
k=0

ak + w(t + iTs),

t ∈ [0, Ts) , (26)

that can be easily derived from (7) and (16)–(17) turn
out to be

z1(t; ã) =
1

M + 1

M∑
i=0

i∏
k=0

ãk
i∏
l=0

al [q(t)+ aig(t)]

+
1

M + 1

M∑
i=0

i∏
k=0

ãkw(t + iTs)

= ϕ(ã)q(t)+ ξ(ã)g(t)

+
1

M + 1

M∑
i=0

i∏
k=0

ãkw(t + iTs),

t ∈ [0, Ts) , (27)
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z2(t; ã) =
1

M + 1

M+1∑
i=1

[g(t)+ aiq(t)]
i−1∏
k=0

ãk
i−1∏
l=0

al

+
1

M + 1

M+1∑
i=1

i−1∏
k=0

ãkw(t + iTs)

= ϕ(ã)g(t)+ ζ (ã)q(t)

+
1

M + 1

M+1∑
i=1

i−1∏
k=0

ãkw(t + iTs),

t ∈ [0, Ts) , (28)

where

ϕ(ã) ,
1

M + 1

M∑
i=0

i∏
k=0

ãk
i∏
l=0

al,

ξ(ã) ,
1

M + 1

M∑
i=0

ai
i∏
k=0

ãk
i∏
l=0

al

and

ζ (ã) ,
1

M + 1

M∑
i=0

ai+1
i∏
k=0

ãk
i∏
l=0

al.

Substituting (27)–(28) into (22)–(23) and assuming a
high SNR, it can be found that

q0(t) =

[
ϕ(ã)− η(ã)ζ (ã)

]
q(t)+

[
ξ(ã)− η(ã)ϕ(ã)

]
g(t)

1− η2(ã)
, (29)

g0(t) =

[
ϕ(ã)− η(ã)ξ(ã)

]
g(t)+

[
ζ (ã)− η(ã)ϕ(ã)

]
q(t)

1− η2(ã)
. (30)

It can be observed from (29)–(30) that, for ã 6= a, the
optimal estimates q0(t) and g0(t) differ from the true
q(t) and g(t) respectively. On the other side, whenever
ã = a we get ϕ(a) = 1 and ξ(a) = ζ (a) = η(a), and
hence, the estimates q0(t) and g0(t) coincide with the
desired segments q(t) and g(t), regardless of the val-
ues of η(a).

(2) The occurrence of η(ã) in the objective function (24)
adds considerably to the computational complexity of
the detector. To simplify the implementation of the
SLS-MSDD, a practical approach is to approximate η(ã)
by zero6 and remove it from (24), resulting in the
simplified objective function

Γ̄
[
y(t)|ã

]
=

∫ Ts

0

[
z21(t; ã)+ z

2
2(t; ã)

]
dt, (31)

where z1(t; ã) and z2(t; ã) are given again by (16)–(17).
Adopting (31) as the objective function in lieu of (24)
means detecting the transmitted symbols by search-
ing for the maximum of the sum of two partial energy
metrics: the first is related to z1(t; ã) and the other
to z2(t; ã). More specifically, whenever the SNR value

6 This approximation is accurate when information-bearing symbols
are independent and identically distributed, in which case their mean
value η(ã) approaches 0 as the data sizeM increases. Nevertheless, there
exists a (limited) percentage of symbol sequences for which

∣∣η(ã)∣∣ �
1 is not fulfilled. To make this condition more rigorous, some form of
information symbol precoding could help, although it is out of the scope
of the current paper.
is asymptotically large and so the assumption ã = a
stands, evaluation of (27)–(28) leads to

Γ̄
[
y(t)|ã

]
ã=a =

∫ Ts

0

[
q2(t)+ g2(t)

]
dt

=

∫ Ts

0
u2s (t)dt, (32)

that is, the maximum value of (31) in the asymptotic
case is given by the energy of the received symbol-level
waveform us(t), independent of both the data symbol
sequence a and the timing offset τ .

(3) The SLS-MSDD circumvents both the explicit esti-
mation of the channel parameters and the need for
accurate frame-level (or even pulse-level) timing syn-
chronization. Themetric (31) to bemaximized, indeed,
relies on the energy of z1(t; ã) and z2(t; ã), which can
be constructed entirely from the received signal y(t),
as shown in (16)–(17).

