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ABSTRACT
We develop a new receiver for orthogonal frequency divi-
sion multiplexing (OFDM) systems in time-varying channels
by embedding channel estimation in a low-complexity block
turbo equalizer. A linear minimummean squared error (MMSE)
pilot-assisted channel estimator is presented, and the soft data
estimates from the turbo equalizer are used to improve the
quality of the channel estimates.

Index Terms— OFDM, channel estimation, turbo equal-
ization, intercarrier interference, time-varying channels

1. INTRODUCTION

OFDM is one of the most important modulation schemes for
wireless communications, since it is widely used in many
standards such as DVB-T/H, DAB, IEEE 802.11 and IEEE
802.16. OFDM can eliminate intersymbol interference (ISI)
introduced by a frequency-selective channel by turning it into
a set of parallel frequency-flat channels, and therefore ren-
ders simple one-tap equalization for each subcarrier. How-
ever, high-mobility terminals and scatterers induce a different
Doppler shift on each propagation path, giving rise to a time-
selective or time-varying channel, thereby destroying the or-
thogonality among subcarriers. This for instance occurs in
DVB-H and IEEE 802.16 as well as in OFDM for underwater
communications.
In order to counteract the effects of a time-varying chan-

nel, low-complexity iterative MMSE equalization algorithms
have been proposed [1, 2], where soft information is used in
an iterative fashion to improve the bit error rate (BER) perfor-
mance. These methods exploit both the banded structure of
the frequency-domain channel matrix and receiver window-
ing. Optimal joint processing of equalization and decoding
at the receiver is prohibitive due to the heavy computational
burden. Instead, the equalization and decoding tasks can be
performed separately and carried out iteratively, with soft in-
formation being interchanged between these two parts. The
basis for the turbo equalizer is either a serial linear equal-
izer [2] or a block linear equalizer [1]. Although both have
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a comparable complexity, the block version seems to outper-
form the serial version in case windowing is used [1].
The Doppler shift caused by the high mobility also makes

the channel estimation problem more challenging. In prac-
tice, the pilot-assisted channel estimation algorithm devel-
oped in [6] can be used to model and estimate the frequency-
and time-selective channel. However, soft information can be
used to improve the quality of channel estimation, as shown
in [7] in a different context.
In this paper, we improve the block turbo equalizer of [1],

by making the extrinsic information independent from the a
priori information, in order to obtain a lower BER than the
equalizer of [1]. The complexity is still linear in the number
of subcarriers. Further, the pilot-assisted channel estimator of
[6] is included in the iterative equalization and decoding loop,
where soft data estimates are used to improve the quality of
channel estimation. Simulation results show the validity of
the equalization algorithm when channel state information is
not available.

2. SYSTEMMODEL

We consider a single-user OFDM system with N subcarri-
ers, and a channel that is both frequency- and time-selective.
The structure of the transmitter and the receiver is shown in
Fig. 1. At the transmitter, a sequence of bits is encoded with
error correction coding, and the coded bits are interleaved and
mapped intoNd complex symbols, represented by theNd ×1
vector sd. We define sp as theNp×1 vector that stands for the
pilot symbols, which are multiplexed with sd to form a block
of N = Nd + Np transmitted symbols s. For simplicity,
we only consider unit-energy quaternary phase-shift keying
(QPSK), and we adopt the standard assumption that the max-
imal channel order is equal to the OFDM cyclic prefix (CP)
length, both denoted by L. This way, the equalizer can be
designed separately for each OFDM block, and we can omit
the OFDM block index from our notation. At the receiver,
after removing the CP, the N × 1 received vector yt can be
expressed as

yt = HtF
Hs + nt, (1)

where Ht is the N × N time-domain channel matrix, F de-
notes the N ×N unitary DFT matrix, s represents the N × 1
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Fig. 1. System model
OFDM symbol consisting of the multiplexed pilot and data
symbols, and nt stands for the N × 1 noise vector. For sim-
plicity, we assume that nt is a circularly symmetric complex
Gaussian noise vector, with zero mean and covariance matrix
Rnt

= E(ntn
H
t ) = σ2

nIN . At the receiver, a time-domain
window can be applied after CP removal and before the FFT
operation. In this case, the output vector after the FFT opera-
tion can be expressed as

yf = FWHtF
Hs + FWnt = Hfs + nf , (2)

where yf = FWyt, nf = FWnt, Hf = FWHtF
H , and

W = diag(w), with w the N × 1 vector denoting the time-
domain receiver window.
In a time-varying scenario, Ht is no longer circulant as

in the time-invariant case, and Hf becomes a non-diagonal
matrix, giving rise to ICI that corresponds to the non-zero
off-diagonal elements ofHf . Fortunately, with a proper win-
dow design, Hf is almost banded, with the most significant
elements around the main diagonal [2, 4].
To simplify equalization, the matrixHf is further approx-

imated by its banded version

H = Hf ◦ Θ, (3)

where we use the symbol ◦ to denote the Hadamard (element-
wise) product between matrices, andΘ is theN ×N Toeplitz
matrix, which has ones on the main diagonal, the Bc super-
and Bc sub-diagonals in a circular sense, and zeros on the
remaining entries.

