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ABSTRACT

In this paper, we discuss different options for quantized feed-
back and feedback reduction for a precoded spatial-multiplexing
multiple-input multiple-output (MIMO) system in a time-varying
channel. The novel contributions of this paper are a quantized
feedback strategy based on the bit-error-rate (BER) of a linear
receiver, and two new feedback reduction strategies for a time-
varying channel. Both these feedback reduction schemes exploit
the time correlation of the MIMO channel. They basically can
be viewed as an optimized generalization of existing feedback
reduction strategies.

1. INTRODUCTION

In the last few years, spatial multiplexing emerged as a promis-
ing scheme to fulfill the data rate requirements of future wireless
services. A technique to make spatial multiplexing more robust
to rank deficient channels and to allow for simpler receiver ar-
chitectures is linear precoding [1].

The optimal precoder is calculated as a function of the chan-
nel state information (CSI). However, since CSI is in general
only available at the receiver, it needs to be fed back to the trans-
mitter. Since the precoder is generally restricted to be unitary it
is beneficial [2] to feed back the quantized precoder, instead of
the quantized channel. To feed back precoder information over a
bandlimited feedback link, we require a codebook consisting of
a set of quantized precoders. Such a codebook is generally de-
signed using some distortion measure [6, 8, 10, 11, 12, 13]. One
novel contribution of this paper is the use of the exact bit-error-
rate (BER) of a linear receiver as a distortion measure. Further,
a selection measure is required that maps the channel to a spe-
cific quantized precoder. This selection measure could be similar
to the distortion measure, but this does not have to be the case.
For instance, when the BER of a linear receiver is the criterion
of interest, it is always better to use this as a selection measure,
independent of the codebook design [10].

The feedback requirements can be further reduced by ex-
ploiting the temporal correlation of the channel. In [3] and [4],
a first-order Markov chain is introduced to model the feedback
of a set of quantized beamformers that is designed following one
of the above approaches. Based on this Markov model, no feed-
back is sent for the quantized beamformer with the highest tran-
sition probability (always the previous quantized beamformer),
an equi-length bitword is sent for the quantized beamformers
with the second highest transition probability, and no feedback
is sent for the remaining quantized beamformers, if there are
any. When there are remaining quantized beamformers, as in
[4], such a feedback method is clearly lossy, and thus a feedback
reduction can only be obtained at the price of a reduced perfor-
mance. When there are no remaining quantized beamformers, as
in [3], the feedback method is lossless, but the feedback rate is
not optimally reduced. In [5], another type of feedback reduc-
tion is proposed. This method was proposed for time-invariant
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MIMO-OFDM systems, but it can easily be translated for the
current set-up. In that case, a set of quantized beamformers is
designed based on maximizing the minimum distance between
the beamformers. Further, only a few quantized beamformers
that are closest to the previous quantized beamformer are con-
sidered and the best one is used. This approach does not re-
quire any statistical knowledge about the channel, but when the
Doppler spread is large, the method could lose track. To solve
this problem, [5] proposes a trellis-based extension at the cost of
latency. This partially solves the problem, but we believe it still
has tracking problems when the Doppler spread is too large.

In this paper, we will show a few optimized methods for re-
ducing the feedback rate. We will basically focus on two meth-
ods. One that optimally adapts the bitwords depending on the
previously fed back information, called the adaptive bitword ap-
proach, and one that adapts the precoders depending on the pre-
viously fed back information, called the adaptive precoder ap-
proach. The previous feedback reduction methods [3],[4],[5] can
be considered as special (suboptimal) cases of the proposed ap-
proaches.

Notation: Vectors are designated with lowercase boldface
letters, and matrices with uppercase boldface letters. AT , AH ,
and A−1 denote the transpose, the complex conjugate trans-
pose, and the inverse of the matrix A, respectively. In addition,
abs(A) represents the element-wise absolute value of the matrix
A, tr(A) its trace, det(A) its determinant, and diag(A) a diago-
nal matrix obtained by removing the off-diagonal elements of A.
Further, ‖A‖2 and ‖A‖F denote the two-norm and Frobenius
norm of A, respectively. Finally, E(·) represents expectation,
and P (·) probability.