(4) Since the information symbols take values in {±1}, the
metric (31) can be further rearranged to an equivalent
form that is suited for practical implementations of
the SLS-MSDD. Similarly to the approach in [13], it is
possible to show that

Γ̄
[
y(t)|ã

]
=

M∑
i=1

i−1∑
l=0

i−l∏
k=1

ãk+l(Yl,i + Yl+1,i+1), (33)

where the coefficients

Yi,j ,
1

M + 1

∫ Ts

0
y(t + iTs)y(t + jTs)dt (34)

are obtained by correlating symbol-long segments
of the received signal y(t) up to M symbols apart.
It is worth noting that generation of {Yi,j} requires
waveform storage with delays on the order of multi-
ples of symbol intervals. This can be practically done
via either analog averaging or digital sampling, even
though both of them have drawbacks in terms of hard-
ware implementation. Analog averaging requires long
high-bandwidth delay lines that are hard to realize.
Digital sampling requires accurate high-rate ADCs at
Nyquist rates, which can be costly in terms of chip
area and power consumption. Nevertheless, the latter
approach can be affordable using low-resolution sam-
plers as suggested by the study in [24] onUWB receiver
implementation. As an alternative, onemight also con-
sider subsampling techniques for direct signal conver-
sion [25] or use subsampling combined with sparsity
considerations to reconstruct the high bandwidth
signal [26,27], thus trading off performance against
complexity.

(5) The basic idea of the SLS-MSDD is to jointly detect a
block of M data symbols, within which the channel
response can be considered as time-invariant. As a
result, the detection accuracy is expected to improve as
M increases. Finding out themaximumof the objective
function (33) via some exhaustive search method,
however, requires high computational complexity
going up exponentially in the number of symbolsM to
be jointly detected. Therefore, whenever performance
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has to be attained at affordable complexity, efficient
implementations of the SLS-MSDD are inevitably
called for, which will be the focus of next section.

4. Sphere decoding for SLS-MSDD

An effective way to elude the expensive computational
load required by the exhaustive-search-based SLS-MSDD is
to take advantage of the SD algorithm. Originally proposed
to solve the so-called shortest vector problem (SVP) in a
lattice [23], the SD basically relies upon examining only
those lattice points (assumed to belong to a given finite-
alphabet) inside a sphere of radius δ, which is progressively
made smaller and smaller to reduce the search space,
thereby lessening the overall computational complexity.
The SLS-MSDD detection rule developed so far, however,
does not yet fit in the SD framework, and accordingly, a
proper reformulation of the objective function Γ̄

[
y(t)|ã

]
in (33) is required. To this end, a key observation we
make here is that the maximum possible value of (33) is
independent of ã as long as they take values in {±1}, that is,

Γ̄MAX [y(t)] ,

M∑
i=1

i−1∑
l=0

∣∣Yl,i + Yl+1,i+1∣∣ . (35)

Hence, subtracting (33) from (35), the new objective
function (this time to be minimized) becomes

Φ
[
y(t)|ã

]
=

M∑
i=1

i−1∑
l=0

ϑl,i
∣∣Yl,i + Yl+1,i+1∣∣ , (36)

where

ϑl,i , 1− σl,i
i−l∏
k=1

ãk+l (37)

takes values in {0, 2} depending on whether σl,i ,
sign{Yl,i + Yl+1,i+1} has the same or opposite sign with
respect to

∏i−l
k=1 ãk+l. According to (36)-(37), the SLS-MSDD

can thus be put in the alternative form

â = argmin
ã

{
Φ
[
y(t)|ã

]}
, (38)

which is structurally amenable to be put into practice
through the SD search algorithm for the following reasons:
(i) the objective function (36) is nothing but the sum of the
non-negative coefficient

∣∣Zl,i∣∣, with Zl,i , Yl,i + Yl+1,i+1,
weighted linearly by the non-negative integer-valued un-
knowns ϑl,i; (ii) the i-th addend in (36),

∑i−1
l=0 ϑl,i

∣∣Zl,i∣∣, de-
pends on the preceding tentative symbols up to ãi, namely,
ã1, ã2, . . . , ãi; (iii) in view of (i)–(ii), (36) defines a sphere
in theM-dimensional lattice of the trial vectors ã , [ã1, ã2,
. . . , ãM ]T [28], which fully complies with the SD frame-
work.
Based on the above observations, we now illustrate

how to realize the SD-based SLS-MSDD. For the sake of
simplicity, assume that the initial radius δ(1) > 0 is chosen
to be large enough so that the sphere defined by (36)
contains the optimal â to be searched for. As the generic
m-th SD iteration, a necessary condition for any tentative
estimate â(m) to lie inside the sphere of radius δ(m) > 0 is
given by

j∑
i=1

i−1∑
l=0

[
1− σl,i

i−l∏
k=1

â(m)k+l

] ∣∣Zl,i∣∣ ≤ δ(m),
1 ≤ j ≤ M, (39)

or more explicitly,

j = 1 :
[
1− σ0,1â

(m)
1

] ∣∣Z0,1∣∣ ≤ δ(m); (40a)

j = 2 :
[
1− σ0,1â

(m)
1

] ∣∣Z0,1∣∣+ [1− σ0,2â(m)1 â(m)2 ] ∣∣Z0,2∣∣
+

[
1− σ1,2â

(m)
2

] ∣∣Z1,2∣∣ ≤ δ(m); (40b)

