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ABSTRACT
We consider a single-carrier transceiver, which abides with both
fast channel fading and severe inter-block interference. To en-
able a low-complexity frequency-domain equalizer, it is desired
that 1) the channel matrix be approximately banded; and 2) the
inter-block interference be reduced. In this paper, we propose an
extended data model, which incorporates a receiver window to
enforce these two conditions.
keywords: single-carrier, BEM, time-varying channels, IBI.

1. INTRODUCTION

In a single-carrier transmission system over a lengthy chan-
nel, it is more efficient to carry out the equalization in
the frequency domain. However, when neither the inter-
block interference (IBI) can be totally eliminated nor the
channel’s time-variation within a single block can be ig-
nored, the resulting frequency-domain (FD) channel ma-
trix is not diagonal but full. This implies that the simple
one-tap equalizer [1], which is successfully applied to IBI-
free time-invariant systems, is not viable any more. To
equalize such a full-matrix channel is expensive. There-
fore, many low-complexity equalizers rely on the assump-
tion that the FD channel matrix is approximately banded
[2, 3, 4]. To enhance the equalization precision, we need
to reduce the band approximation error as well as the im-
pact of the IBI while still maintaining the same low com-
plexity. This can be achieved, e.g., by using a receiver
window as shown in [2, 3, 4].
In this paper, we will propose two new windowing tech-
niques. The first will be based on the original data model
(ODM), which describes the actual input/output (I/O) re-
lationship. Neglecting the out-of-band interference, we
can show that the resulting windowed FD channel can
be related in the time domain to a special basis expan-
sion model (BEM)[5], referred to as the critically-sampled
complex exponential BEM ((C)CE-BEM) [6]. Actually,
such a link also exists in [2], but it is not straightforward to
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program (DTC.5893) and the VIDI program (DTC.6577). Part ofthe re-
sults are presented in the International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2007.

observe. The second windowing technique will be based
on the so-called extended data model (EDM), which still
utilizes the ODM, but extends it to a larger scale. This
time, the resulting windowed FD channel can be related in
the time domain to an oversampled complex exponential
BEM ((O)CE-BEM) [7]. The connection between these
two windows with the (C)CE-BEM and (O)CE-BEM, re-
spectively, will be explored in our window design. Since
the (C)CE-BEM and (O)CE-BEM generally render differ-
ent modeling performances as shown in [8], the resulting
receivers will also exhibit unique behaviors, which even-
tually have an impact on the equalization performance.
Notation: We use upper (lower) bold face letters to de-
note matrices (column vectors).(·)∗, (·)T and(·)H rep-
resent conjugate, transpose and complex conjugate trans-
pose (Hermitian), respectively.E{·} stands for the ex-
pected value.⊙ represents the Schur-Hadamard (element-
wise) product. We use[x]p to indicate the(p + 1)st ele-
ment ofx, and[X]p,q to indicate the(p+1, q +1)st entry
of X. Further, we letIN denote anN×N identity matrix,
0M×N anM ×N all-zero matrix, and1M×N anM ×N
all-one matrix.ek stands for a unit vector with a one at the
(k + 1)st position.FN denotes the unitaryN -point DFT
matrix with [FN ]p,q = 1√

N
e−j 2π

N
pq.

2. DATA MODEL

Let us consider a communication system, where the chan-
nel is assumed to be a finite impulse response (FIR) filter
with orderL, i.e., if we usehp,l to denote thelth chan-
nel tap at thepth time-instance thenhp,l = 0 if l < 0 or
l > L. Conform the FIR assumption, we can express the
I/O relationship as

yp = wp

L∑

l=0

hp,lsp−l + vp, (1)

wherewp stands for thepth element of the window that
is deployed at the receiver;yp andvp denote the obser-
vation sample and noise after windowing at thepth time-
instance, respectively; andsp thepth data symbol.
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yN D{wN}Hi,N

(spre− spost)

sD{wN}HN

Figure 1:The noiseless original data model.

This paper deals with time-varying channels, which im-
plies thathp,l 6= hq,l if p 6= q. The channel can be char-
acterized by a statistical model. For instance, assuming
a wide-sense stationary uncorrelated scattering (WSSUS)
channel, we have

E{hp,lh
∗
p−m,l−n} = σ2

l γmδn. (2)

Here,δn denotes the Kronecker delta,σ2
l the variance of

the lth channel tap, andγm the normalized time correla-
tion.
For the remainder of the paper, we assume these statistics
are perfectly known. Further, we assume the data symbols
are zero-mean white with unit variance, i.e.,E{sps

∗
p−m} =

δm, and the noise prior to windowing is zero-mean white
with varianceσ2. Taking the window into account, this
impliesE{vpv

∗
p−m} = σ2δmwpw

∗
p−m.

