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Abstract— In the context of cognitive radio (CR) networks, this
paper develops a frequency-agile waveform adaptation technique
that dynamically adjusts the spectral shape, power and frequency
of transmission waveforms for efficient network spectrum uti-
lization. A general framework is presented based on generalized
transmitter and receiver basis functions, which allow to jointly
carry out dynamic resource allocation (DRA) and waveform
adaptation, two procedures that are traditionally carried out
separately. New objective function and cognitive spectral mask
constraints are formulated for DRA optimization tailored to CR
applications. The joint DRA and waveform adaptation approach
permits distributed games in multiple access networks, in which
participating CR users optimize their respective local utility func-
tions by taking actions from the action space defined by allowable
basis function parameters. It results in not only enhanced radio
spectrum resource efficiency due to joint optimization, but also
affordable complexity scalable in the network size, by virtue of
the distributed game approach adopted.

I. INTRODUCTION

The emerging paradigm of open spectrum access shows
promise to alleviate today’s spectrum scarcity problem [1].
Key to this new paradigm are frequency-agile cognitive radios
(CRs) that can rapidly tune to desired spectrum bands at
affordable cost. Broadly, CRs dynamically decide the alloca-
tion of available spectrum resources to improve the overall
efficiency, also known as dynamic resource allocation (DRA)
[2]. When the spectrum resources are cast as the spectral
shapes of transmit waveforms, DRA subsumes waveform
adaptation.

This paper develops a frequency-agile waveform adaptation
technique that dynamically adjust spectral shape, power and
frequency of radio transmission waveforms for DRA opti-
mization. Such a DRA can be carried out in a distributed
fashion using distributed games [3], [4]. In that case, every
radio will iteratively sense the available resources and adjust
its own usage of these resources accordingly. Such resources
could for instance be represented by transmitter and receiver
basis functions, which can be judiciously chosen to enable
various agile platforms, such as frequency, time, or code
division multiplexing (FDM, TDM, CDM). For convenience,
an OFDM platform with carriers as basis functions is generally
considered, leading to what is known as dynamic spectrum
allocation (DSA) [5]. However, many platforms are TDM- or
CDM-based and make use of different types of basis functions

Zhi Tian is supported in part by the NWO-STW under the work visit
program (DTC.7800), and by the US NSF grant #CCF-0238174. Geert Leus
is supported in part by NWO-STW under the VIDI program (DTC.6577).

1-4244-1276-5/07/$25.00©2007 IEEE

326

such as pulses, codes, or wavelets. In this paper, we will
therefore extend the DSA approach to a more general DRA
approach that allows us to handle and/or combine all kinds of
basis functions.

Based on the basis expansion framework, this paper formu-
lates a DRA optimization problem using CR-unique objective
function and spectral mask constraints. The objective func-
tion aims at optimally utilizing the network radio spectrum
resources, while the mask constraints are cognitive of both
government spectrum regulations and the need to protect
license-holding primary users. By virtue of the basis expansion
framework adopted, the DRA outcomes naturally lead to
adaptation of the transmit waveform spectral shapes. It is thus
possible to combine DRA with waveform adaptation [6], [7],
two operations that are generally carried out separately.

II. SYSTEM MODEL

In DRA, the basic goal is to jointly optimize the usage
of available radio resources [2]. In this paper, the resources
are represented by means of a set of transmitter and receiver
basis functions {ty(¢)};—," and {¢%(t)}+_; . Hence, each
cognitive radio ¢, ¢ = 0,1,...,Q — 1, communicates data
using the basis functions {1y (¢) } ; and preprocesses the data at
the receiver using the basis functions {¢(¢)}. In this context,
waveform adaptation boils down to judicious usage of these
basis functions to form transmit waveforms of desired spectral
shapes and power levels, in response to channel and network
dynamics.

Suppose CR ¢ modulates the data symbol w, 5 on 1 (¢).
Assuming the channel impulse response of CR ¢ is given by
gq(t), the signal received at CR ¢ can then be written as

Z g,k ¥k (t

where v,(t) represents the 1nterfer1ng signal, which includes
the interference from other CRs, primary users, and noise.
The resulting sample at CR ¢ received on ¢;(t) can then be

described as
[aatereoi-ai
= / £) % O (t) 6 (~t)dt
+/uq(t)*¢;(—t)dt

> ugkhg ki + vor, (1
k

Tq(t) = gq(t ) +vg(t),
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where {hq;}r,; represents the set of composite channel
coefficients for CR ¢q. For the sake of simplicity, we only
consider the transmission of a single block of K data symbols.
Other blocks are transmitted in a similar fashion. Interblock
interference (IBI) can for instance be avoided by the use of a
cyclic prefix, as illustrated in the example below.