...

j = M :
M∑
i=1

i−1∑
l=0

[
1− σl,i

i−l∏
k=1

â(m)k+l

] ∣∣Zl,i∣∣ ≤ δ(m). (40c)

Interesting to note, the condition (40a) for j = 1 contains
â(m)1 only, (40b) concerning j = 2 contain â(m)1 and â(m)2
only, and so on. This suggests checking the M conditions
in (39) one by one at each iteration of the SD algorithm, as
summarized in the following steps.

S1: starting with (40a), the candidate set for â
(m)
1 can be

found as

I
(m)
1 =

{
ã1 ∈ {±1}|(1− σ0,1ã1)

∣∣Z0,1∣∣ ≤ δ(m)} ; (41)

S2: after the tentative â
(m)
1 has been chosen from I

(m)
1 , it is

substituted into (40b) to produce the candidate set for
â(m)2 as

I
(m)
2 =

{
ã2 ∈ {±1}

∣∣∣[1− σ0,1â(m)1 ] ∣∣Z0,1∣∣
+

[
1− σ0,2â

(m)
1 ã2

] ∣∣Z0,2∣∣+ [1− σ1,2ã2] ∣∣Z1,2∣∣
≤ δ(m)

}
; (42)

...

Sj: the candidate set I
(m)
j for â(m)j is based on the tentative

decisions {â(m)1 , â(m)2 , . . . , â(m)j−1} and equals

I
(m)
j =

{
ãj ∈ {±1}|

[
1− σ0,1â

(m)
1

] ∣∣Z0,1∣∣
+

[
1− σ0,2â

(m)
1 â

(m)
2

] ∣∣Z0,2∣∣
+

[
1− σ1,2â

(m)
2

] ∣∣Z1,2∣∣+ · · ·
+

[
1− σ0,jâ

(m)
1 â

(m)
2 · · · ãj

] ∣∣Z0,j∣∣
+

[
1− σ1,jâ

(m)
2 â

(m)
3 · · · ãj

] ∣∣Z1,j∣∣
+
[
1− σj−1,jãj

] ∣∣Zj−1,j∣∣ ≤ δ(m)} ; (43)

...
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SM : the last candidate set I
(m)
M is acquired for â(m)M , which

concludes them-th iteration. Then, the radius δ(m) and
the optimal estimate âopt are updated according to the
new tentative estimate â(m)

δ(m+1) ← Φ

[
y(t)|â(m)

]
, (44a)

âopt ← â(m), (44b)

and further, the next (m+ 1)-th iteration follows.

The iterations go on with a smaller and smaller sphere,
with the candidate estimate â(m) found in the previous
iteration lying on its surface. When at a given iteration all
nodes have been visited without any success, the iterative
process stops, yielding the optimal solution âopt for
which the objective function attains the minimum value
Φ
[
y(t)|âopt

]
.

Several remarks are now of interest.
(1) The proposed SD-based SLS-MSDD shares with the SD
of the existing literature optimal ML performance at
polynomial complexity (often cubic or higher) in the
data block size over a wide range of practical SNRs, as
will be verified in Section 5.4.

(2) At a given iteration index m and for some symbol
index j, the candidate set I(m)j for â(m)j might be empty.
In that case, a new iteration starts immediately by
decrementing the index j and testing a different value
for â(m+1)j .

(3) The choice of the initial radius δ(1) is critical, and can
add to the overall complexity if not properly addressed.
Indeed, if it is chosen too small, no point lies inside
the sphere and the algorithmmust restart with a larger
radius, whereas, if chosen too large, many more points
have to be checked. A reasonable choice is to set the
initial radius by evaluating (36) in correspondence
with a given tentative sequence, for instance that with
pseudo-random binary distributed entries.

(4) To speed up the search procedure, at each iteration â(m)j
is picked up from I

(m)
j so that the metric to be evalu-

ated in (39) isminimized. So doing, the SD search space
is reduced, and accordingly, computational complexity
gets remarkably lower.