3. LOW-COMPLEXITY TURBO EQUALIZATION

In this section, we improve the block turbo equalizer of [1],
by making the extrinsic information independent from the a
priori information, thereby improving the BER performance.
A detailed discussion can be found in [3]. Let us define si as
the QPSK symbol on the ith subcarrier, and (si,1, si,2) as the

related bits. The means and the variances of the symbols are
denoted asmi = E(si) and vi = Cov(si, si). For each of the
Np pilot symbols, the mean and variance are set to the pilot
symbol value and zero, respectively. As far as the Nd data
symbols are concerned, the means and variances are initial-
ized with zeros and ones, respectively. But in every iteration
of the turbo equalizer, they are updated using soft informa-
tion from the estimated symbols, as explained next. Given
{mi} and {vi} as prior information, the linear MMSE equal-
izer leads to

ŝi = gH
i (y − Hm + mihi), (4)

gi = (A + (1 − vi)hih
H
i )−1hi, (5)

where hi is the ith column of H, V = diag([v1, . . . , vN ]T ),
m = [m1, . . . , mN ]T , A = HVHH + Rnf

, and Rnf
=

E(nfn
H
f ). At a first glance, this block MMSE equalizer

seems very complicated, because a matrix inverse for each
subcarrier is required in (5). However, it is possible to show
that this equalizer can use a unique shared inverse. Indeed,
from the matrix inversion lemma, we obtain

(A + (1 − vi)hih
H
i )−1

=A−1 − 1 − vi

1 + (1 − vi)ti
A−1hih

H
i A−1,

(6)

where ti is defined as ti = hH
i A−1hi. Consequently, gi

becomes

gi = A−1hi − 1 − vi

1 + (1 − vi)ti
tiA

−1hi

=
1

1 + (1 − vi)ti
A−1hi. (7)

Hence, from (4), the estimated symbol becomes

ŝi =
1

1 + (1 − vi)ti
hH

i A−1(yf − Hm) +
timi

1 + (1 − vi)ti
.

(8)
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From (8), it is clear that the same inverse A−1 can be used
for every subcarrier. We highlight that a similar procedure
has also been presented in [10] but in a CDMA context.
To compute a new value formi and vi, we make the stan-

dard assumption that the probability density function (PDF)
p(ŝi|si = αk) is Gaussian. From (8), we can compute the
mean and variance of this PDF as

μi,k =
1

1 + (1 − vi)ti
tiαk,

σ2
i,k = gH

i (A − vihih
H
i )−1gi

=
1

[1 + (1 − vi)ti]2
ti(1 − viti).

(9)

Therefore, the extrinsic log-likelihood ratio (LLR)Le(si,j) =
L(si,j |ŝi) − L(si,j), where L(si,j) is the a priori LLR and
L(si,j |ŝi) is the a posteriori LLR, can be calculated as [5]

Le(si,1) =
[1 + (1 − vi)ti]

√
8Re(ŝi)

1 − viti
,

Le(si,2) =
[1 + (1 − vi)ti]

√
8Im(ŝi)

1 − viti
.

(10)

The extrinsic LLR Le(si,j) is passed to the decoder to gen-
erate a new extrinsic LLR Ld

e(si,j), which is added to the a
priori LLR to form the a posteriori LLR or the new version of
the a priori LLR, which is used to update the means and the
variances of the estimated symbol as in [5]:

Lnew(si,j) = L(si,j) + Ld
e(si,j),

mi,new =
tanh(

Lnew(si,1)
2 ) + i · tanh(

Lnew(si,2)
2 )√

2
,

vi,new = 1 − |mi,new|2.
(11)

The whole procedure described in this subsection can then be
repeated, depending on the chosen number of iterations.
In order to calculate ŝi, we need A−1(yf − Hm) and

ti. First, we exploit the banded structure of the approximated
frequency-domain channel matrix H to reduce the complex-
ity of A−1(yf − Hm) by applying a band LDLH factor-
ization of A [4]. To reduce the complexity of the ti calcula-
tions, we exploit the fact that the vector hi is characterized
by 2Bc + 1 non-zero entries. Hence, to calculate a specific
ti = hH

i A−1hi, we only need a square subblock of A−1 of
dimension 2Bc + 1. To compute all ti’s, we thus only need
to know 4Bc + 1 diagonals ofA−1 which can easily be com-
puted using again the band LDLH factorization ofA [9]. For
more details, we refer the interested reader to [3]. The over-
all equalization algorithm described above has a complexity
ofO(B2

cN), where the parameter Bc is usually much smaller
than the number of subcarriers N , e.g., 1 ≤ Bc ≤ 4.

