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ABSTRACT

This paper presents two novel methods to optimally compress
the feedback for spatial multiplexing with linear precoding. The
methods exploit the time correlation of the channel and the knowl-
edge of the previously fed back precoder matrices to estimate the
conditional probabilities of the different possible feedback indices.
These probabilities are then used to losslessly compress the actual
feedback using variable-length codes. Two compression schemes
are presented, one for a non-dedicated feedback channel and one for
a dedicated feedback channel.

Index Terms— MIMO systems, linear precoding, partial CSI
feedback

1. INTRODUCTION

In the last few years spatial multiplexing emerged as a promising
scheme to fulfill the data rate requirements of future wireless ser-
vices. A technique to make spatial multiplexing more robust to rank
deficient channels and to allow for simpler receiver architectures is
linear precoding [1].

The optimal precoder matrix is calculated as a function of the
channel state information (CSI). However, since CSI is in general
just available at the receiver, it requires to be fed back to the trans-
mitter. Since the precoder matrix is generally restricted to be unitary
it is beneficial [2] to feed back the quantized precoder matrix, instead
of the quantized channel matrix.

The feedback requirements can be further reduced by exploiting
the temporal correlation of the channel. In [3], a first-order Markov
chain is introduced to model the feedback of a beamforming vector.
Based on this Markov model, no feedback is sent if the current state
is the same as the previous state, whereas a fixed-length code is fed
back for all other states. In [4], this approach is extended, by ignor-
ing the states with low probability, thereby reducing the length of
the fixed-length code and thus reducing the feedback requirements.
Both methods are suboptimal though, since they either assign no
code or a fixed-length code to a state. Moreover, whereas the com-
pression adopted in [3] is lossless, the compression in [4] is lossy.
Further, modeling the beamforming vector as a first-order Markov
chain assumes that the current beamforming vector just depends on
the previous one. This assumption discards the information from the
previously fed back beamforming vectors, which may be exploited
to improve the prediction.

In this paper, we model the feedback of a linear precoder (in-
stead of a beamforming vector) using a higher-order Markov chain
(instead of a first-order Markov chain). Moreover, we use techniques
from optimal source coding to reduce the average feedback rate.
Compared to existing suboptimal feedback-reduction schemes, the
encoding is variable-length and lossless.
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Notation: Vectors are designated with lowercase boldface let-
ters, and matrices with capital boldface letters. The notation [A]i,j
denotes the (i, j)th entry of the matrix A. In is the n × n identity
matrix. Further, AH denotes the conjugate transpose of the ma-
trix A, and A−1 the inverse. The cardinal number of the set A is
denoted |A|. In addition, abs(A) represents the element-wise ab-
solute value, diag(A) a diagonal matrix obtained by removing the
off-diagonal elements of A, and ‖A‖ the Frobenius norm of A. Fi-
nally, E(·) represents expectation, and P (·) probability.

2. SYSTEM MODEL

We assume a narrowband spatial multiplexing MIMO system, with
NT transmit and NR receive antennas. The system transmits NS ≤
min(NT , NR) symbol streams. The input-output relation, at time
instant n, is

y[n] = H[n]F[n]s[n] + ν[n], (1)

where y[n] ∈ C
NR×1 is the received vector, s[n] ∈ C

NS×1 is the
data symbol vector, H[n] ∈ C

NR×NT is the channel matrix, F[n] ∈
C

NT×NS is the linear precoder matrix, and ν[n] ∈ C
NR×1 is the

additive noise vector. We assume that the elements of s[n] are i.i.d.
and uniformly distributed over a finite alphabet A with zero mean
and variance 1. We further assume that the elements of ν[n] are i.i.d.
and complex Gaussian distributed with zero mean and variance 1.
We finally assume that the elements of H[n] are i.i.d. and complex
Gaussian distributed with zero mean and variance P , and that ev-
ery element is distributed in time according to Jakes’ model [5] with
Doppler frequency fD . The singular value decomposition (SVD) of
H[n] will be denoted as H[n] = U[n]Σ[n]VH [n], where U[n] and
V[n] belong to UNR×NR and UNT×NT , respectively, with Un×m