The above set-up incorporates FDM, TDM, as well as CDM
scenarios. In FDM, we could take

1 K+N-1
Yp(t) = ——— Z eﬂ”k("_N)/Kp(t —nT) (2a)
vK+ N s
] KiN-1
d)l (t) —_ Z ejQ?Tl('IL—N)/Kp(t _ nT) (Zb)
\/? n=N
whereas in TDM, we could take
VE K+N-1
Yr(t) = —— Ocn_N— p(t —nT) (3a)
k?( ) \/m ngo < N—k>g ( )
K+N—-1
Gt) = Y Sn_n-gp(t—nT). (3b)
n=N

Both cases actually describe a baseband digital implementa-
tion, where < n >x denotes the remainder after dividing n
by K, and p(t) is the normalized pulse used at the DAC and
ADC. It is assumed that p(t) has a span [0,7") and a bandwidth
[-B/2,B/2) (B =~ 1/T). Here, the considered range is
t € [0,(K + N)T'), where NT is an upper bound on the
length of any channel g,(t). We have assumed that the transmit
functions 1y (t) include a cyclic prefix of length N7, and that
the receive functions ¢y (t) remove this cyclic prefix. That way
IBI is avoided. Note that the above described FDM scheme
actually corresponds to OFDM (orthogonal frequency division
multiplexing), whereas the TDM scheme actually corresponds
to SCCP (single carrier with a cyclic prefix). Passband and
analog versions of FDM and TDM can be described in a
similar fashion. CDM covers intermediate schemes, where the
functions {¢y(t)}x and {¢x(t)}x could for example be related
to spreading codes or wavelets.

To carry out joint DRA and waveform adaptation, we have
to perform channel and data estimation, i.e., the estimation of
{hqk1}k, and {ug x }x. These two processes will take place in
different phases, the training phase and the data transmission
phase. Then, in every data transmission phase, we are set
to cancel the estimated {)_, ug 1hqk,:}; from the received
{z4,1}1, allowing us to sense {v,;}; using for instance a sparse
sampling mechanism [8]. After sensing this interference, we
can compute an estimate of the interference covariance matrix
R, = E(vyvl), with vy = [vg0,...,v4x-1]", and we
have everything we need to run the joint DRA and waveform
adaptation. This step boils down to deciding the vector p, =
[Pg.05-- > Pg.i—1)F s with pg . = \/E(Jug x]?), based on some
objective function and constraints. The resulting p, is fed back
to the transmitter of CR ¢ and a new data transmission phase
can begin using the updated vector p,. In ensuing sections, we
assume that the channel and interference parameters {h i}
and R, have already been estimated.
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III. DYNAMIC RESOURCE ALLOCATION

To design our DRA strategy, we have to select objective
functions and constraints to effect agile DRA. The design
objective we choose here are the capacities of the different
CRs, given the waveform approach:

Clpy) =

where H, is a K x K matrix with [Hg|x; = hg .

In a centralized DRA, the objective is to determine the
collective of all allocation vectors {p4}, that maximizes the
sum-rate of all users, that is,

log, 15 + diag(p,)HY R, 'H,diag(p,)|, (4)

max
{P¢=0}q

Q-1
> Cpy)- ©)

q=0

However, this formulation leads to a centralized non-convex
optimization problem, which is NP-hard with complexity
scaling exponentially with the number of users. Furthermore,
it requires knowledge of all the available resource information
{Rq,Hy}y, which can be infeasible to obtain even for a
central spectrum controller such as a base station. For any-to-
any connections, it is more appropriate to perform distributed
DRA by adopting individual (per-user) objective functions
defined in (4).

The constraints we formulate are given by the so-called cog-
nitive spectral masks that are imposed to control interference
and they come in the following flavors:

« policy-based long-term spectral mask Srcc(f), imposed
by government regulations;

o cognition-based notch mask Sy,tcn(f) used to protect
active primary users licensed for some spectrum band(s).