2. SYSTEM MODEL

We consider a narrowband linearly precoded spatial multiplex-
ing MIMO system, with NT transmit and NR receive antennas,
transmitting NS ≤ min(NT , NR) symbol streams. For a par-
ticular time instant, the input-output relation can then be written
as

y = HFs + ν, (1)

where y ∈ C
NR×1 is the received vector, ν ∈ C

NR×1 is the
additive noise vector, s ∈ C

NS×1 is the data symbol vector,
H ∈ C

NR×NT is the channel matrix, and F ∈ C
NT ×NS is

the linear precoder matrix. We assume that the elements of ν are
i.i.d. and complex Gaussian distributed with zero mean and vari-
ance 1, that the elements of s are i.i.d. and uniformly distributed
over a finite alphabet A with zero mean and variance 1, and that
the elements of H are i.i.d. and complex Gaussian distributed
with zero mean and variance P (note that the transmit power is
embedded in H). Further, in order to reduce the feedback [6],
F is limited to be unitary, i.e., F ∈ UNT ×NS , with Un×m de-
noting the set of unitary n × m matrices. Hence, the received
signal-to-noise ratio (SNR) per transmit antenna is given by P .

The singular value decomposition (SVD) of H will be de-
noted as H = UΣVH , where U and V belong to UNR×NR



Fig. 1. System model.

and UNT ×NT , respectively, and Σ is a diagonal NR×NT matrix
with the diagonal starting in the top left corner. Let us also de-
fine Ū = [U]:,1:NS ∈ UNR×NS , V̄ = [V]:,1:NS ∈ UNT ×NS ,
and Σ̄ = [Σ]1:NS ,1:NS , where we use Matlab notation in the
subscript to select the appropriate rows and columns.

We consider a block-wise transmission structure, where ev-
ery block consists of a frame of length Tf (in seconds). We
assume that the receiver can perfectly estimate the channel state
information (CSI) at the beginning of each block, and can feed
back some precoder information to the transmitter over a ban-
dlimited yet delay- and error-free feedback link. We will make
a distinction between a non-dedicated and a dedicated feedback
link. In case of a non-dedicated feedback link, the feedback in-
formation has to be instantaneously decodable. In other words,
the bitwords that are sent back should be prefix-free (PF), i.e.,
a bitword can not contain any other bitword as a prefix. This is
not the case for a dedicated feedback link, where non-prefix-free
(NPF) bitwords can be used. In this context, note that an empty
bitword also counts as an NPF bitword.

3. QUANTIZED FEEDBACK

Since the feedback link is bandlimited we need to quantize the
precoder information. This requires a codebook consisting of a
set of quantized precoders and a set of related channel regions.
Further, we need a selection procedure that maps the channel to
a specific quantized precoder. Finally, a different bitword is as-
signed to every quantized precoder, which will be sent over the
non-dedicated or dedicated feedback link to inform the transmit-
ter (see Figure 1).

3.1. Codebook Design

Most existing codebook design algorithms, construct the quan-
tized precoders and related channel regions, {Fi,Ri}K

i=1, so
that an expected distortion measure between the channel and the
quantized precoder is minimized. More specifically, if we as-
sume that the quantized precoder Fi is picked whenever H ∈
Ri, then we wish to minimize

K∑
i=1

E[D(H,Fi)|H ∈ Ri]P (H ∈ Ri), (2)

over {Fi,Ri}K
i=1, under the constraints that Fi ∈ UNT ×NS ,

Ri ⊂ C
NR×NT ,

⋃
i Ri = C

NR×NT , and Ri ∩Ri′ = ∅, ∀i �=
i′, where D(H,F) represents a distortion measure between the
channel H and the precoder F. Minimizing (2) can be done by
the Lloyd algorithm [7].

Note that although the codebook is designed based on a cer-
tain selection procedure, the actual selection procedure could be
different. More specifically, for a given channel matrix H, we
pick the quantized precoder as

Q(H) = arg min
F∈{Fi}K−1

i=0

S(H,F), (3)

precoders bitwords bitwords
non-dedicated dedicated

F1 w1 = 00 w1 = /
F2 w2 = 01 w2 = 0
F3 w3 = 10 w3 = 1
F4 w4 = 11 w4 = 00

Table 1. Example of a 4-entry (K = 4) codebook for a non-
dedicated and dedicated feedback link.

where S(H,F) is the selection measure between the channel H
and the precoder F. As explained earlier, the selection measure
S(H,F) can be the same as the distortion measure D(H,F), in
which case Q(H) = Fi whenever H ∈ Ri, but this does not
have to be the case. In the following subsections, we will discuss
in more detail possible distortion and selection measures.