denoting the set of unitary n ×m matrices, and Σ[n] is a diagonal
NR × NT matrix with the diagonal starting in the top left corner.
For later use, we will also define Ū[n] = [U[n]]:,1:NS ∈ UNR×NS ,
V̄[n] = [V[n]]:,1:NS ∈ UNT×NS , and Σ̄[n] = [Σ[n]]1:NS ,1:NS .
The transmission occurs blockwise, every block consists of N sym-
bol vectors, and we assume perfect CSI at the receiver at the begin-
ning of each block. Further, the feedback link to the transmitter is
assumed to be delay-free and error-free, but bandwidth limited.

Precoder codebooks, and selection criteria to pick an entry from
the codebook are discussed in the next section. The subsequent sec-
tion then explains how the selected precoder index is compressed
before it is fed back to the transmitter.

3. PRECODER CODEBOOKS AND SELECTION

Assuming that the data rate on the feedback channel is limited, we
need to quantize the precoder matrix. Quantization requires a code-
book, which contains the quantized precoder matrices, and a selec-
tion criterion, which maps the estimated channel to an entry of the
codebook. Both of course strongly depend on each other.
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Fig. 1. System model

Generally, in order to reduce the feedback [6], the precoder is
limited to be unitary, i.e., F ∈ UNT×NS . For most performance
criteria, the optimal unitary precoder is given by F = V̄ [6]. For the
BER, however, the optimal precoder is still unknown [7]. However,
for realistic SNR’s it has been shown in [7] that the optimal unitary
precoder is given by F = V̄M, where M ∈ UNS×NS with constant
modulus entries, e.g., the Hadamard or the DFT matrix.

3.1. Codebook Design

Presently, all the existing codebooks for linear precoding are calcu-
lated through iterative algorithms [8, 9], since no analytical solution
for the corresponding design criteria exists. All these algorithms se-
lect the codebook entries Fi and the related channel regions Ri so
that the expectation of a distortion function between the channel and
the quantized precoders is minimized

{Ri,Fi} = arg min
{Ri,Fi}|Ri⊂C

NR×NT ,Fi∈UNT ×NSX

i

E(d(H,Fi|H ∈ Ri))P (H ∈ Ri). (2)

In [6], a number of performance criteria has been transformed into
subspace distances between V̄ and Fi, such as the chordal distance,
the projection two-norm, and the Fubini-Study distance. The squares
of these subspace distances are then used in (2) as a distortion mea-
sure. Note that d(H,Fi) then is actually independent of the signal-
to-noise ratio (SNR), since the only knowledge required about H is
V̄. In [6], (2) is not solved through the Lloyd algorithm [8], but
the problem is transformed into a subspace packing problem on a
Grassmann manifold and algorithms presented in [9] are adopted.
In [7], however, the Lloyd algorithm is adopted to solve (2), leading
to slightly improved codebooks.

The distortion measure adopted in [10] is related to the capac-
ity loss introduced by quantization, and in contrast to the subspace
distances mentioned earlier, it depends on the SNR:

dL(H,Fi) = tr(Σ̂
2 − Σ̂

2
V̄HFiF

H
i V̄), (3)

where Σ̂
2

= (INS + Σ̄
2
)−1Σ̄

2
. Note the close resemblance to the

squared chordal distance:

dc(H,Fi) = tr(INS − V̄HFiF
H
i V̄), (4)

which is independent of the SNR.
A common problem to all the above distortion measures is that

all the precoder matrices in the same subspace have the same distor-
tion, despite having different BER performances. In order to solve
this problem, one could for instance encode V̄ by retaining the or-
der of the modes, which has the potential of leading to a better BER
performance, when we replace the selected Fi by FiM [7]. In [11],

for instance, the squared Frobenius norm distance between V̄ and
Fi was considered:

dF (H,Fi) = ‖V̄ − Fi‖2

= 2 tr[INS −�(V̄HFi)]. (5)

