
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006 979

Estimation and Equalization of Doubly Selective
Channels Using Known Symbol Padding

Olivier Rousseaux, Geert Leus, and Marc Moonen

Abstract—This paper considers the situation where users that
experience high-mobility transmit data over frequency-selective
channels, resulting in a doubly selective channel model (i.e., time-
and frequency-selective channels) and this within the framework
of Known Symbol Padding (KSP) transmission. KSP is a recently
proposed block transmission technique where short sequences
of known symbols acting as guard bands are inserted between
successive blocks of data symbols. This paper proposes three novel
channel estimation methods that allow for an accurate estimation
of the time-varying transmission channel solely relying on the
knowledge of the redundant symbols introduced by the KSP trans-
mission scheme. The first method is a direct adaptive one while
the others rely on a recently proposed model, the Basis Expansion
Model (BEM), where the doubly selective channel is approximated
with high accuracy using a limited number of complex exponen-
tials. An important characteristic of the proposed methods is that
they exploit all the received symbols that contain contributions
from the training sequences and blindly filter out the contribution
of the unknown surrounding data symbols. Besides these channel
identification methods, the classical KSP equalizers are adapted to
the context of doubly selective channels, which allows evaluation
of the bit-error-rate (BER) performance of a KSP transmission
system relying on the proposed channel estimation methods in
the context of doubly selective channels. Simulation results show
that KSP transmission is indeed a suitable transmission technique
toward the delivery of high data rates to users experiencing a high
mobility, when adapted KSP equalizers are used in combination
with the proposed channel estimation methods.

Index Terms—Basis Expansion Model (BEM), channel esti-
mation, channel equalization, doubly selective channels, Known
Symbol Padding (KSP).
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I. INTRODUCTION

WIRELESS networks of the next generation will aim at
delivering high data rates to users experiencing possibly

high mobility. The delivery of the required data rates will rely on
broad-band communication channels. When the bandwidth gets
large, the sampling period can become smaller than the delay
spread of the channel, especially in multipath scenarios, which
gives rise to frequency-selective channels. High user mobility
causes the transmission channel to change rapidly in time, which
is referred to as the time selectivity of the channel. Doubly selec-
tive channels as encountered in high mobility broad-band com-
munications then exhibit both time and frequency selectivity.

Block transmission techniques (see, e.g., [1]–[4]) offer ef-
ficient and computationally affordable schemes that are able
to cope with the frequency selectivity of stationary transmis-
sion channels. Amongst these block transmission techniques,
Known Symbol Padding (KSP) transmission, where short se-
quences of known symbols acting as guard bands are inserted
between blocks of data symbols, has attracted significant atten-
tion (see, e.g., [2], [5], [6]) for it guarantees channel-irrespective
symbol recovery (i.e., perfect symbol recovery in the absence
of noise irrespective of the channel), and equivalently, it fully
exploits the delay diversity of the channel, as opposed to other
block transmission techniques such as orthogonal frequency-di-
vision multiplexing (OFDM) (see [7]). Moreover, the padded
sequences can be exploited to accurately estimate the transmis-
sion channel (see, e.g., [5] or [8]–[10].)

When the channel changes in time, it has been proved in [11]
and [12] that the optimal placement of the training symbols in
order to track the channel variations consists of equispaced se-
quences of constant length. This placement of training symbols
matches the KSP transmission scheme which therefore seems to
be a natural candidate for data transmission over doubly selec-
tive channels. In this paper, we briefly describe the KSP trans-
mission scheme in the context of doubly selective channels and
present KSP equalizers suited to equalize such channels. Fur-
thermore, we investigate how the knowledge of the padded se-
quences can be optimally exploited in order to accurately esti-
mate doubly selective transmission channels. We propose three
new methods toward that goal.

The first channel estimation technique is directly inspired by
[9] and [10], where we have presented a Gaussian maximum-
likelihood (ML) channel estimation technique in the context of
KSP transmission over stationary frequency-selective channels.
We propose here an adaptive version [exponentially weighted
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recursive least-squares (RLS) scheme] of that method, which is
able to track the time variations of the channel.