3. FD EQUALIZATION BASED ON THE ODM

3.1. Equalization Scheme

Suppose that we are interested in theN − L data sym-
bols [s0, · · · , sN−L−1]

T , whose information is present in
the observation samplesyN := [y0, · · · , yN−1]. The I/O
relationship in (1) can be expressed in a block form as

yN = D{wN}HNs + ǫN + vN , (3)

wherewN := [w0, · · · , wN−1]
T , s := [s0, · · · , sN−1]

T ,
andvN := [v0, · · · , vN−1]

T . HN stands for anN × N
channel matrix with entries[HN ]p,n := hp,mod(p−n,N).
ǫN := D{wN}Hi,N (spre−spost), whereHi,N is anN×L
matrix with entries[Hi,N ]p,n := hp,p−n+L; spre is a vec-
tor containing the data symbols from the previous block
spre := [s−L, · · · , s−1]

T ; andspost is a vector containing
the lastL data symbolsspost := [sN−L, · · · , sN−1]

T . The
above I/O relationship in the noiseless case is illustrated
in Fig.1.
Transformed into the frequency domain, (3) becomes

yf,N = Hf,NFNs + ǫf,N + vf,N , (4)

whereyf,N denotes the observation samples in the fre-
quency domainyf,N := FNyN , andǫf,N andvf,N are

similarly defined asyf,N . Hf,N := FND{wN}HNFH
N

stands for the FD channel matrix. In the ODM scheme,
the size of the DFT equals the number of observation sam-
ples. This will be in contrast with the EDM scheme of the
next section, where the size of the DFT is larger than the
number of observation samples.
The nuisance termǫf,N is caused by the IBI, and will not
disappear even at a high signal to noise ratio (SNR). The
IBI can be mitigated by the utility of a guard interval of
lengthLz, e.g., a cyclic-prefix (CP), a zero-prefix (ZP)[9]
or a non-zero prefix (NZP) [10]. In the CP case,

[s−Lz
, · · · , s−1] = [sN−Lz

, · · · , sN−1], (5)

while in the ZP and NZP case,

[s−Lz
, · · · , s−1]

T = [sN−Lz
, · · · , sN−1]

T = p, (6)

with p being a zero or non-zero pilot vector, respectively.
ForLz ≥ L, the IBI can be completely suppressed. In this
paper, we will focus on the scenario whereLz assumes an
arbitrary value.
Aside from the IBI and noise, the non-zero off-diagonal
elements ofHf,N prevent the viability of a one-tap equal-
izer. To facilitate a low-complexity equalizer, we can ap-
proximateHf,N with a circularly-banded matrix̂Hf,N ,
which has only non-zero power on the main diagonal, the
Q/2 super- and sub-diagonals in a circulant sense withQ
being a design parameter. Further, if we assume that the
IBI ǫf,N is small enough to be ignored and use the statis-
tical assumptions given before, a minimum mean square
error (MMSE) block equalizer1 can be found as

ŝ = FH
NĤH

f,N (Ĥf,NĤH
f,N + Rv,N )−1yf,N , (7)

with Rv,N := E{vf,NvH
f,N} = σ2FND{wN⊙w∗

N}FH
N .

In the above, most computational complexity is invested
in inverting the covariance matrix. Assuming that the win-
dow is properly designed such thatRv,N is strictly banded
with bandwidth2Q + 1, just like the product̂Hf,NĤH

f,N ,
(7) can be computed with a complexity that is linear inN
and square inQ [3].
In order to improve the precision of the equalizer in (7),
we need to design the window such that the IBI‖ǫf,N‖2

as well as the band approximation error‖Hf,N −Ĥf,N‖2

will be minimized in an average sense. Besides, due to
the usage of the banded MMSE block equalizer, the noise
covarianceRv,N should also be banded. This will be dis-
cussed next.