Assuming that the probabilities {P (Q(H) = Fi)}K
i=1 are

generally all close to 1/K, there are basically two strategies to
assign bitwords {wi}K

i=1 to the quantized precoders {Fi}K
i=1.

Which strategy is chosen depends on the type of feedback chan-
nel. For a non-dedicated feedback link, we take K equi-length
PF bitwords, whereas for a dedicated feedback link we take K
increasing-length NPF bitwords. An example of a 4-entry (K =
4) codebook is presented in Table 1 for a non-dedicated and ded-
icated feedback link. Clearly, the average feedback rate for the
non-dedicated feedback link, which is about �log2(K)	, is larger
than the average feedback rate for the dedicated feedback link,
which is about 1/K

∑K
i=1
log2i�.

3.2. Distortion Measures

In [6] and [8], a number of performance measures has been trans-
formed into subspace distances between V̄ and Fi, where V̄
is the optimal precoder for that performance measure. For in-
stance, the minimum received distance between two noiseless
received vectors [related to the performance of the maximum
likelihood (ML) receiver and called the ML performance mea-
sure], the minimum singular value (MSV) of the product of the
channel and the precoder (called the MSV performance mea-
sure), and the trace of the mean square error (MSE) of the lin-
ear minimum mean squared error (LMMSE) receiver (called the
trace-MSE performance measure) can all be transformed into the
projection two-norm distance between V̄ and Fi [6]:

dp2(V̄,Fi) = ‖V̄V̄H − FiF
H
i ‖2.

Further, the determinant of the MSE of the LMMSE receiver
(called the det-MSE performance measure) and the capacity can
be transformed into the Fubini-Study distance between V̄ and
Fi [6]:

dFS(V̄,Fi) = arccos | det(V̄HFi)|.
Finally, the Frobenius norm of the product of the channel and
the precoder [related to the performance of an orthogonal space-
time block code (OSTBC) used on top of the precoder and called
the OSTBC performance measure] can be transformed into the
chordal distance between V̄ and Fi [8]:

dc(H,Fi) =
1√
2
‖V̄V̄H − FiF

H
i ‖F .

The squares of all these distances could be used as a dis-
tortion measure in (2), i.e., Dp2 = d2

p2, DFS = d2
FS , and

Dc = d2
c . Actually, [6] and [8] do not minimize (2) using these

distortion measures but they try to maximize the minimum sub-
space distance between the quantized precoders {Fi}K

i=1. This
results in a subspace packing problem on a Grassmann manifold
and algorithms presented in [9] are adopted. In [10], however,
(2) is minimized using the above distortion measures, leading to



a slightly improved performance. The reason why squared sub-
space distances are generally used as a distortion measure in (2)
is because the centroid computation of the Lloyd algorithm can
then be carried out in closed form.

In [11], an alternative distortion measure is adopted, which
is related to the capacity loss introduced by quantization. In con-
trast to the squared subspace distances mentioned earlier, this
distortion measure depends on the SNR (through Σ̄):

Dcl(H,Fi) = tr
(
Λ − ΛV̄HFiF

H
i V̄

)
, (4)

where Λ = (INS + Σ̄
2
)−1Σ̄

2. Note the close resemblance to
the squared chordal distance:

Dc(H,Fi) =
1

2
‖V̄V̄H − FiF

H
i ‖2

F

= tr(INS − V̄HFiF
H
i V̄), (5)

which is independent of the SNR. Although (4) is not strictly
speaking a squared subspace distance, the centroid can still be
computed in closed form [11].