The two other techniques rely on a recently proposed ap-
proach for modeling doubly selective channels, namely the
Basis Expansion Model (BEM) [13]–[15]. This new model
has attracted a lot of attention recently for it allows for an
accurate representation of doubly selective channels with
a limited number of complex exponentials and allows for
cheap and efficient channel equalization schemes [14], [16],
[17]. The problem of identifying the BEM parameters of
the transmission channel through training has already been
discussed in [12] and [18]. These methods only exploit the
channel output samples that solely contain contributions from
the training symbols, neglecting the channel output samples
containing mixed contributions from the training symbols and
the unknown surrounding data symbols. It has been proved in
[12] that, when these estimation methods are used, the optimal
training sequences for a fixed power of the training sequences
consist of equispaced bursts of pilot symbols
with a single nonzero element placed in the middle (
represents the number of complex exponentials in the BEM
and represents the channel length). However, it is not
clear whether or not these training sequences are optimal if
all the channel output samples containing contributions from
the training symbols are considered for channel estimation.
Note as well that when the channel order increases, inserting
training sequences of length significantly reduces the
effective throughput if these sequences need to be repeated on
a regular basis. Moreover, concentrating the whole training
energy in one single symbol results in large peaks in the
transmitted signal, which is an important issue for the power
amplifiers of the radio-frequency (RF) stage. It might therefore
be interesting to develop channel identification methods that
are able to optimally exploit training sequences that differ from
the optimal ones. Another problem of existing methods is that
they assume that the period of the BEM is equal to the interval
over which the channel is identified, which generally leads to
large modeling errors at the edges of the interval. In this paper,
we develop a new BEM channel estimation technique that
also takes into account the channel output samples containing
contributions from both the training symbols and the unknown
surrounding data symbols. The proposed methods are able to
cope with arbitrary periods for the BEM model, leading to
reduced modeling errors. Moreover, they work for any structure
and composition of the available training sequences and show
better performance than the existing BEM methods. The first
BEM method relies on the channel estimates produced by the
proposed adaptive method and finds the set of BEM coeffi-
cients that fit best [in a least-squares (LS) sense] the adaptive
solution. The second BEM method directly identifies the BEM
coefficients and outperforms the other methods.

Notation: We use upper (lower) case bold face letters to de-
note matrices (column vectors). is the identity matrix of size

and is the all-zero matrix of size ; the sub-
scripts are omitted when the dimension of the matrices is clear

from the context. The operator denotes the complex conju-
gate, the transpose of a matrix, its complex conjugate
transpose, represents its square root, and its trace.
Finally, is a diagonal matrix with the elements of the
vector placed on its main diagonal, is the th element
of the th row of the matrix , and is the matrix con-
structed with the rows to of the matrix .

II. MODELS FOR TIME-VARYING CHANNELS

In this section, we focus on the mathematical description of
data communication over doubly selective channels. We present
a general data model for data communications over such chan-
nels and, relying on the physical description of the transmission
channel, we then show how realistic channels can be simulated
within the presented transmission model. Subsequently, we in-
troduce the BEM that is used to model such doubly selective
channels with a limited number of parameters.

A. Physical Channel Model

Let be the sequence of transmitted
data symbols, where is the length of the burst. The relative
motion between the transmitter and the receiver causes the com-
munication channel to change during the transmission of that
burst. Several models have been developed to model the evolu-
tion of the time-varying channel. A general model for the de-
scription of such channels is introduced in [19], which we will
also use in this paper. Sampling the output of the receive an-
tenna at the symbol rate, this model describes the sequence of
received samples as

(1)

where accounts for the effects of the transmission
channel and the transmit and receive filters, and is the
additive noise, which we will consider to be white and Gaussian
distributed. More specifically, the channel coefficients are de-
scribed as

(2)

where is the symbol period and is the total impulse
response of the transmit and receive filters, is the delay of
the th cluster, and are, respectively, the complex gain
and the frequency offset of the th ray of the th cluster. The
frequency offset is caused by the relative motion between the
transmitter, the receiver, and the scatterer and is the source of
the time variation of the channel coefficients.