(5) Since the unknown ϑl,i takes integer values in {0, 2},
checking the M conditions in (39) requires no mul-
tiplications, but simply real additions combined with
logical operations.

(6) The real-valued coefficients
∣∣Zl,i∣∣ depend on the re-

ceived signal through (34), and therefore, can be
pre-computed before the SD iterations start. As an
alternative, we can employ only the sign of Zl,i by sub-
stituting

∣∣Zl,i∣∣ = 1 in (40a)–(40c). This strategy leads to
the one-bit hard-quantized version of the SLS-MSDD,
which allows a further reduction in complexity in that
simpler integer-format additions and logical opera-
tions are now required.

5. Performance results

In this section, the effectiveness of the SD-based SLS-
MSDD receiver is verified over dense multipath wireless
environments through computer simulations. First, the
BER performance is quantified as a function of the ra-
tio Eb/N0 in both single-user and MAI scenarios, Eb being
defined as the mean received energy per transmitted
bit. Next, some implementation issues are investigated
with particular emphasis on the savings in computational
complexity which can be obtained with respect to the
SLS-MSDD based on exhaustive search (ES). The follow-
ing conventional schemes are taken as performance bench-
marks: (i) single-user Rake receiver with perfect channel
state information (CSI) and ideal timing recovery (IRake);
(ii) single-user symbol-by-symbol DDwith ideal timing re-
covery (IDD); (iii) single-user symbol-by-symbol DD with
symbol-level synchronization (SLS-DD).

5.1. Simulation setup

In the system setup for all simulation runs, each ac-
tive user transmits consecutive bursts of M binary PAM
information-bearing symbols. The transmission channel is
assumed to be time-invariant within each burst, but ran-
domly varying from burst to burst according to the model
in [29]. To be specific, the multipath components arrive in
clusters with amplitudes modeled as independent double-
sided Rayleigh distributed random variables having mean
square values exponentially decaying with the cluster de-
lays, as well as with the ray delays within the cluster,
with decay factors chosen as 30 ns and 5 ns, respectively.
The clusters and the rays within each cluster have Pois-
son distributed arrival times with arrival rates 0.5 ns−1
and 2 ns−1, respectively. The monocycle p(t) is selected
as the second derivative of a Gaussian shape with normal-
ized unit energy and pulse width equal to Tp = 1.0 ns. The
frame and chip interval are Tf = 100 ns and Tc = 1.0 ns,
respectively, Nf = 10 is the number of frames per infor-
mation symbol, while the TH codes cj are randomly picked
in the interval [0,Nc − 1] with Nc = 91, so that cjTc <
Tf ,∀j ∈ [0,Nf − 1]. In the MAI scenario, the Nu − 1 inter-
fering users have the same power Pi, whereas the desired
one has power Pu, so that the near/far ratio (NFR) results
as NFR , Pi/Pu. Further, the time origins of all the active
users are set randomly over the symbol interval (0, Ts) to
reproduce an asynchronous access to the channel and in
linewith the assumption that the timing information of the
desired user is acquired at the symbol level only.

5.2. BER in the single-user scenario

Fig. 1 illustrates the BER performance of the SLS-MSDD
in a single-user scenario (Nu = 1) with the coefficients Zl,i
taken as real-valued values (soft SD), and for different block
sizes, namely, M = 5, 10, 15, 20, 30, 35. As expected, the
performance of the SLS-MSDD improves as the block size
M increases: at BER = 10−2, the performance gap between
the M = 5 scheme and that with M = 10 is more than 6
dB, while M = 35 offers an additional gain of 5 dB over
M = 10. When M is not large enough, however, the BER
curves exhibit noise floors in the high SNR region, due to
insufficient averaging that compromises the assumption
η(a) ≈ 0 we made to reduce the detector complexity.
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Fig. 1. BER of SLS-MSDD with soft SD metrics for Nu = 1 and variousM .

The above phenomenon is considerably alleviated as M
increases. Still, the SLS-MSDD has a significant edge
compared to the conventional DD scheme not only with
mistiming (SLS-DD) but also with ideal timing recovery
(IDD). In fact, the gain of the SLS-MSDD withM = 35 over
the IDD is more than 5 dB in the BER interval of practical
interest while skipping accurate timing synchronization.
On the other side, the IRake outperforms the SLS-MSDD by
approximately 10 dB, but at a very expensive price paid for
accurate channel and timing estimation.
Fig. 2 refers to the SLS-MSDD in the single-user case

with one-bit hard-quantized coefficients Zl,i (hard SD). In
accordance with Fig. 1, the BER metrics improve with the
data block size M , flatten out in the high-SNR region at
moderateM , and are still superior to those of both the SLS-
DD and IDD. Nevertheless, the considerable reduction in
computational complexity due to the adoption of integer-
based arithmetic only has to be inevitably traded with a
given performance degradation. If compared to the soft
version, this is limited, however, to 1–2 dB only, providing
that the burst length takes adequate values, sayM ≥ 15.