A common problem to all the above distortion measures is
that all precoder matrices in the same subspace have the same
distortion. This is not a problem if the related performance mea-
sures are considered, because they are invariant to a left multi-
plication of the precoder with a unitary matrix. However, if the
BER of a linear receiver is considered, for instance, this becomes
a problem because the BER of a linear receiver is not invariant
to a left multiplication of the precoder with a unitary matrix.
It has been shown in [10] that for some SNR regions F = V̄
is optimal, whereas for other SNR regions F = V̄M is opti-
mal, with M ∈ UNS×NS having constant modulus entries, e.g.,
the Hadamard or the DFT matrix. Further, even though there
are also SNR regions for which the optimal unitary precoder
is not known, choosing either one of the precoders F = V̄ or
F = V̄M is a good strategy. This means we actually need a
quantization procedure that quantizes V̄ by retaining the order
of the singular vectors. Depending on the linear receiver and
the SNR region, we can then either use the quantized precoder
Fi or FiM at the transmitter. In [12], for instance, the squared
Frobenius norm distance between V̄ and Fi was considered:

DF (H,Fi) = ‖V̄ − Fi‖2
F = 2tr[INS −(V̄HFi)]. (6)

This approach was modified in [13] to take the phase ambiguity
of the singular vectors into account, labeled the squared modified
Frobenius norm distance:

DmF (H,Fi) = min
Θ∈DNS

‖V̄Θ − Fi‖2
F

= ‖V̄diag(V̄HFi)diag−1(abs(V̄HFi)) − Fi‖2
F

= 2tr[INS − abs(V̄HFi)], (7)

with Dn denoting the set of diagonal unitary n × n matrices.
Note that these two distortion measures are again independent of
the SNR. Also observe the difference with the squared chordal
distance of (5). Through the use of the real value or the absolute
value of V̄HFi instead of the product V̄HFiF

H
i V̄, we truly

encode V̄ and not only its subspace. The problem with the two
above distortion measures is that the centroid computation re-
quired for the Lloyd algorithm can not be carried out in closed
form as with the previous distortion measures. Therefore, we ap-
ply a brute-force centroid computation by exhaustively searching
for the best center, i.e., the channel which has the minimal av-
erage distortion within a region. This trick actually allows us to
use all kinds of distortion measures, including the BER of a lin-
ear receiver, for which exact expressions exist [14]. Hence, we
can consider a BER distortion function that is given by

Dber(H,Fi) = BER(H,Fi),

where BER(H,Fi) is the average BER of a linear receiver for
a channel H and a precoder Fi. Note that this BER distortion
function depends again on the SNR.

3.3. Selection Measures

In the previous section, many distortion measures were derived
based on specific performance measures. Usually these perfor-
mance measures are used as a selection measure in the selec-
tion procedure. In other words, for the squared projection two-
norm distance Dp2, we will use the ML, MSV, or trace-MSE
performance measure in the selection procedure, for the squared
Fubini-Study distance DFS , we will use the det-MSE or ca-
pacity performance measure in the selection procedure, and for
the squared chordal distance Dc, we will use the OSTBC per-
formance measure in the selection procedure. For the capacity
loss distortion measure Dcl, the squared Frobenius norm dis-
tance DF , the modified squared Frobenius distance DmF , and
the BER distortion measure Dber , we will generally use the
distortion measure itself to guide our precoder selection, i.e.,
S(H,Fi) = D(H,Fi).

The above approach seems to be the most natural. However,
in [10], the BER of the adopted linear receiver is always used as
a selection measure, independent of the distortion measure used
to construct the codebook. When the BER of a linear receiver
is the criterion of interest, this approach is of course always the
best. Note that in case we want to apply this approach when DF

or DmF are used as a distortion measure, we should first decide
on whether to use Fi or FiM at the transmitter, a decision which
will depend on the linear receiver and the SNR region [10].

4. FEEDBACK REDUCTION

There are basically two ways to reduce the feedback require-
ments in a time-varying channel. You can stick to the original
codebook and adapt the bitwords depending on the previously
fed back information. We call this approach the adaptive bit-
word approach. Alternatively, we could also adapt the precoders
depending on the previously fed back information. We call this
approach the adaptive precoder approach. We next show how to
optimize both approaches. For simplicity reasons, we only take
the most recent feedback instant into account for which the chan-
nel matrix was given by H′. Remember that the current channel
matrix is denoted by H.