The physical channel model presented here, though very
handy for simulating realistic time-varying transmission chan-
nels, still contains many parameters that makes it impractical
to use for channel estimation/equalization applications. In the
rest of the text, we define the matrix as

, where the channel coefficients
are derived from (2) to characterize the evolution of the channel
during the transmission of .
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B. Basis Expansion Model

Exploiting the limited Doppler spread of physical channels,
the BEM, which has been proposed recently, models each tap
of the time-varying channel with a limited number of complex
exponentials. This approach allows us to represent the channel
with a reduced number of parameters, namely the multiplicative
coefficients of the complex exponentials, referred to as the BEM
parameters. The true channel is approximated over the
burst interval by the BEM as

(3)

Each channel tap is modeled as the sum of complex
exponentials, and the whole channel is described with a lim-
ited number of parameters, namely the
coefficients. The parameters and should be selected
carefully in order to allow for an accurate approximation of the
true channel over the burst interval. The Doppler spread of the
channel’s BEM (which is equal to its highest frequency com-
ponent) is equal to . Hence, and should
be chosen such that the Doppler spread of the BEM is approxi-
mately equal to the Doppler spread of the true channel. Further-
more, the BEM is periodic with a period . Therefore, as
the true channel is generally not periodic, should at least
be as large as ; the match of the BEM to the true channel over
the burst interval gets tighter as increases. However, in-
creasing forces us to increase in order to fulfill the
Doppler spread requirement. A good empirical rule for most
practical cases is to choose and then choose
according to the Doppler spread rule: ,
which generally yields a very tight match of the BEM with a lim-
ited number of parameters. When the channel varies slowly and

, the above procedure yields , but the
Doppler Spread of the BEM will be significantly larger than the
true Doppler spread, yielding a poor match of the BEM. In this
case, increasing in order to make the true Doppler spread
equal to the BEM Doppler spread largely improves the accu-
racy of the BEM: . Existing methods
[12], [18] do not follow this rule and simply take
as the period of the BEM, resulting in large modeling errors at
the edges of the considered interval.

Defining the matrix of the BEM
coefficients as and the

matrix of complex exponentials as
, the channel matrix is modeled as

(4)

The optimal (in the LS sense) matrix of BEM coefficients is
obtained as

(5)

This optimal set of BEM coefficients is simply called the set of
BEM parameters of the channel in the rest of the text. When the
design parameters and are chosen following the pro-
cedure described above, the difference between the true channel
and its BEM representation is negligible (experimental results

show that the relative modeling error varies between and
for the experimental setups considered in this paper).

Hence, the modeling error of the BEM can be neglected and
the channel is equivalently described by its
BEM parameters or by the parameters
of the channel matrix .

Using the BEM, the input–output relationship (1) of the trans-
mission channel over the burst interval can be written as

(6)

III. KNOWN SYMBOL PADDING

In this section, we introduce the data model of a KSP trans-
mission scheme when doubly selective channels are considered.
We then show how classical KSP equalizers can be adapted to
cope with such doubly selective channels.

A. Data Model

In KSP transmission, the transmitted data symbols are or-
ganized in blocks of length and a sequence of length
of known symbols is appended at the end of every transmitted
block. When the length of the padded sequence is larger than
the channel order , there is no interblock interference
[(IBI) interference between two successive blocks of data sym-
bols]. In this section, we adapt the classical data model for KSP
transmission over frequency-selective channels (see, e.g., [1],
[2], [6]) to the context of doubly selective channels.

Denoting the block index with , a block
of data symbols is defined as a column vector of size :

(7)

A block of training symbols is defined similarly, as
follows:

(8)

The th block of transmitted symbols, of length
, is then defined as

(9)

The transmitted sequence is the concatenation of all these
blocks: and the total length of the
transmitted burst is . The received sequence , which
is derived from (1), can be organized in blocks of
received symbols corresponding to the blocks of transmitted
symbols:

(10)

Using these definitions and assuming , the transmission
scheme can be expressed on a block level: the th received block
contains contributions from the th transmitted block of data
symbols , the known sequences and plus some noise

(11)

where is the additive white Gaussian noise (AWGN) vector
and, using as a shorthand notation for the time index of
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the th element of the th received block , i.e.,
, we can write

...
. . .