This approach was modified in [12] to take the phase ambiguity of
the right singular vectors into account:

dmF (H,Fi) = ‖V̄diag(V̄HFi)diag
−1(abs(V̄HFi))− Fi‖2

= 2 tr[INS − abs(V̄HFi)]. (6)

Note that these two measures are again independent of the SNR.
Also observe the difference with the squared chordal distance of (4).
The problem with the two above distortion measures is that the cen-
troid computation required for the Lloyd algorithm is difficult to
carry out in closed form. Hence, we apply a brute-force centroid
computation by exhaustively searching for the best center, i.e., the
channel which has the minimal average distortion within a region.
This approach could actually also be used for a BER distortion mea-
sure, which is currently under investigation.

3.2. Selection Criteria

In [6], many different selection criteria have been proposed depend-
ing on the chosen codebook. In other words, if the codebook is de-
rived based on a certain performance measure, such as for instance
symbol MSE of the linear MMSE receiver, this performance mea-
sure is also used as a selection criterion.

In [7], however, a BER selection criterion is used, which selects
the codeword Fi from the codebook F that minimizes the BER of
the transmission:

F = arg min
Fi∈F

BER(H,Fi) (7)

where BER(H,F) represents the average BER for the channel H
using the precoder F, and any possible receiver. For a linear re-
ceiver, the BER can be calculated with the help of the exact BER
expressions [13] for an AWGN channel, using a square or rectangu-
lar constellation. This is of course the ultimate selection criterion,
which we will adopt in our simulations. Note, however, that in case
we use dF or dmF as distortion measure, we replace the selected Fi

by FiM [7].

4. FEEDBACK REDUCTION

The following section explores two new methods to reduce the feed-
back requirements for linear precoding with spatial multiplexing.
The two methods assume a different underlying system model. The
idea behind both models is that the feedback index is encoded before
it is sent over the feedback link.

The first model assumes a non-dedicated feedback channel, i.e.,
the feedback link is also used for data transmission. Thus, the trans-
mitter needs to know when the codeword ends and when the data
transmission starts.

The second model, on the other hand, assumes that the feedback
link is only used to feed back the index of the precoder matrices. The
advantage of reducing the average feedback length for this model is
that less energy is required for the feedback.

However, the general feedback algorithm for both schemes is the
same, both models just differ in the source encoding that is used.
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4.1. Feedback Encoding

The general algorithm for both models is identical. At the start of
each block we assume perfect CSI available at the receiver. The op-
timal precoder is calculated based on the CSI, and then, according
to the used selection criterion, it is quantized to the closest entry in
the codebook. The index of the selected codebook entry is then en-
coded, depending on the system model, i.e., if it is a non-dedicated or
dedicated feedback channel. In order to exploit the time correlation
of the channel we use the transition probability of every codebook
entry, i.e., the conditional probability of every codebook entry given
the previous K codebook entries. Note that the transition probabil-
ities do not just depend on the past channel states alone, but also
on the channel characteristics. Similar to [3], where NS = 1 and
K = 1 is considered, we rely on Monte-Carlo methods to determine
the transition probabilities

PFi,Fj1 ,...,FjK
= P (F[kN ] = Fi|F[(k − 1)N ] = Fj1 , . . .

,F[(k −K)N ] = FjK ) . (8)

Assuming that the channel characteristics do not change, the tran-
sition probabilities just depend on the last K quantized precoders.
Every set of K quantized precoders corresponds to a different set of
transition probabilities and thus to a different compression scheme.
For small numbers of K the probabilities, and thus the compres-
sion schemes, can be calculated offline. The number of compres-
sion schemes that have to be stored at the transmitter and receiver is
NC = |F|K .

The receiver knows the last K quantized precoders, and encodes
the current quantized precoder based on the related compression
scheme. The encoded feedback index is then sent to the transmit-
ter. Since the transmitter also knows the last K quantized precoders,
it also knows which compression scheme was used and can decode
the feedback index.

