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ABSTRACT
We consider a single-carrier transceiver, which abides with both fast
channel fading and severe inter-block interference. To enable a low-
complexity frequency-domain equalizer, it is desired that 1) the chan-
nel matrix be approximately banded; and 2) the inter-block interfer-
ence be reduced. In this paper, we propose an extended data model,
which incorporates a receiver window to enforce these two condi-
tions.

Index Terms— single-carrier, BEM, time-varying channels, IBI.

1. INTRODUCTION

In a single-carrier transmission system over a lengthy channel, it
is more ef cient to carry out the equalization in the frequency do-
main. However, when neither the inter-block interference (IBI) can
be totally eliminated nor the channel’s time-variation within a single
block can be ignored, the resulting frequency-domain (FD) channel
matrix is not diagonal but full. This implies that the simple one-tap
equalizer [1], which is successfully applied to IBI-free time-invariant
systems, is not viable any more. To equalize such a full matrix is ex-
pensive. Therefore, many low-complexity equalizers rely on the as-
sumption that the FD channel matrix is approximately banded [2–4].
To enhance the equalization precision, we need to reduce the band
approximation error as well as the impact of the IBI while still main-
taining the same low complexity. This can be achieved, e.g., by using
a receiver window as shown in [2–4].

In this paper, we will propose two new windowing techniques.
The rst will be based on the original data model (ODM), which
describes the actual input/output (I/O) relationship. Neglecting the
out-of-band interference, we can show that the resulting windowed
FD channel can be related in the time domain to a special basis ex-
pansion model (BEM) [5], referred to as the critically-sampled com-
plex exponential BEM ((C)CE-BEM) [6]. Actually, such a link also
exists in [2], but it is not straightforward to observe. The second win-
dowing technique will be based on the so-called extended data model
(EDM), which still utilizes the ODM, but extends it to a larger scale.
This time, the resulting windowed FD channel can be related in the
time domain to an oversampled complex exponential BEM ((O)CE-
BEM) [7]. The connection between these two windows with the
(C)CE-BEM and (O)CE-BEM, respectively, will be explored in our
window design. Since the (C)CE-BEM and (O)CE-BEM generally
render different modeling performances as shown in [8], the result-
ing receivers will also exhibit unique behaviors, which eventually
have an impact on the equalization performance.

Notation:We use upper (lower) bold face letters to denote matri-
ces (column vectors). (·)∗, (·)T and (·)H represent conjugate, trans-
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pose and complex conjugate transpose (Hermitian), respectively. E{·}
stands for the expected value. � represents the Schur-Hadamard
(element-wise) product. We use [x]p to indicate the (p + 1)st ele-
ment of x, and [X]p,q to indicate the (p+1, q+1)st entry ofX. Fur-
ther, we let IN denote anN ×N identity matrix, 0M×N anM ×N
all-zero matrix, and 1M×N anM ×N all-one matrix. ek stands for
a unit vector with a one at the (k + 1)st position. FN denotes the
unitary N -point DFT matrix with [FN ]p,q = 1√

N
e−j

2π
N
pq .

2. DATA MODEL

Let us consider a communication system, where the channel is as-
sumed to be a nite impulse response (FIR) lter with order L, i.e.,
if we use hp,l to denote the lth channel tap at the pth time-instance
then hp,l = 0 if l < 0 or l > L. Conform the FIR assumption, we
can express the I/O relationship as

yp = wp

LX
l=0

hp,lsp−l + vp, (1)

where wp stands for the pth element of the window that is deployed
at the receiver; yp and vp denote the observation sample and noise
after windowing at the pth time-instance, respectively; and sp the
pth data symbol.

This paper deals with time-varying channels, which implies that
hp,l �= hq,l if p �= q. The channel can be characterized by a statis-
tical model. For instance, assuming a wide-sense stationary uncor-
related scattering (WSSUS) channel, we have E{hp,lhp−m,l−n} =
σ2
l γmδn. Here, δn denotes the Kronecker delta, σ2

l the variance of
the lth channel tap, and γm the normalized time correlation.

For the remainder of the paper, we assume these statistics are
perfectly known. Further, we assume the data symbols are zero-
mean white with unit variance, i.e., E{sps∗p−m} = δm, and the noise
prior to windowing is zero-mean white with variance σ2. Taking the
window into account, this implies E{vpv∗p−m} = σ2δmwpw

∗
p−m.