...
. . .

. . .
. . .

. . .
...

. . .
. . .

...

(12)

...
. . .

. . .
...

...
...

...
...

...

(13)

and

(14)

with

...
...
...

. . .
...

...
. . .

. . .
...

. . .
. . .

...
. . .

. . .
...

(15)

and

...
...
...

. . .
...

...
. . .

(16)

Note that consists of columns and only exists when
.

B. KSP Equalizers

Based on the above data model, the conventional KSP equal-
izers can be adapted to the doubly selective channel situation.
We focus on minimum mean-squared error (MMSE) equaliza-
tion and assume that the receiver has perfect channel knowledge.

Note that, since the channel is time varying, the equalizers will
differ from block to block.

1) Optimal KSP Equalizers: The contribution of the known
padded sequences is subtracted from the received blocks before
the equalization step, as follows:

(17)

The data model then reduces to and the
MMSE equalizer is expressed as

(18)

where is the noise variance. The th block of data symbols
is then estimated as .

This MMSE equalizer is optimal in the mean-squared error
(MSE) sense. In addition, when the channel can be considered
constant over one block, channel-irrespective symbol recovery
is guaranteed as then always has full column rank, and
equivalently, the delay diversity of the channel is fully exploited
[7] (as long as ). Its drawback, how-
ever, is its computational complexity. The equalization step re-
quires operations per estimated data symbol and a spe-
cific equalizer must be computed for each received block, which
requires the inversion of an matrix.

2) Low-Complexity Frequency-Domain KSP Equalizers:
When the coherence time of the channel is larger than the dura-
tion of a KSP block , the channel coefficients
can be considered as constant during the transmission of such a
KSP block: . In
this case, if constant training sequences are used ,
the data model can be expressed with a circulant channel matrix

(19)

where is an circulant matrix with
on the first column

and on the
first row. Such a circulant matrix is diagonalized by means
of discrete Fourier transform (DFT) and inverse DFT (IDFT)
operations: , where is the IDFT
matrix of size and is the DFT matrix of same size. The
matrix is diagonal and contains the DFT of the channel
impulse response for the th block on the main diagonal

The data symbols are thus actually transmitted over orthog-
onal virtual carriers. The orthogonality between these carriers
is maintained as long as the training sequences are constant
and the channel coefficients do not change significantly within
one block of symbols. In this case, the frequency-domain equal-
izer (FD) for KSP transmission (FD KSP equalizer) can be ex-
pressed as

(20)

This equalizer is equivalent to the scalar frequency-domain
equalizer used in OFDM systems, followed by an IDFT. The
main advantage of this equalizer is its low computational
complexity. The DFT and IDFT operations can respectively
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be implemented as fast Fourier transform (FFT) and inverse
FFT (IFFT) operations, thereby requiring only
operations per equalized data symbol and the computation of
the equalizers requires only operations in total.

However, even if the channel can be considered constant over
a block, this equalizer is suboptimal as it does not guarantee
channel-irrespective symbol recovery (see [1]), and equiva-
lently, it does not fully exploit the delay diversity of the channel
(see [7]). Moreover, although one can expect the hypothesis
of constant channel coefficients to hold in moderate velocity
scenarios, the channel coefficients can vary significantly within
a KSP block as the speed increases. In that case, the channel
matrix is not circulant anymore and the orthogonality between
the carriers is lost. This causes intercarrier interference (ICI)
and significantly reduces the performance of the proposed
equalizer. Note that the more complex optimal equalizers do
not suffer from increased mobility as they take the channel
variations inside a KSP block into account.

IV. ESTIMATION OF DOUBLY SELECTIVE CHANNELS FOR KSP

In this section, we analyze how doubly selective channels can
be estimated relying on the known symbols inserted by the KSP
transmission scheme. As opposed to most channel estimation
methods that only rely on the channel output samples containing
contributions only from the known symbols (and thus do not
consider the channel output samples containing mixed contribu-
tions from the training symbols and the unknown surrounding
data symbols), we aim at estimating the channel relying on all
the channel output samples containing contributions from the
known symbols.