4.1. Adaptive Bitword Approach

For this approach, we adopt a codebook {Fi,Ri}K
i=1 that was

designed as discussed in Section 3. However, we construct the
bitwords that are assigned to the quantized precoders in an adap-
tive fashion depending on the previous quantized precoder. If
for instance Q(H′) = Fj , we assign to the quantized precoders
{Fi}K

i=1 the bitwords {wi,j}K
i=1 that are found by minimizing

K∑
i=1

l(wi,j)P (Q(H) = Fi|Q(H′) = Fj), (8)

where l(w) represents the length of the bitword w and P (Q(H) =
Fi|Q(H′) = Fj) stands for the transition probability that the
current quantized precoder is Fi given that the previous quan-
tized precoder is Fj . Hence, this approach is based on a first-
order Markov chain for the quantized precoders, as done in [3]
and [4].

The solution of the above problem depends on the type of
feedback link. For a non-dedicated feedback link, the solution is
given by K PF bitwords that are computed using the Huffman
algorithm based on the transition probabilities [15], whereas for



a dedicated feedback link the solution is given by K increasing-
length NPF bitwords with decreasing order of transition prob-
ability. An example of an 8-entry (K = 8) codebook when
Q(H′) = F1 is presented in Table 2 for a non-dedicated and
dedicated feedback link. Note that as the Doppler frequency in-
creases and hence the correlation between the channel matrices
at the feedback instances decreases, the transition probabilities
converge to 1/K and the average feedback rate will be the same
as in Section 3.

We remark that the schemes proposed in [3] and [4] can be
viewed as suboptimal solutions of the proposed approach in case
of a dedicated feedback link (note that these papers only consider
beamforming, i.e., NS = 1). These schemes adopt an empty bit-
word for the quantized precoder with the highest transition prob-
ability (always the previous quantized precoder), Ka equi-length
PF bitwords for the Ka quantized precoders with the second
highest transition probabilities, and K−Ka−1 empty bitwords
for the remaining quantized precoders, if there are any. See again
Table 2 for an example with K = 8 and Ka = 4. When the
transmitter receives an empty bitword, it assumes that the previ-
ous quantized precoder should be used. When Ka < K − 1 [4],
such a feedback method is clearly lossy (see also the example).
Hence, for the same feedback rate, it has a worse performance
than the proposed adaptive bitword approach. However, it has
the flexibility to realize a smaller average feedback rate at the
cost of an additional performance loss. When Ka = K − 1 [3],
the feedback method is lossless, but for the same performance,
it has a higher feedback rate than the proposed adaptive bitword
approach, since the latter is optimized in this sense.

4.2. Adaptive Precoder Approach

In the adaptive precoder approach, we design a codebook in an
adaptive fashion depending on the previous quantized precoder.
Let us start from a set of K fixed channel regions {Ri}K

i=1,
which could for instance correspond to the channel regions of a
codebook that was designed as discussed in Section 3. Let us fur-
ther relate to each channel region Rj the codebook {Fi,j ,Ri,j}Ka

i=1.
If we now assume that, given H′ ∈ Rj , the quantized precoder
Fi,j is picked whenever H ∈ Ri,j , then we basically wish to
minimize

Ka∑
i=1

E[D(H,Fi,j)|H ∈ Ri,j ]P (H ∈ Ri,j |H′ ∈ Rj) (9)

over {Fi,j ,Ri,j}Ka
i=1, under the constraints that Fi,j ∈ UNT ×NS ,

Ri,j ⊂ C
NR×NT ,

⋃
i Ri,j = C

NR×NT , and Ri,j∩Ri′,j = ∅,
∀i �= i′. Minimizing (9) can again be done by the Lloyd algo-
rithm [7].

The problem now is that the transmitter does not know in
which channel region Rj the previous channel matrix H′ resides
solely based on the previous quantized precoder Q(H′). Hence,
we assume that the transmitter estimates the previous channel
matrix as

Ĥ′ = [Q(H′),0NT ×(NR−NS)]
H ,

and checks to which channel region Rj it belongs. Under this
assumption, the selection procedure is given by

Q(H) = arg min
F∈{Fi,j}Ka

i=1|Ĥ′∈Rj

S(H,F). (10)

See Table 3 for an example of such an adaptive precoder scheme
with K = 8 and Ka = 4.