4. ITERATIVE CHANNEL ESTIMATION

The turbo equalizer presented earlier requires channel state
information (CSI) at the receiver. For this purpose, we modify

the linear MMSE pilot-assisted channel estimator of [6] in
a turbo fashion. Besides the pilots, the soft data estimates
originating from the turbo equalizer and the decoder can in
subsequent iterations be used as auxiliary pilot symbols in
order to improve the quality of the channel estimates [8].
The channel estimator estimates the time-domain channel

matrix Ht, and then transforms it to the frequency-domain
banded matrixH. We define hn,l as the lth channel tap at the
nth time-instance, and hn,l = 0 for l < 0 or l > L, since the
maximal channel order is assumed to be L. Thus the elements
ofHt can be expressed as

[Ht]p,q = hL+1+p,mod(p−q,N), (12)

which means there are N(L + 1) unknowns to estimate. The
basis expansion model (BEM) can be used to reduced the
number of unknowns from N(L + 1) to (Q + 1)(L + 1),
where Q + 1 is the number of basis functions [6].
By stacking all the channel taps within the block in one

N(L+1)×1 vector ht = [hL+1,0, . . . , hL+1,L, . . . , hL+N,0,
. . . , hL+N,L]T , a BEM models this vector as

ht = (B ⊗ IL+1)h, (13)

where B = [b0, . . . ,bQ] is an N × (Q + 1) matrix that has
Q + 1 orthonormal basis functions bq as columns, and h is a
(Q + 1)(L + 1) vector that collects all the BEM coefficients
of all the channel taps. Similarly to [6], we can write the
received signal yt as a function of h

yt = D {IQ+1 ⊗ [diag(m)FL]}h (14)
+ D {IQ+1 ⊗ [diag(s − m)FL]}h + nt

= Ph + dt + nt,

where FL represents the first L + 1 columns of the matrix√
NF, andD = [D0, . . . ,DQ], withDq = Fdiag{bq}FH .
The linear MMSE channel estimate can then be written as

ĥ = RhP
H(PRhPH + Rdt

+ Rnt
)−1yt, (15)

whereRh = E(hhH) andRdt
= E(dtd

H
t ). We can express

Rdt
asRdt

= DRxD
H , where

[Rx]m,n =

{
vmod(m,N)[X]m,n if mod(m − n, N) = 0

0 otherwise
,

(16)

withX = (IQ+1 ⊗ FL).
Note that it is not necessary to take all the received sam-

ples into account, so that the complexity of the channel esti-
mator could be reduced, as proposed in [6].

5. SIMULATION RESULTS

We consider an OFDM system with N = 128 subcarriers,
where 8 equidistant subcarriers are reserved for pilots. All
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Fig. 2. BER performance, fd/Δf = 0.35.

the pilot and data subcarriers have the same power. The chan-
nel order and the CP length are the same and equal to L =
5. The channel is assumed to be Rayleigh distributed with
uniform power delay profile, and a U-shaped Doppler spec-
trum. We consider a high-mobility case where the normal-
ized Doppler frequency is fd/Δf = 0.35with fd the Doppler
frequency and Δf the subcarrier spacing. We use the gener-
alized complex-exponential BEM with Q = 4 to model the
time-varying channel [6].
The time-domain receiver window [4] as well as the equal-

izer are designed for a bandwidth parameter Bc = 3. A rate
1/2 convolutional code with generator matrix [1 0 1;1 1 1]
and a block length of 8192 is used. We employ random inter-
leaving. The decoder employs a linear approximation to the
log-MAP decoding algorithm.
Fig. 2 shows the BER performance of [1] and the pro-

posed iterative channel estimation and equalization algorithm.
It can be seen that the proposed algorithm outperforms [1] in
case of perfect CSI. Further, in the case of unknown CSI, the
proposed iterative algorithm highly outperforms the LMMSE
channel estimator of [6], which coincides with the first itera-
tion of our algorithm. In addition, by increasing the number
of iterations, the performance of the proposed algorithm con-
verges to the performance with perfect CSI, at least at medium
to high SNR. Fig. 3 shows the normalized mean square er-
ror NMSE = E{||ht − (B ⊗ IL+1)ĥ||2/N} of the MMSE
channel estimator. It can be seen that the channel estimation
performance is consistent with the equalization performance.
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