The vector of received symbols containing
contributions from is defined as

(21)

We propose below two new methods that aim at estimating the
doubly selective transmission channel relying on the set of vec-
tors . Note that these methods are presented in the framework
of KSP transmission considered in this paper, but it is straight-
forward to adapt them to other training schemes.

A. Adaptive Method

In [10], we presented a Gaussian ML method for channel
identification that can be used in the context of KSP transmis-
sion. This method was originally developed for stationary chan-
nels. We propose here an adaptive version that is suited for
time-varying frequency-selective channels.

1) Data Model: Assuming that the coherence time of the
channel is significantly larger than , the channel can be
considered constant during the reception of . We define the
vector of the approximately constant channel coefficients
during this time interval as

Relying on this definition, the received vector can be ex-
pressed as

(22)

• The first term is a deterministic term where is
an Toeplitz matrix with
as its first column and as its first row.

• The second term is stochastic and represents the contri-
butions from the unknown surrounding data symbols and
the AWGN

(23)

where is the AWGN vector and
is the vector of

the unknown data symbols contributing to (assuming
). is an matrix gathering the

channel coefficients that multiply these data symbols. It is
the concatenation of two matrices

. . .
...

...
. . .

(24)

Assuming that the noise and the data are white and zero-
mean with variance for the noise samples and for the
data symbols (i.e., and

), it is straightforward to de-
rive the first- and second-order statistics of (assuming also

)

(25)

2) Proposed Algorithm: In [10], we show that when the
channel is constant ( and ), the Gaussian
ML channel estimate of is obtained as

(26)

where is an estimate of the noise correlation matrix based
on the received data.

We propose here an exponentially weighted RLS adaptation
of this technique to track the time variations of the channel
between successive blocks

(27)

where is the forgetting factor whose value is adapted de-
pending on the variation speed of the channel and the noise con-
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ditions. Adopting the notations and for the summa-
tions present in (27), the following equalities are readily derived:

(28)

A recursive expression for the channel estimate is then obtained
as

(29)

where the explicit computation of is not needed any-
more, and the inverse of can be recursively com-
puted using the matrix inversion lemma. Note that an estimate of
the noise correlation matrix is needed for this method to
work. In the stationary channel case [10], an optimal estimate of

yielding the Gaussian ML channel estimate was directly de-
rived from the received symbols. This approach is not possible
here and we simply propose to derive from its definition,
assuming that is an acceptable approximation of . We
thus use to construct the matrices and from
(24) and (25), which we then use in (29).

This method has the advantage of a low computational com-
plexity and a low latency as the channel is estimated “on the fly,”
allowing us to directly equalize the received samples without
keeping them in a receive buffer. Its performance is very sen-
sitive to the value of the parameter . Low values of allow
to track fast channel variations but make the channel estimates
more noisy. Higher values of allow to filter out the noise, but
fast channel variations are harder to follow and the channel es-
timate becomes biased. The optimal choice of results from
a tradeoff between channel tracking and noise filtering. The
method can be initialized with and but will
yield more reliable estimates for the first KSP blocks if a reli-
able initial channel estimate resulting from a long training
sequence is provided.

Using this method, channel values are available for time
instants only (we assume that approximates the channel for
the last sample of , i.e., ).
When the full channel is needed (for the computation of the
optimal KSP equalizers, for instance), we use a simple linear
interpolation between these points.

3) Adaptive BEM Method: Alternatively to the above pro-
posed linear interpolation, it is possible to fit the channel esti-
mates produced by the adaptive method into a BEM as soon as

(which is generally the case). In this case, as the
BEM has only degrees of freedom, it is generally not
possible to interpolate between the identified channel points and
we have to seek the BEM that best fits them in the LS sense.