1Although this paper considers only the MMSE block equalizer,
other equalization schemes that exploit the circularly banded structure
of the FD channel matrix are also applicable, e,g, the iterative MMSE
serial equalizer in [2].
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3.2. Window Design for the ODM

We first address the noise-shaping behavior of the window
and rewrite the noise covariance matrix as

Rv,N = σ2 FND{wN}FH
N

︸ ︷︷ ︸

Wf,N

FND{w∗
N}FH

N
︸ ︷︷ ︸

WH
f,N

. (8)

To enforce a strictly-bandedRv,N , we follow the approach
given in [3], which expresses the windowwN as a weighted
sum ofQ + 1 complex exponentials:

wN = BNd, (9)

whereBN is comprised of the firstQ/2 + 1 and the last
Q/2 columns ofFN ; d is a(Q+1)-long vector containing
all the weighting coefficients. It is easy to derive that

Wf,N =

Q
∑

q=0

[d]qFND{BNeq}F
H
N , (10)

where the productFND{BNeq}F
H
N is an identity matrix

but with its columns circularly shifted overq −Q/2 posi-
tions. Hence,Wf,N is a strictly banded matrix and so is
Rv,N . Structured as the weighted sum ofQ + 1 complex
exponentials, the window design boils down to the design
of the coefficientsd.
Under the statistical assumption given before, we under-
stand that minimizing the IBI‖ǫf,N‖2 that is averaged
over the data symbols amounts to minimizing‖ǫf,N‖2 ∼
‖D{wN}Hi,NΦN‖2, where we have explicitly taken a
possible guard interval into account through a diagonal
matrix

ΦN := D{[11×(L−Lz),01×Lz
]T }. (11)

To minimize the band approximation error‖Hf,N−Ĥf,N‖2,
we are aware that a strictly banded FD matrixĤf,N cor-
responds in the time domain to anN ×N matrixĤN that
is a sum ofQ + 1 circulant matrices, each weighted by a
diagonal exponential matrix:

ĤN :=

Q
∑

q=0

D{BNeq}C
q
N , (12)

whereC
q
N is a circulant matrix whose first column is de-

fined as[cq,0, · · · , cq,L,01×(N−L−1)]
T with the coefficients

cq,l standing for some unknowns. Analogous toWf,N in
(8), the above definition suggests thatĤf,N = FNĤNFH

N

can be considered as a sum ofQ+1 matrices, where each
summand denoted asFND{BNeq}C

q
NFH

N is actually a
diagonal matrix, but with its columns circularly shifted
overq − Q/2 positions. With such a link established, we
can translate the band approximation error into the time

domain as‖Hf,N − Ĥf,N‖2 = ‖D{wN}HN − ĤN‖2.
Since we only need to focus on the non-zero elements in
D{wN}HN andĤN , this leads to

‖Hf,N − Ĥf,N‖2 = ‖D{wN}H − BNC‖2, (13)

whereC is a(Q + 1) × (L + 1) matrix collecting all the
coefficients[C]q,l = cq,l, andH is anN × (L + 1) ma-
trix collecting all the channel taps[H]n,l = hn,l. The
RHS of the above equality is reminiscent of those works
that use a basis expansion model (BEM), which isBN

in this context, to fit the TV channelD{wN}H. There-
fore, the band approximation error can also be interpreted
as a BEM modeling error. In particular, with the entries
defined as[BN ]p,q = 1√

N
e−j 2π

N
p(q−Q

2
), this BEM corre-

sponds to a critically-sampled complex exponential BEM
((C)CE-BEM) [6], whose exponential period equals the
block lengthN .
In summary, we come up with the following cost function

arg min
C,wN |‖wN‖2=N

E{‖D{wN}H − BNC‖2} + θE{‖D{wN}Hi,NΦzp‖
2},

(14)

whereθ is a weight factor. To solve above, we first solve
for C, which leads toC = B

†
ND{wN}H, and thus the

problem becomes

arg min
wN |‖wN‖2=N

tr
(
PB,ND{wN}RHD{wH

N}PH
B,N

)

+ θtr
(
D{wN}RǫD{wH

N}
)
, (15)

with PB,N := IN−BN (BH
NBN )−1BH

N , RH := E{HH
H},

andRǫ := E{Hi,NΦNHH
i,N}. Under the WSSUS chan-

nel assumption, it is easy to see that

[RH ]m,n =

L∑

l=0

σ2
l γm−n. (16)

Likewise, we can derive from (11) thatRǫ is anN×N di-
agonal matrix with itspth diagonal equal to

∑L

l=p+Lz+1 σ2
l

if p < L − Lz, or zero otherwise. Substituting (9) in (15)
leads further to

arg min
d|‖d‖2=N

dT
X Nd∗, (17)

with X N := BT
N

(∑N−1
n=0 D{eT

nPB,N}RHD{PH
B,Nen}+

θRǫ

)
B∗

N . Hence,d is the eigenvector corresponding to
the least significant eigenvalue ofX

∗
N .