The intersection of these masks yields the composite cognitive
mask S.(f) = Srcc(f)NSnoten(f). Defining the transmitted
power spectral density of CR ¢ as

So(fipg) = D> 02 ltn ()%, (6)
k

we can thus impose the constraint

Sq(fQPq) < S.(f), Vf.

Furthermore, we also consider an average transmit-power
constraint per CR, given by

/Sq(fQPq)dfﬁpq-

As we will show in Section IV, both these conditions are
convex. Given all the above assumptions, distributed DRA
boils down to solving

max C(pg) (7a)
st [ S,rpdr < 7, (7b)
S(fipq) < Se(f), V. (7c)

On a per-user basis, (7) presents a decentralized DRA
formulation for deciding the optimal allocation vector pg,
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without requiring knowledge of other users’ allocation vectors
{Pr}rq. Nevertheless, the interference covariance matrix R,
needs to be sensed according to (4), while the sensing task
needs to be carried out when other users are transmitting with
allocation vectors {p, },4. On the network level, the intricacy
among sensing, transmission and distributed DRA suggests
a repeated game approach, in which users repeat the opti-
mization process in (7) multiple iterations, until converging to
steady-state DRA decisions pj;, if existent. It has been shown
that iterative games, even when performed in an asynchronous
fashion among users, can considerably enhance the network-
wide spectrum efficiency measured by (5) [3], [4].

The signal basis expansion framework for DRA provides a
feasible means to jointly optimize the allocation decisions pq
via (7) and thereby implicitly adapt the transmitted waveforms.
In contrast, existing work on cognitive radios separately treats
DRA and waveform adaptation: the DRA literature focuses
on direct optimization of the power spectrum S, (f) based on
proper spectrum efficiency criteria [3], [4], while the waveform
design literature investigates analog or digital pulse shaping
techniques to comply with the allocated power spectrum S, ( f)
[6], [7]. The separate approach to DRA and waveform design
has several limitations:

o« When waveform adaptation is based on finalized DRA
decisions and thus completely decoupled from the DRA
process, sensing the aggregate interference is impossible
prior to transmission. One way to solve this problem is
to formulate centralized DRA, but this will cause a large
communications overhead from the CRs to the spectrum
controller.

o In the absence of waveform adaptation, distributed DRA
is still possible. However, this mandates each DRA de-
cision be made from the knowledge of the individual
channels received from all interfering users, in com-
bination with either a one-shot game or an iterative
game. The one-shot games do not require knowledge of
other users” DRA decisions, but exhibit a considerable
performance gap from the socially optimal sum-capacity
in (5). Iterative games, on the other hand, require users to
broadcast their DRA decisions during iterations, resulting
in a heavy communications overhead over a dedicated
control channel.

o It can be difficult or costly to generate a transmitted
waveform that perfectly match the allocated .S, (f) of any
flexible shape [7]. Without respecting the implementation
limitations on waveform agility, the DRA decisions made
on S,(f) are no longer optimal when implemented in
practical radios.

Our DRA approach overcomes the above limitations. It offers
a truly distributed framework in which the allocation vectors
are optimized under a practical transmitter implementation
structure. Waveform adaptation naturally arises as a result of
DRA optimization.

IV. IMPLEMENTATION ISSUES

In this section, we study the formulations of the joint
DRA and waveform adaptation problem in order to facilitate
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computationally-efficient optimization. Given the general basis
function sets {¢y(t), dr(t)}x and the set size K, we seek to
formulate the optimization problem in (7) in convex form.

First, we change the maximization problem in (7a) to a
minimization problem by multiplying the objective function
by —1. By doing so, the modified objective function becomes
convex, because —C'(p,) is convex in p,.

Next, we move on to the power and mask constraints. We
rewrite the power constraint in (7b) in matrix-vector form as

/ S,(f:py)df = pTSp, < P, ®)

where S is a K X K diagonal matrix with its k-th diagonal
element given by [S]; x = [ | (f)|*df. Therefore, the power
constraint (8) is a convex function for p,.

To reformulate the cognitive mask constraint in (7c), we
collect the frequency responses of all basis functions into a
K x 1 vector

Y(f) = diag{en (), .- Y ()}

We define U(f) = [Re(v(f), —Im(2)(f))]*, where Re()
and Im(-) denote the real and imaginary parts, respectively.