3. FD EQUALIZATION BASED ON THE ODM

3.1. Equalization Scheme

Suppose we are interested in theN−L data symbols [s0, · · · , sN−L−1]T ,
whose information is present in the observation samples yN :=
[y0, · · · , yN−1]. The I/O relationship in (1) can be expressed in a
block form as

yN = diag{wN}HNs+ εN + vN , (2)

wherewN := [w0, · · · , wN−1]T , s := [s0, · · · , sN−1]T , and vN :=
[v0, · · · , vN−1]T . HN stands for an N × N channel matrix with
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= +

yN diag{wN}Hi,N

(spre − spost)

sdiag{wN}HN

Fig. 1. The noiseless original data model.

entries [HN ]p,n := hp,mod(p−n,N). εN := diag{wN}Hi,N (spre −
spost), where Hi,N is an N × L matrix with entries [Hi,N ]p,n :=
hp,p−n+L; spre is a vector containing the data symbols from the pre-
vious block spre := [s−L, · · · , s−1]T ; and spost is a vector containing
the lastL data symbols spost := [sN−L, · · · , sN−1]T . The above I/O
relationship in the noiseless case is illustrated in Fig.1.

Transformed into the frequency domain, (2) becomes

yf,N = Hf,NFNs+ εf,N + vf,N , (3)

where yf,N denotes the observation samples in the frequency do-
main yf,N := FNyN , and εf,N and vf,N are similarly de ned as
yf,N . Further, Hf,N := FNdiag{wN}HNF

H
N stands for the FD

channel matrix. In the ODM scheme, the size of the DFT equals
the number of observation samples. This will be in contrast with the
EDM scheme of the next section, where the size of the DFT is larger
than the number of observation samples.

The nuisance term εf,N is caused by the IBI, and will not dis-
appear even at a high signal to noise ratio (SNR). The IBI can be
mitigated by the utility of a guard interval of lengthLz , e.g., a cyclic-
pre x (CP), a zero-pre x (ZP) [9] or a non-zero pre x (NZP) [10]. In
the CP case, [s−Lz , · · · , s−1] = [sN−Lz , · · · , sN−1] while in the
ZP and NZP case, [s−Lz , · · · , s−1]T = [sN−Lz , · · · , sN−1]T = p
with p being a zero or non-zero pilot vector, respectively. For Lz ≥
L, the IBI can be completely suppressed. In this paper, we will focus
on the scenario where Lz assumes an arbitrary value.

Aside from the IBI and noise, the non-zero off-diagonal ele-
ments of Hf,N prevent the viability of a one-tap equalizer. To fa-
cilitate a low-complexity equalizer, we can approximateHf,N with
a circularly-banded matrix Ĥf,N , which has only non-zero power on
the main diagonal, the Q/2 super- and Q/2 sub-diagonals in a cir-
culant sense withQ being a design parameter. Further, if we assume
that the IBI εf,N is small enough to be ignored and use the statistical
assumptions given before, a minimum mean square error (MMSE)
block equalizer1 can be found as

ŝ = FHNĤ
H
f,N (Ĥf,NĤ

H
f,N +Rv,N )−1yf,N , (4)

withRv,N := E{vf,Nv
H
f,N} = σ2FNdiag{wN �w

∗
N}F

H
N . In the

above, most computational complexity is invested in inverting the
covariance matrix. Assuming that the window is properly designed
such that Rv,N is strictly banded with bandwidth 2Q + 1, just like
the product Ĥf,NĤ

H
f,N , (4) can be computed with a complexity that

is linear in N and square in Q [3].
In order to improve the precision of the equalizer in (4), we need

to design the window such that the IBI ‖εf,N‖2 as well as the band

1Although this paper considers only the MMSE block equalizer, other
equalization schemes that exploit the circularly banded structure of the FD
channel matrix are also applicable, e,g, the iterative MMSE serial equalizer
in [2].

approximation error ‖Hf,N − Ĥf,N‖
2 will be minimized in an av-

erage sense. Besides, due to the usage of the banded MMSE block
equalizer, the noise covariance Rv,N should also be banded. This
will be discussed next.

3.2. Window Design for the ODM

We rst address the noise-shaping behavior of the window and rewrite
the noise covariance matrix as

Rv,N = σ2
FNdiag{wN}F

H
N| {z }

W f,N

FNdiag{w∗N}FHN| {z }
W H

f,N

. (5)

To enforce a strictly-banded Rv,N , we follow the approach given
in [3], which expresses the windowwN as a weighted sum ofQ+1
complex exponentials:

wN = BNd, (6)

whereBN is comprised of the rstQ/2+1 and the lastQ/2 columns
ofFN ; d is a (Q+1)-long vector containing all the weighting coef -
cients. It is easy to derive thatW f,N =

PQ

q=0[d]qFNdiag{BNeq}F
H
N ,

where the productFNdiag{BNeq}F
H
N is an identity matrix but with

its columns circularly shifted over q−Q/2 positions. Hence,W f,N

is a strictly banded matrix and so isRv,N . Structured as the weighted
sum of Q + 1 complex exponentials, the window design boils down
to the design of the coef cients d.