4.2. Non-Dedicated Feedback Channel

A non-dedicated channel requires the indices to be instantaneously
decodable, i.e., they have to satisfy the prefix condition [14]: a code-
word can not contain any other codeword as a prefix. However, de-
signing a prefix-free code with a small average length depends on the
correct determination of the transition probabilities of the different
codebook entries. As a prefix-free code we select the Huffman code.
The necessary transition probabilities are estimated through Monte-
Carlo simulations. An example of such a compression scheme is
depicted in Table 1.

4.3. Dedicated Feedback Channel

The advantage of a dedicated feedback channel is that non-prefix-
free (NPF) codes, i.e., codes which do not satisfy the prefix condi-
tion, can be used. This is possible because the start and the end of
the codeword are easily determined. These codes do not require the
knowledge of the exact transition probabilities, but just need the or-
der of the transition probabilities. Further, we are not required to
apply feedback for every block, e.g., no feedback means that the ac-
tual precoder is the most probable codebook entry. Hence, we do
not assign any codeword to the the most probable precoder, and we
gradually assign longer and longer codewords to the other precoders
in decreasing order of probability. See again Table 1 for an example.

A dedicated channel was also assumed in [3, 4]. However, in
those schemes either no codeword or a fixed-length codeword was

Codebook PFi,F8 Huffman Code NPF Code

F8 0.25 01 /
F2 0.20 11 0
F7 0.18 000 1
F4 0.16 001 00
F3 0.10 101 01
F6 0.08 1000 10
F5 0.02 10010 11
F1 0.01 10011 000

Table 1. Example of a compression scheme for K = 1.
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Fig. 2. BER performance for different codebooks (2 bits) and the
BER selection criterion. ZF detector, 4-QAM, NS = 2, NT = 4,
and NR = 2.

sent, in a lossless [3] or lossy [4] fashion. These codes clearly are
sub-optimal compared to the proposed NPF code.

5. SIMULATIONS

We consider a spatial multiplexing MIMO system which transmits 2
symbol streams (NS = 2) over 4 transmit antennas (NT = 4), and
has 2 receive antennas (NR = 2). The system uses a ZF receiver,
and 4-QAM is adopted. A comparison of two codebooks using the
BER selection strategy is depicted in Figs. 2 and 3 for codebooks
with 4 entries (2 bits) and 64 entries (6 bits), respectively. One code-
book is based on the squared chordal distance dc, whereas the other
is based on the modified Frobenius norm dmF . Although, the second
codebook was expected to have a better BER than the first codebook,
because optimal mixing of the modes with the matrix M can be car-
ried out, this effect seems to show up only for large codebooks.

The performance of the two presented feedback compression
schemes is depicted in Fig. 4. We see that the NPF code performs
better than the Huffman code. The Doppler spread in the simulation
is fixed to fD = 30 Hz, and the block length is varied. For very
small block lengths, the channel does not change much in between
feedback instances, thus the exploitation of the time correlation re-
duces efficiently the average feedback length. The Huffman code
approaches 1 bit feedback, and the NPF code 0 bit feedback. The
Huffman code assigns in this case a single bit to the most probable
codeword, and the non-prefix-free code does not perform any feed-
back. If the channel is changing very fast, all the precoders become
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Fig. 3. BER performance for different codebooks (6 bits) and the
BER selection criterion. ZF detector, 4-QAM, NS = 2, NT = 4,
and NR = 2.
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Fig. 4. Feedback reduction for different compression schemes, ZF
detector, 4-QAM, NT = NR = 2, 4 bit codebook, fD = 30 Hz.

equally probable and the Huffman code assigns codewords with the
same length for all the indexes (�log2|F|�). The average feedback
rate of the NPF code, however, just converges to the average length

of the codewords (1/|F|P|F|
i=1�log2i	).

6. CONCLUSIONS

In this paper we have presented two schemes to reduce the average
feedback length through variable-length compression of the precoder
index. We considered two different types of compression, and com-
pared their performance through Monte-Carlo simulations. Which
of these schemes can be used entirely depends on the assumptions
on the feedback link.
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