The recursive feedback reduction scheme proposed in [5]
can actually be viewed as a suboptimal solution of the above
adaptive precoder approach. Although this method was origi-
nally proposed for MIMO-OFDM systems, it can easily be trans-
lated for the current set-up. The authors start from a set of

K fixed quantized precoders {Fi}K
i=1, which correspond to the

quantized precoders of a codebook that was designed using sub-
space packing based on the chordal distance. Further, they relate
to each quantized precoder Fj the set of Ka quantized precoders
{Fi,j}Ka

i=1 from the set {Fi}K
i=1 that have the smallest chordal

distance to Fj . The selection procedure is then given by

Q(H) = arg min
F∈{Fi,j}Ka

i=1|Q(H′)=Fj

S(H,F). (11)

Hence, compared to the proposed adaptive precoder approach,
the starting point is a set of K fixed quantized precoders {Fi}K

i=1,
instead of a set of K fixed channel regions {Ri}K

i=1. Further, the
set {Fi,j}Ka−1

i=0 is related to the previous precoder Fj , instead
of to the previous channel region Rj , and it is a subset of these
K fixed quantized precoders {Fi}K

i=1, instead of the result of an
optimization procedure. The advantage of this approach is that
no statistical knowledge about the channel is required. However,
when the Doppler spread is too large, the method could lose
track, because every set of Ka quantized precoders {Fi,j}Ka

i=1

only covers a small region around Fj . To solve this problem,
[5] proposes a trellis-based extension at the cost of latency. This
partially solves the problem, but we believe it still has tracking
problems when the Doppler spread is too large. The proposed
adaptive precoder approach does not suffer from this problem
because every set of Ka quantized precoders {Fi,j}Ka

i=1 is de-
signed optimally depending on the Doppler spread.

As before, we may assume that the probabilities {P (Q(H) =

Fi,j)}Ka
i=1 are generally all close to 1/Ka. Hence, there are

again two strategies to assign bitwords {wi}Ka
i=1 to the quantized

precoders {Fi,j}Ka
i=1. For a non-dedicated feedback link, we

take Ka equi-length PF bitwords, whereas for a dedicated feed-
back link we take Ka increasing-length NPF bitwords. Hence,
for the different cases presented in Table 3, we assign bitwords
as shown in Table 1 with “Fi” replaced by “case i”.

5. SIMULATIONS

In this section, we illustrate the proposed ideas with a couple of
simulation results. We consider a MIMO system with NT = 4
transmit and NR = 4 receive antennas, over which we transmit
NS = 2 symbol streams that are QPSK modulated. First, let us
take a look at the codebook that is designed using the actual BER
of a linear receiver as a distortion measure, and let us compare
this to a codebook that is designed using the squared chordal dis-
tance. For both codebooks, we use the BER of the linear receiver
as a selection measure. Figures 2 and 3 plot the obtained BER
results for a linear zero forcing receiver using codebooks with
K = 4 and K = 16, respectively (2 bits/frame and 4 bits/frame,
respectively). It turns out that the actual codebook design does
not matter much if the BER is used as a selection measure. A
similar observation was made in [10].

Let us next take a look at the adaptive precoder approach.
For simplicity, we assume that the distortion measure and the
selection measure are both given by the squared modified Frobe-
nius norm distance. The performance measure we consider is
the BER of the linear MMSE receiver. Since for this setup V̄M
instead of V̄ is always optimal [10], we use the precoder Fi,jM
instead of Fi,j at the transmitter. The channel taps are modeled
using Jakes’ model [16]. We fix the Doppler spread fD to 30 Hz
and change the frame length Tf (note that we could equivalently
fix the frame length Tf and change the Doppler spread fD).
For simplicity, we assume that the channel is constant within a
frame. Figure 4 gives a comparison between the constant code-
book with K = 64 (6 bits/frame for a non-dedicated link), the
constant codebook with K = 4 (2 bits/frame for a non-dedicated
link), and the adaptive precoder approach with K = 64 and



precoders transition bitwords bitwords method of [4]
probability non-dedicated dedicated