Define the selection matrix as

elsewhere

and the matrix of the channel coefficients identified by
the adaptive method as

We are seeking the set of BEM coefficients that yield the
best match (in a LS sense) to the adaptively identified channel
coefficients for the considered time instants. Using the se-
lection matrix and the previously defined matrix of complex
exponentials, this translates into

which is solved in a LS sense as

(30)

The parameters and of the BEM are designed as out-
lined earlier, assuming that the Doppler spread is known. By
doing so, the dynamics of the BEM are in line with those of
the true channel and the noise-induced variations of the adap-
tively identified channel coefficients cannot be modeled. The
BEM modeling step actually filters out a part of the noise that is
present in the adaptively identified channel coefficients. There-
fore, the optimal choice of is different when the BEM ap-
proach is used. Lower values of should yield better results as
it allows an improved tracking of the channel variations, the in-
creased noise in the channel estimates being filtered out by the
BEM modeling step.

B. Direct Estimation of the BEM Parameters

In this section, we propose a new approach in order to di-
rectly identify the BEM parameters of the channel, rather than
the indirect approach of the previous section where the channel
was partly identified before to seek the BEM coefficients that
best suit the partly identified channel. The proposed approach
directly relies on the knowledge of the training symbols ap-
pended by the KSP transmission scheme. Existing methods for
training-based BEM estimation of doubly selective channels
[12], [18] only exploit the channel output samples that solely
contain contributions from the training sequence , discarding
all the channel output samples containing mixed contributions
from and the unknown data symbols . The method we
present here exploits all the channel output samples that con-
tain contributions from , including those that contain contri-
butions from both unknown data symbols and training symbols,
i.e., we rely on the set of vectors defined in (21).

1) Data Model: Reviewing the BEM expression of the
transmission scheme (6) and rearranging the resulting expres-
sion, we obtain the following data model that is well suited for
the identification of the channel’s BEM parameters:

(31)

• The first term is a deterministic term
where is the
vector of the channel’s BEM coefficients

, and
is an matrix accounting
for the contributions of the complex exponentials of
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the BEM and the training sequences, which has the
following structure:

. . .

with , where
accounts for the BEM’s complex expo-
nentials multiplying the coefficients

.
• The second term can be expressed as in (23), but the

time variations of the channel during the reception of
are taken into account and so the left and right parts of

are redefined as

. . .
...

...
. . .

where is a shorthand notation for the index of the th
element of .

2) Proposed Algorithms: The statistics of defined in (25)
remain valid in this situation under the same assumptions that
were needed to derive them. We directly rely on these statistics
to propose the following methods.

LS Channel Estimate: Relying on the first-order statistics of
, a simple LS approach provides us with an unbiased estimator

of

(32)

Because of the presence of the complex exponentials, the in-
verse of the sum generally exists as soon as

.
Weighted Least-Squares Channel Estimate: Since is not

white, the LS approach is not optimal. A weighted least-squares
(WLS) approach taking into account the color of would yield
an improved estimate of the channel parameters. Assuming that
all the ’s are known (see also next paragraph), the WLS es-
timate of can be computed as

(33)

The presence of the AWGN term in ensures the existence of
its inverse and the inverse of the sum generally exists under the
same conditions as for the LS estimate.

3) Iterative WLS Channel Estimate: Unfortunately, is
not known at the receiver for it depends on the sought channel.
The WLS approach can thus not be straightforwardly adopted.
We propose below an iterative approach that allows to cope with
the dependence of on the channel.

Assume a channel estimate is available at the receiver
( th iteration). Exploiting (3) and the definition of , it is
possible to construct its estimate , from , for

. Relying on the parametric definition of and as-
suming that is known, we construct the estimates
of the color of the different ’s. This estimate is used to pro-
duce a refined estimate of the channel model with a WLS
approach, as follows:

The iterative procedure is stopped when there is no significant
difference between two consecutive channel estimates. If the
starting point is sufficiently accurate, this iterative procedure
converges to a solution which is close to the true WLS estimate.

The iterative procedure can be initialized with the LS channel
estimate of (32): , which is equivalent to choosing

. Experimental results show that this choice allows
the iterative procedure to converge in two or three steps. The ex-
perimental results presented below are obtained with two itera-
tions of the iterative procedure.

V. EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed
channel estimation methods and the achievable bit-error-rate
(BER) performance when the proposed KSP equalizers are
used with the resulting channel models. The considered system
setup is similar to the OFDM-based Hiperlan2 and IEEE 802.11
standards for WLAN applications that have a similar physical
layer, except that KSP transmission is considered rather than
OFDM transmission. We also modify the sampling time which
is increased by a factor 2: s instead of the proposed
0.05 s, which increases the effects of mobility. The other
parameters of the transmission scheme are as prescribed by
the standards: 5.5 GHz, guard band duration ( in
our scheme) of 16 samples, and useful symbol duration
of 64 samples. The padded sequences of the KSP scheme
are randomly picked quadrature-phase-shift-keying (QPSK)
symbols. The constellations used for the mapping of the binary
data are Gray-mapping binary-phase-shift keying (BPSK),
QPSK, 16-QAM, and 64-QAM. When coded transmissions
are considered, the convolutional mother code of rate
of the standard is used. No preambles for synchronization
or channel estimation are inserted before data transmission
and we assume perfect timing and carrier frequency synchro-
nization. The number of KSP blocks transmitted ( in the
previously adopted notation) is set to 100. The transmission
channels used for the simulations are random realizations of
a physical channel model with ten clusters of 100 rays each
with a channel order set to for most experiments (we
explicitly state so when the considered channel order differs



986 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3, MARCH 2006

Fig. 1. Norm of the first tap of the (a) channel estimate and of the (b) modeling
error versus time for the different channel estimation methods at a speed of
400 km/h and an SNR of 20 dB.

from 8). The considered speed of the mobile terminal ranges
from 25 km/h (low mobility in an urban environment) to
400 km/h (high speed train), yielding Doppler spreads in the
interval 127 Hz 2 kHz. The number of complex
exponentials required to accurately track the channel
variations in this scenario ranges from at 25 km/h
to at 400 km/h. The period of the BEM is
derived from the procedure described in Section II-B, yielding

at 25 km/h and at 400 km/h.
The forget factor of the adaptive method ranges from
at 25 km/h to at 400 km/h. For the proposed adaptive
BEM method, we pick as experimental results indicate
that it yields the best accuracy.

A. First Experiment: Channel Estimation

In a first experiment, we compare the proposed channel esti-
mation methods (BEM and adaptive) with the method proposed
in [12] and [18] (note that we generalize the method to handle

Fig. 2. NMSE of the different channel estimates for varying channel orders
when a preamble of length N = 16 is used. The considered user terminals
speeds are (a) 25 km/h and (b) 400 km/h.

arbitrary BEM periods). In Fig. 1, we show how the different
methods track the evolution of a given channel tap with a mo-
bile terminal speed of 400 km/h under a signal-to-noise ratio
(SNR) of 20 dB. The proposed BEM methods seem to match
the true channel better than the others with a slight advantage
for the direct BEM method over the adaptive BEM method.
The channel estimates of the purely adaptive method (initial-
ized with ) vary less smoothly in time than those of the
existing BEM method [12] and [18] but are closer to the true
channel.

The performance of the different channel estimation schemes
is further assessed in Fig. 2, where the normalized mean-squared
error NMSE of the different channel es-
timation methods is presented as a function of the SNR for dif-
ferent channel orders ( , and ) for the extremes of the
considered user terminal speeds. The proposed BEM methods
clearly outperform the purely adaptive scheme as well as the
existing BEM method. The performance of the proposed BEM
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methods are relatively close to each other with some advantage
for the direct BEM method. For low channel orders only, the
existing BEM method outperforms the purely adaptive one, but
for higher channel orders, the existing BEM method shows poor
performance and is outperformed by the two proposed schemes.
The experiment further shows that the accuracy of all channel
estimates is reduced as the speed of the mobile terminal in-
creases. A drawback of the purely adaptive method is that the
choice of the forget factor results from a tradeoff: when
approaches 1, the noise is filtered out and its impact on the
channel estimates is limited, but the channel variations cannot
be tracked accurately. When is smaller, the channel variations
can be tracked accurately, but the noise has an increased impact
on the modeling error, and the final channel estimate becomes
noisy. In contrast, the direct BEM method averages out the noise
over the duration of the considered burst and models the channel
variations with its complex exponentials. No tradeoff between
channel tracking and noise reduction has to be made as both are
done optimally, resulting in improved channel estimates.

