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Time-Multiplexed Training for
Time-Selective Channels

Zijian Tang and Geert Leus

Abstract—Pilot-assisted channel estimation is considered in this
letter, where the channel is assumed to be time-selective and can be
accurately fit by a basis expansion model. The position and power
of the pilots are crucial to the mean square error of the channel es-
timator. In this paper, we present nonlinear integer programming
algorithms to optimize the position and power of the pilots. In com-
parison with the traditional equi-distant/powered pilot structure,
the solution obtained from the proposed algorithms yields a better
performance.

Index Terms— Basis expansion model (BEM), pilot-assisted
channel estimation, time-selective channels.

I. INTRODUCTION

RECENTLY, parsimonious channel models to track the
channel’s time variation have drawn increasing attention.

One of the approaches, known as the basis expansion model
(BEM) will be treated in this letter. Examples of such BEMs
are the complex exponential BEM (CE-BEM) [1]–[4], the
polynomial BEM (P-BEM) [5], the discrete prolate spheroidal
BEM (DPS-BEM) [6], etc. Note that the CE-BEM in [2], [4] is
slightly different than that in [1], [3]: the former is sometimes
referred to as the critically-sampled CE-BEM [(C)CE-BEM]
because the BEM period equals the window length, whereas
the latter uses a longer period and is thus also referred to as the
oversampled CE-BEM [(O)CE-BEM].

Based on a certain BEM assumption, time-selective channel
estimation reduces to estimating the BEM coefficients. We
focus on pilot-assisted channel estimators corresponding to dif-
ferent BEM assumptions using time-multiplexed (TM) training,
i.e., pilots are inserted in the time-domain as considered in
[2], [4]–[6]. Usually, the total number of pilots (bandwidth
constraint) as well as the total power (power constraint) is
limited. The question arises as to what will be the optimal pilot
structure (positions and powers). Note that the optimal pilot
structure will depend on both the optimality criterion and the
considered BEM. For instance, in terms of the maximum BEM
modeling error and under the P-BEM assumption, the optimal
pilot positions correspond to the roots of the Chebyshev poly-
nomials [7]. In this letter, we will not consider the influence of
the BEM modeling error, which can be kept very small in most
practical situations [6], and take the channel mean square error
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(MSE) as the optimality criterion. It is shown in [2], [4] that
for the (C)CE-BEM, the optimal pilots must be uniformly dis-
tributed with equal power.1 However, it is not yet clear what the
optimal pilot structure is for other BEMs, e.g., the DPS-BEM,
the P-BEM or the (O)CE-BEM, which are of more practical
significance in view of their superior modeling capacity [6].

In this letter, we will optimize the TM training scheme under
a general BEM assumption. An MSE-related cost function will
be formulated for the LS channel estimator, and translated into
a mixed-integer non-linear programming problem [8]. We show
that the resulting optimal pilot structure can produce a lower
channel MSE than the classical equi-distant/powered pilots if a
general BEM assumption is adopted.

Notation: We use upper (lower) bold face letters to de-
note matrices (column vectors). , and represent
conjugate, transpose and complex conjugate transpose (Her-
mitian), respectively. stands for an identity matrix.

stands for a diagonal matrix with as its diagonal,
and for a block-wise diagonal matrix with

as its diagonal blocks. represents the trace
of . Further, we use to indicate the st
entry of the matrix , and to indicate the st row
of .

II. DATA MODEL FOR TIME-SELECTIVE CHANNEL ESTIMATION

Let us consider a communication system over a time-selective
channel. The I/O relationship in discrete form can be expressed
as , where , , and denote respec-
tively the received signal, the transmitted signal and the noise
at the th time instant; stands for the “true” channel gain,
which varies with time for . To approximate
this time-variation with a BEM, let us choose the time instants

as an observation window and collect all
the channel gains within this observation window in the vector

. By selecting a proper scale for
the BEM, we can closely fit the channel’s time variation within
the observation window with BEM coefficients

(1)

where is an BEM matrix, and a -long
vector containing the related BEM coefficients. represents
the BEM modeling error. With its entries independent of
the channel, a BEM reduces the system scale from to

at the price of a modeling error, which is nonetheless

1The optimal pilots proposed in [2], [4] are based on a linear minimum mean
square error estimator under certain statistical assumptions, but the optimality
remains also valid for the least squares (LS) estimator. We will deal with an LS
estimator since it is more robust to a possible mismatch in the channel statistics.
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ignored in this paper for the design of the channel estimator.
This is because the modeling error can be kept very small by
choosing an appropriate BEM [6]. As a result, its impact at a
practical signal-to-noise ratio (SNR) can be almost neglected.
Furthermore, it is usually difficult to gauge the modeling error
when the channel itself is unknown. We also note that the idea
of a BEM is reflected in some other applications without in-
ducing a modeling error, e.g., the frequency-domain channel in
an OFDM system [9] can be model by a (C)CE-BEM whereas
the frequency-domain channel in an OFDM system with virtual
subcarriers [10] can be modeled by an (O)CE-BEM. For these
cases, the approach discussed in this letter can be also applied.