Recogmzmg VSq(fipg) =¥ (f)Pgll2, we can rewrite (7c)
N (f)pgllz < V/Se(f), Vf. )

The feasible set in (9) is defined by the intersection of an
infinite number of second-order cone constraints on linear
transformations of p,, one for each f. Hence, the mask
constraint is a convex function for p,. To render the number
of constraints in (9) finite, one way is to approximate it
by sampling uniformly in frequency at N points Fy :=
{f1,..., fn} and replace it by

N (fn)Pgllz < V/Se(fn) — ¢,

Here ¢ > 0 can be chosen such that satisfaction of (10)
guarantees satisfaction of (9) even for f ¢ Fi. The feasible set
of the discretized problem may slightly differs from that of the
original one. Nevertheless, the feasible set remains convex.
Putting together, we now have a DRA formulation with a
convex objective subject to a set of convex-cone constraints:

Vf, € Fx.  (10)

min,,  —C(py) (11a)
st. PySpy <Py (11b)
||\Ij(fn)pq||2 < Sc(fn) — € vfn (11c)

—Ppg < 0. (11d)

Being convex, the formulation in (11) permits efficient numer-
ical algorithms to reach its global optimum.

The general framework in (11) applies to a number of mul-
tiple access systems by properly choosing the basis functions
{Yx(t)} and {Px(t)}r. There are a number of options for
the basis functions, such as carriers, pulses, codes, wavelets,
and other forms. A special case is OFDM based [5], where
carrier functions in (2) are used as the basis functions. Carrier
functions not only are convenient to implement in practice, but
also possess some nice mathematical properties that simplify
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the DRA optimization design. More specifically, if carriers
functions are used, H, is perfectly diagonal and the capacity
formula (4) can be rewritten as

Z logy | 1 + ——

where 7, = E(|vgx|?). Furthermore, the matrix S in the
power constraint expression (11b) becomes an identity matrix.
Notice that the objective function in (12) is the sum over
K individual functions each solely defined by the weight
Dg,k- The corresponding DRA problem admits a closed-form
solution to p, that is given by the well-known water-filling
scheme [3].

q,k k|

12)

V. SIMULATIONS

Consider a -user peer-to-peer CR network. Each user
corresponds to one pair of unicast transmitter and receiver,
giving rise to Q2 channel links. We suppose that each link
experiences frequency-selective fading modeled by an N;-
tap tapped delay line, where each tap coefficient is complex
Gaussian with zero-mean and unit variance. The link power
gain is denoted by a scalar ¢, > 0, Vr,q € [1,Q)], which
captures both the path loss and the fading power. The noise
variance is assumed to be 1 in all cases.

Fig. 1 demonstrates the flexibility of the distributed formu-
lation in (7) for joint DRA and waveform adaptation. Three
users are considered, who operate in two different scenarios
described by following parameters: (a) P, = P3 =10, P, =5,
Crq =5, Vr#¢q, and Ny =8; (b) P, =20, VYq, ¢,q =0.2, and
N;=4. In both cases, we assume cyq=1 w.l.o.g.

We adopt K = 32 digital carriers as the basis functions.
Figure 1 depicts the transmitted power spectra of the resulting
multicarrier power allocation. In (a), both users experience
strong interference, and the DRA game results in an FDM-
type solution where the power spectra of different users are
non-overlapping in frequency. In contrast, users in (b) have
high transmit power and low interference, and the optimal
DRA suggests spread spectrum frequency reuse. Users overlap
in frequency to occupy nearly the entire bandwidth, and
adapt mainly to their own channels. Such results confirm the
theoretical prediction in [4], [5], and demonstrate the flexibility
of our basis expansion framework in instantiating various
optimal multiple access schemes under available resources.

VI. SUMMARY

A general framework for joint DRA and waveform adap-
tation is presented based on the signal basis expansion ap-
proach. Generalized transmitter and receiver basis functions
are employed to formulate CR-oriented DRA design objectives
and cognitive spectral mask constraints. Such a framework
promises several benefits to CR networks, including asyn-
chronous and distributed DRA among CR users, protection
of primary users, and adaptation capability in the presence
of changing network traffic. This basis function structure
for waveform adaptation is also amenable to carrying out
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additional flexible designs including quantized feedback and
low-resolution DSP implementations, which we will explore
in future work.
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