A similar windowing strategy is also presented in [2], which
maximizes the signal to interference and noise ratio (SINR)
directly in the frequency domain. The difference is that
this paper translates the interference coming from the band
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approximation error into the (C)CE-BEM modeling error.
Actually, it can be shown that in the absence of noise and
IBI, and assuming the window is as long as the observa-
tion sample block, the window of [2] will admit the same
expression as the ODM window. Indeed, as we will ob-
serve in the simulation part, the performances of these two
approaches are very close to each other.
¿From the above, it is not difficult to understand that a
weakness of the ODM window, and hence that of [2] as
well, is associated with the relatively large BEM model-
ing error. This is typical to the (C)CE-BEM, which in
general is not very good at fitting a realistic TV chan-
nel as demonstrated in [8]. The same paper shows that
the (O)CE-BEM [7], which is equipped with a larger ex-
ponential period, can improve the BEM modeling perfor-
mance considerably. This idea will be explored in the next
section.

4. FD EQUALIZATION BASED ON THE EDM

4.1. Equalization Scheme

For reasons that will become clear later on, we extend the
data model in (3) by appendingK − N zeros to the end
of yN with K ≥ N + L, and thereby coin a virtual data
model of a larger scale:

[
yN

0(K−N)×1

]

︸ ︷︷ ︸

yK

=

[
D{wN}H̄K D{wN}Hi,K

X U

]

︸ ︷︷ ︸

HK

[
s

a

]

︸︷︷︸

sK

+

[
D{wN}Hi,K

0(K−N)×(K−N)

]

(

[
0(K−N−L)×1

spre

]

− a)

︸ ︷︷ ︸

ǫK

+

[
v

0(K−N)×1

]

︸ ︷︷ ︸

vK

,

(18)

whereH̄K is anN × N matrix with entries[H̄K ]p,n :=
hp,p−n; Hi,K is an N × (K − N) matrix with entries
[Hi,K ]p,n := hp,p−n+K−N ; X is a(K − N) × N matrix
with entries[X]p,n := h̃p,p−n+N , andU is a(K − N) ×

(K − N) matrix with entries[U]p,n := h̃p,p−n. The co-
efficientsh̃p,l in X andU stand for virtual channel taps,
which are assumed to be zero ifl < 0 or l > L. The EDM
in the absence of noise is illustrated in Fig. 2. Obviously,
to guarantee the validity of (18), especially the introduced
extra zeros inyK , we requireXs + Ua = 0. Since the
first N − L columns ofX are all zeros, this means

a = −U−1XZN−Lspost, (19)

with ZN−L := [0L×(N−L), IL]T .
It is straightforward to see thatǫK , the second term on
the RHS of (18) is due to the IBI, whose firstN elements,

with (19) taken into account, can be expressed as

D{wN}Hi,K

([
0(K−N−L)×1

spre

]

+ U−1XZN−Lspost

)

,

(20)
which can only be eliminated by the ZP.
Transformed into the frequency domain, the EDM in (18)
becomes:

yf,K = Hf,KFKsK + ǫf,K + vf,K , (21)

whereyf,K := FKyK , andǫf,K andvf,K are similarly
defined asyf,K . Hf,K stands for the FD channel matrix
Hf,K := FKHKFH

K , which is in principle a full matrix.
Like in the previous section, we use a strictly banded ma-
trix Ĥf,K to approximateHf,K with Ĥf,K having non-
zero entries only on the main diagonal, theQ/2 super- and
theQ/2 sub-diagonals. Besides, we assume that the IBI
ǫf,K can be neglected andE{sKsH

K} ≈ IK . The resulting
MMSE block equalizer can thus be expressed as

ŝ = ZH
K−NFH

KĤH
f,K(Ĥf,KĤH

f,K+Rv,K)−1yf,K , (22)

with

ZK−N := [IN ,0N×(K−N)]
T ,

Rv,K := σ2FKZK−N (wN ⊙ w∗
N )T ZH

K−NFH
K .

It can be imagined that to enhance the equalization per-
formance, the window in the EDM assumes a three-fold
task: 1) to make the noise covariance matrixRv,K strictly
banded; 2) to minimize the IBI‖ǫf,K‖2; and 3) to mini-
mize the band approximation error‖Hf,K − Ĥf,K‖2.
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= +

s diag{wN}Hi,Kdiag{wN}Hi,K

-

yK X U a

a
spre

diag{wN}H̄K

Figure 2: The noiseless extended data model.