To estimate the BEM coefficients , we resort to a TM
training scheme, in which the pilots and the data will be
interleaved in the time domain. Suppose there are pilots
transmitted during the observation window, whose positions are
collected in the set . Furthermore, we
assume that the th pilot has phase and power , i.e.,

with the total power for training .
With the aid of these notations and neglecting the modeling
error, we can express the I/O relationship that results from the
pilots in matrix/vector form as

(2)

where is a vector collecting the received samples
at the pilot-related positions, i.e., ;

is similarly defined as ; and are both
diagonal matrices with and
as their diagonals, respectively; is a matrix
consisting of rows carved out of corresponding to the
pilot positions. An LS estimate from (2) can be obtained as

resulting in a channel MSE
equal to . Assuming the
noise to be white with variance , we can express the MSE
as

(3)

From the above, we remark that the phase of the pilots has no
impact on the channel MSE, and we only need to focus on the
powers and positions of the pilots. The optimization problem
can thus be formulated as

(4)

(5)

III. OPTIMIZATION ALGORITHM

The above formulation is a mixed-integer non-linear opti-
mization problem, where we have posed restrictions on the
total number and power of the pilots. [8] provides an algorithm
known as the generalized Benders decomposition (GBD). In a
nutshell, the GBD iteratively projects the minimization problem
onto the —(primal problem) and the —(relaxed master
problem). Since the constraints in (4) and (5) are separable in

Fig. 1. Flowchart of GA.

and , the primal problem becomes simply the search for the
optimal subject to a fixed , and the relaxed master problem
becomes the search for the optimal subject to a fixed . We
summarize the GBD algorithm as follows.

1) Let the superscript denote the iteration
index. To initialize, set , and assume

and
.

2) For , solve subject to

(4) resulting in .
3) For , solve subject

to (5) resulting in .

4) For a predetermined , if then
terminate. Otherwise, set and return to Step 2.

The primal problem at Step 3 is a nonlinear programming
problem (NLP), which can be solved analytically if
[10]. In other cases where , we can resort to the
MATLAB built-in function . The solution corre-
sponds to the global optimum due to the following lemma.

Lemma 1: The function
is strictly convex on the positive

diagonal matrix for a given .
To prove the above lemma, we realize that the function

is strictly convex on a positive-definite Hermitian
matrix [11]. In our case, is linear in for
a given , which preserves the convexity.

However, the master problem at Step 2, which is essentially a
binary programming problem, is more problematic. Especially
due to the fact that the MSE is not a convex function on the
pilot positions despite Lemma 1. In [12] and [13], this is solved
by relaxing the binary problem to a non-binary problem such
that the convexity can be still called upon. Unfortunately, this
approach, when applied to our problem, does not facilitate a
fast convergence due to a very large pilot position space. In this
letter, we resort to a combined genetic algorithm (GA) [14],
whose working principle is illustrated by the flowchart in Fig. 1,
with:

• “Population” representing a set of candidate (pilot posi-
tion) solutions.

• “Weakness” representing the cost function value defined in
(3) for each candidate. Those candidates that do not satisfy
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condition (4) will be penalized by a weakness value equal
to infinity.

• “Reproduction” representing the operation that copies the
population except for the candidates that either have the
largest weakness or the smallest weakness. The former will
be discarded while the latter will be copied twice since it
has the lowest MSE at the moment.