F1 0.25 w1,1 = 01 w1,1 = / w1,1 = /
F2 0.20 w2,1 = 11 w2,1 = 0 w2,1 = 00
F3 0.18 w3,1 = 000 w3,1 = 1 w3,1 = 01
F4 0.16 w4,1 = 001 w4,1 = 00 w4,1 = 10
F5 0.10 w5,1 = 101 w5,1 = 01 w5,1 = 11
F6 0.08 w6,1 = 1000 w6,1 = 10 w6,1 = /
F7 0.02 w7,1 = 10010 w7,1 = 11 w7,1 = /
F8 0.01 w8,1 = 10011 w8,1 = 000 w8,1 = /

Table 2. Example of an 8-entry (K = 8) codebook when Q(H′) = F1 for a non-dedicated and dedicated feedback link.

Ĥ′ ∈ R1 Ĥ′ ∈ R2 Ĥ′ ∈ R3 Ĥ′ ∈ R4 Ĥ′ ∈ R5 Ĥ′ ∈ R6 Ĥ′ ∈ R7 Ĥ′ ∈ R8

case 1 F1,1 F1,2 F1,3 F1,4 F1,5 F1,6 F1,7 F1,8

case 2 F2,1 F2,2 F2,3 F2,4 F2,5 F2,6 F2,7 F2,8

case 3 F3,1 F3,2 F3,3 F3,4 F3,5 F3,6 F3,7 F3,8

case 4 F4,1 F4,2 F4,3 F4,4 F4,5 F4,6 F4,7 F4,8

Table 3. Example of the adaptive precoder scheme with K = 8 and Ka = 4.
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Fig. 2. Performance results for the codebooks with K = 4
(2 bits/frame)
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Fig. 3. Performance results for the codebooks with K = 16
(4 bits/frame)
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Fig. 4. Performance comparison of the adaptive precoder ap-
proach with two constant codebooks.

Ka = 4 (2 bits/frame for a non-dedicated link). The perfor-
mance of the adaptive precoder approach with 2 bits/frame feed-
back has a performance that approaches the performance of the
constant codebook with 2 bits/frame feedback for a large Tf and
approaches the performance of the constant codebook with 6
bits/frame feedback for a small Tf .

Finally, let us compare the adaptive precoder approach with
the adaptive bitword approach. The same setup as above is con-
sidered. We fix the SNR to 10 dB and we assume the feedback
link is non-dedicated. Figure 5 shows respectively the average
feedback rate and the BER of the linear MMSE receiver as a
function of the frame length Tf . For the adaptive bitword ap-
proach we consider codebooks with K =2, 4, 8, and 16, whereas
for the adaptive precoder approach we take K = 64 and Ka =2,
4, 8, and 16. For the adaptive bitword approach, the BER is con-
stant and the average feedback rate increases with an increasing
Doppler spread. On the other hand, for the adaptive precoder
approach, the average feedback rate is constant and the BER in-
creases with an increasing Doppler spread. Hence, the question
basically is how their average feedback rates (BERs) compare
for the same BER (average feedback rate). To answer this ques-
tion, let us take a look at a few examples. We see that the adap-
tive bitword approach with K = 8 has the same average feed-
back rate as the adaptive precoder approach with K = 64 and
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Fig. 5. Performance comparison of the adaptive precoder ap-
proach with the adaptive bitword approach.

Ka = 4 at Tf ≈ 0.01. However, at this frame length, the first
has a worse BER as the latter. Similarly, we see that the adaptive
bitword approach with K = 8 has the same BER as the adaptive
precoder approach with K = 64 and Ka = 4 at Tf ≈ 0.02. But
at this frame length, the first has a higher average feedback rate
as the latter. Other examples show the same behavior. Hence, we
can conclude that for this particular set-up, the adaptive bitword
approach is worse than the adaptive precoder approach.

6. CONCLUSIONS

We have given an overview of different quantized feedback and
feedback reduction schemes for a precoded spatial-multiplexing
MIMO system in a time-varying channel. The novel contribu-
tions of this paper are a quantized feedback strategy based on
the BER of a linear receiver, and two new feedback reduction
strategies for a time-varying channel. Both these feedback re-
duction schemes exploit the time correlation of the MIMO chan-
nel. They basically can be viewed as an optimized generalization
of existing feedback reduction strategies.
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