Under the statistical assumption given before, we understand
that minimizing the IBI ‖εf,N‖2 that is averaged over the data sym-
bols amounts to minimizing ‖εf,N‖2 ∼ ‖diag{wN}Hi,NΦN‖

2,
where we have explicitly taken a possible guard interval into account
through a diagonal matrix

ΦN := diag{[11×(L−Lz),01×Lz ]T }. (7)

To minimize the band approximation error ‖Hf,N − Ĥf,N‖
2,

we are aware that a strictly banded FD matrix Ĥf,N corresponds in
the time domain to an N × N matrix ĤN that is a sum of Q + 1
circulant matrices, each weighted by a diagonal exponential matrix:

ĤN :=

QX
q=0

diag{BNeq}C
q
N , (8)

where Cq
N is a circulant matrix whose rst column is de ned as

[cq,0, · · · , cq,L,01×(N−L−1)]
T with the coef cients cq,l standing

for some unknowns. Analogous to W f,N in (5), the above de ni-
tion suggests that Ĥf,N = FNĤNF

H
N can be considered as a sum

of Q + 1 matrices, where each summand FNdiag{BNeq}C
q
NF

H
N

is actually a diagonal matrix, but with its columns circularly shifted
over q −Q/2 positions. With such a link established, we can trans-
late the band approximation error into the time domain as ‖Hf,N −

Ĥf,N‖
2 = ‖diag{wN}HN − ĤN‖

2. Since we only need to focus
on the non-zero elements in diag{wN}HN and ĤN , this leads to

‖Hf,N − Ĥf,N‖
2 = ‖diag{wN}H −BNC‖2, (9)

where C is a (Q + 1) × (L + 1) matrix collecting all the coef -
cients [C]q,l = cq,l, andH is an N × (L + 1) matrix collecting all
the channel taps [H]n,l = hn,l. The RHS of the above equality is
reminiscent of those works that use a basis expansion model (BEM),
which is BN in this context, to t the TV channel diag{wN}H.
Therefore, the band approximation error can also be interpreted as
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a BEM modeling error. In particular, with the entries de ned as
[BN ]p,q = 1√

N
e−j

2π
N
p(q−Q

2
), this BEM corresponds to a critically-

sampled complex exponential BEM ((C)CE-BEM) [6], whose expo-
nential period equals the block lengthN .

In summary, we come up with the following cost function

arg min
C,wN |‖wN‖2=N

JN = E{‖diag{wN}H −BNC‖2}

+ θE{‖diag{wN}Hi,NΦzp‖
2}, (10)

where θ is a weight factor. To solve (10), we rst solve for C, which
leads to C = B†Ndiag{wN}H, and thus the problem becomes

arg min
wN |‖wN‖2=N

JN = tr
`
PB,Ndiag{wN}RHdiag{wH

N}P
H
B,N

´
+ θtr

`
diag{wN}Rεdiag{wH

N}
´
, (11)

withPB,N := IN −BN (BH
NBN )−1BH

N ,RH := E{HH
H}, and

Rε := E{Hi,NΦNH
H
i,N}. Under the WSSUS channel assumption,

it is easy to see that [RH ]m,n =
PL

l=0 σ2
l γm−n. Likewise, we can

derive from (7) that Rε is an N × N diagonal matrix with its pth
diagonal equal to

PL

l=p+Lz+1 σ2
l if p < L−Lz , or zero otherwise.

Substituting (6) in (11) leads further to

arg min
d|‖d‖2=N

JN = dTXNd
∗, (12)

with XN := BT
N

`PN−1
n=0 diag{e

T
nPB,N}RHdiag{PH

B,Nen} +

θRε

´
B∗N . Hence, d is the eigenvector corresponding to the least

signi cant eigenvalue of X ∗
N .

A similar windowing strategy is also presented in [2], which
maximizes the signal to interference and noise ratio (SINR) directly
in the frequency domain. The difference is that this paper translates
the interference coming from the band approximation error into the
(C)CE-BEM modeling error. Actually, it can be shown that in the
absence of noise and IBI, and assuming the window is as long as
the observation sample block, the window of [2] will admit the same
expression as the ODM window. Indeed, as we will observe in the
simulation part, the performances of these two approaches are very
close to each other.