4.2. Window Design for the EDM

Let us first address the noise-shaping behavior of the win-
dow. Unfortunately, it is impossible forRv,K to be strictly
banded [11]. As a compromise, we relax the requirement
by approximating

Rv,K ≈ σ2FKD{wK ⊙ w∗
K}FH

K , (23)
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wherewK := [wT
N ,wT

K−N ]T with wK−N being a non-
zero vector of lengthK −N , whose components are sub-
ject to the window design. Analogous to the previous
section, we setwK = BKd with BK standing for a
K×(Q+1) matrix, which is comprised of the firstQ/2+1
and the lastQ/2 columns ofFK . Consequently, the win-
dow for the EDM admits the expression

wN = B̄Kd, (24)

whereB̄K consists of the firstN rows ofBK .
¿From (20), we understand that to suppress the IBI‖ǫf,K‖2,
it is sufficient to minimize‖D{wN}Hi,KΦK‖2, where
we have introduced the matrix

ΦK := D{[01×(K−N−L),11×(L−Lz),01×Lz
]T }, (25)

which takes a possible ZP into account.
To minimize the difference‖Hf,K −Ĥf,K‖2, we go back
again to the time domain and consider the matrix [c.f.
(12)]

ĤK =
∑

q

D{BKeq}C
q
K , (26)

whereC
q
K is a circulant matrix with its first column de-

fined as[cq,0, · · · , cq,L,01×(K−L−1)]
T . RegardingĤK

as the time-domain counterpart of the strictly bandedĤf,K ,
we can readily establish the link‖Hf,K − Ĥf,K‖2 =

‖HK − ĤK‖2. Recalling that in (18) the virtual chan-
nel taph̃p,n contained inX andU is subject to design, we

can simply let̃hp,n = 1√
K

∑Q

q=0 e−j 2π
K

(p+N)(q−Q
2

)cq,n.

In this way, the non-zero elements ofHK andĤK will
differ only in the firstN rows. Borrowing the notationsH
andC defined in (13), we can express the approximation
error as‖Hf,K−Ĥf,K‖2 = ‖D{wN}H−B̄KC‖2. With

entries[B̄K ]p,q = 1√
K

e−j 2π
K

p(q− 2

Q
), theN ×(Q+1) ma-

trix B̄K tallies with the definition of an (O)CE-BEM [7],
which has an exponential periodK that is larger than the
block sizeN .
Finally, we come up with the cost function for the EDM
case

arg min
C,wN |‖wN‖2=N

E{‖D{wN}H − B̄KC‖2} + θE{‖D{wN}Hi,KΦK‖2}.
(27)

Following the same steps as in the previous section, we
can find the window coefficientsd as the eigenvector cor-
responding to the least significant eigenvalue ofX

∗
K with

X K := B̄T
K

(
N−1∑

n=0

D{eT
nPB̄,K}RHD{PH

B̄,Ken} + θRǫ

)
B̄∗

K ,

PB̄,K := IN − B̄K(B̄H
KB̄K)−1B̄H

K .

10 12 14 16 18 20 22 24 26 28 30

10
−4

10
−3

10
−2

SNR (dB)

B
E

R

 

 
ν = 0.004
ν = 0.008
window of [11]
window of the ODM
window of the EDM

Figure 3: BER performance.

5. NUMERICAL RESULTS

We test the proposed algorithms over Jakes’ channels [12]
with L + 1 = 31 channel taps. The variance of thelth
tap isσ2

l = e−
l
10 , and the normalized time correlation is

γm = J0(2πνm), whereJ0(·) denotes the zeroth-order
Bessel function of the first kind, andν for the normalized
Doppler spread, which is chosen to beν = 0.004.
To obtain the ODM and EDM window, we useθ = 0.4 in
the cost functions. Besides, we set[N,Q] = [256, 2] for
the ODM window as well as for the window of [2], and
[N,K,Q] = [128, 256, 2] for the EDM window. In this
way, the MMSE block equalizer will have the same com-
plexity for all three schemes. QPSK modulated symbols
are transmitted and we compare the bit error rate (BER)
only on the32 data symbols that lie in the middle of the
block, i.e., we assume a sliding window approach [2].
This is to mitigate the absence of the ZP, i.e.,Lz = 0.
From Fig. 3, we can observe that the ODM window has a
similar performance as the window of [2], both of which
suffer a higher noise floor than the EDM window.
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