• “Crossover” representing the operation applied on the
candidate pool produced by the reproduction: at the th
iteration, all the candidates are randomly grouped into
pairs (parents). Let us take one such pair for example: sup-
pose “Parent1” is the th candidate

and “Parent2” the th candidate with

. Here, stands in our context for the position
of the th pilot that corresponds to the th candidate
obtained at the th iteration. “Mating” these two parents
results in two new candidates (children) with “Child1”
denoted as and “Child2” as

. In generating each entry of the
children, either of two operations will take place: replica-
tion or swapping with a probability of 0.5, respectively.
For the th entry for instance, in case of replication

, and . In case of
swapping, we first express the th entry of “Parent1” and
“Parent2” in binary-form. These two binary strings are
then divided at the same arbitrary place, from which the
right-hand part of “Parent2” will be concatenated to the
left-hand part of “Parent1” and vice versa. In this way,
two new binary strings are created and converted back in
decimal form.2

If the observation window size or pilot number is large,
the GA must abide with a large population size. This results in
a higher complexity and lower convergence rate, which in prac-
tice, often leads to a “near-optimal” solution. It is thus helpful if
we could equip the GA with some a priori knowledge about the
solution. For the considered case (both and are assumed to
be even), we could constrain the pilot structure to be symmetric
with respect to the center of the observation window, e.g., we
let and . This constraint is
introduced due to the following properties.

Property 1: Without loss of generality, we can design
the BEM in a particular way. For the CE-BEM, we take

, where for
the (C)CE-BEM as in [2], [4], and for the (O)CE-BEM as
in [1], [3]. For the P-BEM, we take .
Finally, for the DPS-BEM, we take as the columns of the

most significant eigenvectors of a kernel matrix
, where stands for the

normalized Doppler spread.
The BEMs taking the above expressions admit some sym-

metric structure: if we use and to denote the first and
second half of , respectively, i.e., , they are
related to each other as , with being an

permutation matrix, which has only zero elements ex-

2For instance, suppose the kth entry of “Parent1” is g = 2 and the kth
entry of “Parent2” is g = 5. If swapping takes place, we first find the
binary expression for g = [0; 1; 0] and g = [1; 0; 1]. Suppose we cut
randomly at the first bit, then g = [0; 0; 1], and g = [1; 1; 0],
which in decimal-form equal 1 and 6, respectively.

cept for ; for the CE-BEM, and
for the P-BEM and DPS-BEM.

Property 2: If denotes the optimal pilot
structure with ,
and , then we can al-
ways find another pilot structure with

and
, such that

.
Proof: Let us absorb the effect of and in a larger

diagonal matrix , whose diagonal consists of zeros
except for the pilot positions, i.e., and
if . By this means, we can rewrite (3) as

.
Suppose corresponds to the optimal pilots

. We divide it into the left-upper and right-bottom
half, which are represented by and , respectively,
i.e., . Obviously, the counterpart

of the pilot structure can be related to
as . By Property 1, we
have

Likewise, for , we obtain

where holds because , and holds
because for a Hermitian matrix .

Property 2 suggests that the optimal pilot structure exists in
pairs. Should there be a unique global minimum, this would
imply that the optimal pilot structure ought to be symmetric.
Since we have observed in applications that multiple global
minima could exist, imposing a symmetric constraint upon the
GA would lead to an MSE degradation in theory. However, as
shown in the simulation part, the symmetric algorithm inflicts
a much lower complexity and renders a performance very close
to (or even better than) the non-symmetric algorithm. This is
probably due to the fact that the channel MSE is not a convex
function of the pilot positions and has a large number of local
minima. By enforcing symmetry, the search space is reduced
and hence the global minimum might never be reached. On the
other hand, a smaller search space is beneficial in avoiding local
minima and thus increases the convergence rate.
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TABLE I
PILOT STRUCTURE COMPARISON FOR K = 6

Fig. 2. MSE versus SNR.

Fig. 3. BER versus SNR.

IV. NUMERICAL EXAMPLES

We generate time-selective channels as prescribed in [15] for
a normalized Doppler spread . The (O)CE-BEM
assumption will be adopted to approximate the channel’s time-
variation, though other BEMs are also applicable but will not be
examined here due to space restrictions. Following the definition
given in Property 1, we set , and .

We compare different solutions for pilots listed in
Table I. The symmetric GA is equipped with a population pool
size of 100 and iterates 100 times, and the non-symmetric GA
is equipped with a population pool size of 250 and iterates 1000
times.

The corresponding MSE performances are plotted in Fig. 2,
and the BER performances resulting from a maximum like-
lihood equalizer are plotted in Fig. 3. From the figures, one
can observe that the performance of the symmetric algorithm
is slightly better than that of the non-symmetric algorithm, even
though the former requires a much smaller complexity. It is also
noteworthy that only optimizing the pilot positions but assuming
equal power, the resulting pilot structure can already improve
the performance considerably.

V. CONCLUSION

This letter shows how to search for the optimal pilot structure
numerically, which can be applied to time-selective channel es-
timation based on a general BEM assumption. Note that to im-
plement the proposed optimization algorithms, it is up to the
transmitter to choose a proper BEM.
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