From the above, it is not dif cult to understand that a weakness
of the ODM window, and hence that of [2] as well, is associated
with the relatively large BEM modeling error. This is typical to the
(C)CE-BEM, which in general is not very good at tting a realis-
tic TV channel as demonstrated in [8]. The same paper shows that
the (O)CE-BEM [7], which is equipped with a larger exponential
period, can improve the BEM modeling performance considerably.
This idea will be explored in the next section.

4. FD EQUALIZATION BASED ON THE EDM

For reasons that will become clear later on, we extend the data model
in (2) by appendingK−N zeros to the end of yN withK ≥ N +L,
and thereby coin a virtual data model of a larger scale:»

yN
0(K−N)×1

–
| {z }

yK

=

»
diag{wN}H̄K diag{wN}Hi,K

X U

–
| {z }

HK

»
s

a

–
|{z}
sK

+

»
diag{wN}Hi,K

0(K−N)×(K−N)

–
(

»
0(K−N−L)×1

spre

–
− a)

| {z }
εK

+

»
v

0(K−N)×1

–
| {z }

vK

,

(13)

where H̄K is an N × N matrix with entries [H̄K ]p,n := hp,p−n;
Hi,K is anN×(K−N)matrix with entries [Hi,K ]p,n := hp,p−n+K−N ;
X is a (K −N)×N matrix with entries [X]p,n := h̃p,p−n+N , and
U is a (K −N)× (K −N) matrix with entries [U]p,n := h̃p,p−n.
The coef cients h̃p,l in X and U stand for virtual channel taps,
which are assumed to be zero if l < 0 or l > L. The EDM in
the absence of noise is illustrated in Fig. 2. Obviously, to guarantee
the validity of (13), especially the introduced extra zeros in yK , we
requireXs+Ua = 0. Since the rst N − L columns ofX are all
zeros, this means

a = −U−1XZN−Lspost, (14)

with ZN−L := [0L×(N−L), IL]T .
It is straightforward to see that εK , the second term on the RHS

of (13) is due to the IBI, whose rstN elements, with (14) taken into
account, can be expressed as

diag{wN}Hi,K

“»
0(K−N−L)×1

spre

–
+U−1XZN−Lspost

”
, (15)

which can only be eliminated by the ZP.
Transformed into the frequency domain, the EDM in (13) be-

comes:
yf,K = Hf,KFKsK + εf,K + vf,K , (16)

where yf,K := FKyK , and εf,K and vf,K are similarly de ned as
yf,K . Hf,K stands for the FD channel matrixHf,K := FKHKF

H
K ,

which is in principle a full matrix. Like in the previous section, we
use a strictly banded matrix Ĥf,K to approximateHf,K with Ĥf,K

having non-zero entries only on the main diagonal, the Q/2 super-
and the Q/2 sub-diagonals. Besides, we assume that the IBI εf,K

can be neglected and E{sKsHK} ≈ IK . The resulting MMSE block
equalizer can thus be expressed as

ŝ = ZHK−NF
H
KĤ

H
f,K(Ĥf,KĤ

H
f,K +Rv,K)−1yf,K , (17)

withZK−N := [IN ,0N×(K−N)]
T andRv,K := σ2FKZK−N (wN�

w∗N )TZHK−NF
H
K . It can be imagined that to enhance the equaliza-

tion performance, the window in the EDM assumes a three-fold task:
1) to make the noise covariance matrix Rv,K strictly banded; 2) to
minimize the IBI ‖εf,K‖2; and 3) to minimize the band approxima-
tion error ‖Hf,K − Ĥf,K‖

2.
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=

diag���� ���

+

� diag��������diag��������

-

�� � � �

�
�pre

Fig. 2. The noiseless extended data model.