5.3. BER in the MAI scenario

The BER curves of Fig. 3 quantify the MAI effects on the
soft version of the SLS-MSDD when the block size is M =
20 (square marks) or M = 30 (circle marks), the number
of active users is Nu = 5, 10, 15 and the NFR parameter is
set to−6 dB. The single-user cases for both the SLS-MSDD
and the conventional IDD are also plotted as reference. As
one could expect, the BER performance gets worse as the
MAI level increases. At BER = 10−2, the SLS-MSDD with
M = 30 can sustain Nu = 5 users at a small price of less
than0.5 dB in extra SNR (compared to the single-user case),
1
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0.0001
6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 2. BER of SLS-MSDDwith hard SDmetrics for Nu = 1 and variousM .
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Fig. 3. BER of SLS-MSDDwith soft SDmetrics forM = 20, 30, NFR = −6
dB, and various Nu .

whereas 2 dB has to be expended additionally when the
MAI level raises to Nu = 15. Further, the BER robustness of
the SLS-MSDD against theMAI improves adopting a longer
data block. At BER = 10−2, the SLS-MSDD using M = 20
outperforms the IDD operating in a single-user channel up
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Fig. 4. BER of SLS-MSDDwith soft SDmetrics forM = 20, 30, NFR = −3
dB, and various Nu .

to Nu = 10 users, whereas the same can be achieved at a
lower BER of 10−3 as well, as long asM = 30 is employed.
When the NFR in multi-user scenario increases to

−3 dB, the MAI effects turn out to be much stronger, as
shown in Fig. 4. When Nu = 5, the SLS-MSDD can reach
the BER level of 10−2 only provided that the block size is
set to M = 30, while choosing M = 20 the BER increases
to (asymptotically) around 2 × 10−2. Setting the number
of active users to Nu = 15, instead, significantly degrades
the SLS-MSDD performance in that the BER plots for both
M = 20 andM = 30 flatten out above the 0.1 level.

5.4. Computational complexity

The computational load of the SD-based SLS-MSDD can
be derived from the total number of additions spent in
evaluating the conditions (39) throughout the iterations
required by the search procedure. Depending on not only
the data block size M (or equivalently, how many nodes
are included in the tree to be visited) but also the received
signal (which affects the sphere radius chosen at each
iteration), the complexity is a random variable that has to
beproperly described through its average properties. In the
sequel, adhering to the approach followed in [28], we will
refer to the so-called complexity exponent (CE), defined
as the logarithm of base M of the average number of flop
operations per data block.
The CE metric is illustrated in Fig. 5 as a function of

M and for various Eb/N0 ratios, for both the soft (solid
lines) and hard (dotted lines) versions of the SLS-MSDD
operating in the single-user scenario. We also included the
CE of the SLS-MSDD based on ES (solid line without marks)
as a performance benchmark. The results suggest that the
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Fig. 5. Complexity exponent of SLS-MSDDwith soft and hard SDmetrics
for Nu = 1.

complexity of the SLS-MSDD (i) significantly improves over
that of the ES-based scheme, especially for larger values
of M; (ii) decreases while increasing Eb/N0 for given M ,
in that the iterative search on the tree gets faster when
the noise level reduces; (iii) flattens out for M larger
than around 15, thus meaning that (due to the adopted
logarithmic definition) it is nearly polynomial in M at a
constant exponent; (iv) decreases when using soft metrics
instead of hard ones, for givenM and Eb/N0. This is because
the search process in soft SD converges faster thanks to its
performance advantage, at the price of using floating-point
rather than integer format computations.

6. Concluding remarks

The aim of the current paper has been to derive
a novel multi-symbol detector for UWB communica-
tions with remarkable robustness to mistiming. A num-
ber of appealing features are offered: (i) joint data
detection based on symbol-level synchronization only,
(ii) simple receiver structure by circumventing the costly
tap-by-tap channel estimation required by conventional
coherent schemes, and (iii) efficient implementation by re-
sorting to a sphere decoding approach which enables af-
fordable computational complexity even for large blocks.
Simulation results obtained for typical dense multipath
channels in both single-user andMAI-limited scenarios in-
dicate that the adoption of a proper block size enables
attractive performance-versus-complexity tradeoffs.
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