4.1. Window Design for the EDM

Let us rst address the noise-shaping behavior of the window. Un-
fortunately, it is impossible forRv,K to be strictly banded. To real-
ize this, observe that Rv,K is a circulant matrix with its rst row
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equal to σ2

√
N

(wN � w∗N )TZHK−NF
H
K . Should Rv,K be strictly

banded with bandwidth 2Q + 1, the rst row should have zeros
on the entries indexed from Q + 2 until K − Q. In other words,
we need (wN � w

∗
N )TZHK−NF

H
KP = 01×(K−2Q−1) with P :=

[0(K−2Q−1)×(Q+1), IK−2Q−1,0(K−2Q−1)×Q]T . However,ZHK−NFHKP
is an N × (K − 2Q − 1) Vandermonde matrix, and thus has full
row-rank ifN ≤ K − 2Q− 1. In that case, there exists no non-zero
vectorwN�w

∗
N that lies in the noise subspace ofZHK−NFHKP, and

Rv,K can therefore never be banded. As a compromise, we relax the
requirement by approximating

Rv,K ≈ σ2
FKdiag{wK �w

∗
K}F

H
K , (18)

wherewK := [wT
N ,wT

K−N ]T withwK−N being a non-zero vector
of length K − N , whose components are subject to the window
design. Analogous to the previous section, we setwK = BKd with
BK standing for a K × (Q + 1) matrix, which is comprised of the
rst Q/2 + 1 and the last Q/2 columns of FK . Consequently, the
window for the EDM admits the expression

wN = B̄Kd, (19)

where B̄K consists of the rst N columns ofBK .
From (15), we understand that to suppress the IBI ‖εf,K‖2, it is

suf cient to minimize ‖diag{wN}Hi,KΦK‖
2, with

ΦK := diag{[01×(K−N−L),11×(L−Lz),01×Lz ]T }, (20)

which takes a possible ZP into account.
To minimize the difference ‖Hf,K−Ĥf,K‖

2, we go back again
to the time domain and consider the matrix [c.f. (8)]

ĤK =
X
q

diag{BKeq}C
q
K , (21)

where Cq
K is a circulant matrix with its rst column de ned as

[cq,0, · · · , cq,L,01×(K−L−1)]
T . Regarding ĤK as the time-domain

counterpart of the strictly banded Ĥf,K , we can readily establish the
link ‖Hf,K − Ĥf,K‖

2 = ‖HK − ĤK‖
2. Recalling that in (13)

the virtual channel tap h̃p,n contained in X and U is subject to de-
sign, we can simply let h̃p,n = 1√

K

PQ

q=0 e−j
2π
K

(p+N)(q−Q
2
)cq,n.

In this way, the non-zero elements of HK and ĤK will differ only
in the rstN rows. Borrowing the notationsH and C de ned in (9),
we can express the approximation error as

‖Hf,K − Ĥf,K‖
2 = ‖diag{wN}H − B̄KC‖2. (22)

With entries [B̄K ]p,q = 1√
K

e
−j 2π

K
p(q− 2

Q
), theN × (Q+1)matrix

B̄K tallies with the de nition of an (O)CE-BEM [7], which has an
exponential periodK that is larger than the block sizeN .

Finally, we come up with the cost function for the EDM case

arg min
C,wN |‖wN‖2=N

JK = E{‖diag{wN}H − B̄KC‖2}

+ θE{‖diag{wN}Hi,KΦK‖
2}. (23)

Following the same steps as in the previous section, we can nd the
window coef cients d as the eigenvector corresponding to the least
signi cant eigenvalue of X ∗

K with

XK := B̄T
K

`N−1X
n=0

diag{eTnP B̄,K}RHdiag{PH
B̄,Ken}+ θRε

´
B̄
∗
K ,

P B̄,K := IN − B̄K(B̄H
KB̄K)−1B̄H

K .

10 12 14 16 18 20 22 24 26 28 30
10 4

10 3

10 2

SNR (dB)

B
E

R

window of [2]
ODM window
EDM window

Fig. 3. BER performance.

5. NUMERICAL RESULTS

We test the proposed algorithms over Jakes’ channels [11] with L +

1 = 31 channel taps. The variance of the lth tap is σ2
l = e−

l
10 , and

the normalized time correlation is γm = J0(2πνm), where J0(·)
denotes the zeroth-order Bessel function of the rst kind, and ν for
the normalized Doppler spread, which is chosen to be ν = 0.004.

To obtain the ODM and EDM window, we use θ = 0.4 in the
cost functions. Besides, we set [N, Q] = [256, 2] for the ODM win-
dow as well as for the window of [2], and [N, K, Q] = [128, 256, 2]
for the EDM window. In this way, the MMSE block equalizer will
have the same complexity for all three schemes. QPSK modulated
symbols are transmitted and we compare the bit error rate (BER)
only on the 32 data symbols that lie in the middle of the block, i.e.,
we assume a sliding window approach [2]. This is to mitigate the
absence of the ZP, i.e., Lz = 0. From Fig. 3, we can observe that the
ODM window has a similar performance as the window of [2], both
of which suffer a higher noise oor than the EDM window.
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