B. Second Experiment: Channel Equalization With Perfect
Channel Knowledge

In a second experiment of which the results are presented
in Fig. 3, we analyze the BER performance of the presented
KSP equalizers (both the optimal equalizer and the less com-
plex FD equalizer are considered) for QPSK transmission
when two of the proposed channel estimation methods are
used1. The considered channel identification methods are the
direct BEM approach that yields the most accurate channel
model and the purely adaptive method that has the smallest
computational complexity. The performance of the optimal
KSP equalizer with perfect channel knowledge appears to be
speed-independent. When QPSK constellations are used, it has
been shown in [6] that the optimal and FD KSP equalizer yield
similar performance at the considered SNRs when the channel
is stationary. In the presented experiments, it appears that
there is a performance degradation of approximately 0.75 dB
at 25 km/h and 2 dB at 400 km/h for the FD equalizer. This
performance degradation is caused by the time variations of the
channel inside a KSP block, resulting in the loss of orthogo-
nality between the carriers and uncompensated ICI. The BER
performance when the channel model resulting from the direct
BEM method is used matches quite closely the perfect channel
knowledge situation. A relatively good match is observed for
the adaptive method at low speeds but, as the speed increases
and the channel model becomes less accurate, we observe the
appearance of a floor in the BER performance of the system.
This experiment shows that the higher accuracy of the direct
BEM method results in significantly improved BER perfor-
mance. Channel variations during the transmission of a KSP
block have a smaller impact on the system performance than
the channel modeling error.

1When BEM channel identification is used, the FD equalizer for the kth re-
ceived block is computed using the BEM-derived channel model for the middle
sample of the considered block.

Fig. 3. BER performance of the optimal and FD KSP equalizer when the
channel estimates of the purely adaptive and the direct BEM methods are used
with QPSK mapping. The considered user terminals speeds are (a) 25 km/h and
(b) 400 km/h.

C. Third Experiment: Channel Equalization With Estimated
Channel Model

In a third experiment, we further investigate the BER perfor-
mance of the system when the direct BEM identification method
is used and the optimal and FD KSP equalizers are used. As
proposed in the Hiperlan2 Standard, the effective data rates are
varied through the use of different constellations and coding
schemes. We assess the system performance for BPSK, QPSK,
16-QAM and 64-QAM constellations for coded and uncoded
transmission. The coded scheme uses a rate binary con-
volutional encoder as described in the Hiperlan2/IEEE 802.11
standard. The coded scheme is used in combination with an in-
terleaver that differs from the block-interleaver of the standard.
In order to exploit the diversity offered by the time variation of
the channel, we use an interleaver operating on a burst level.
The interleaver is designed such that two consecutive data bits
are always encoded in different KSP blocks with a minimum
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Fig. 4. BER performance of the optimal and FD KSP equalizers relying on the channel estimates of the proposed BEM method when different constellations and
coding schemes are used. The considered user terminals speeds are: (a), (c)—25 km/h and (b), (d)—400 km/h. Uncoded transmission is considered in (a) and (b),
while coded transmission (r = 1=2) is considered in (c) and (d).

distance of 15 blocks between these two blocks. Furthermore,
when higher order constellations are used, the interleaver alter-
nates the significance of consecutive bits [a least significant bit
(LSB) followed by a most significant bit (MSB) in 16-QAM;
LSB, center bit, MSB in 64-QAM]. The combination of these
parameters (constellation and coding rate) allows six different
data rates ranging from 3 to 36 Mb/s.

The BER performance of the system is presented in Fig. 4
for speeds of 25 and 400 km/h. The uncoded performance of
optimal and FD KSP equalizers is similar for BPSK and QPSK
constellations, but as the constellation size increases, using the
more complex optimal KSP equalizer yields a significant per-
formance gain, especially as the speed increases. The effect of
increased speeds results in a performance degradation for both
equalization schemes and an error floor appears at high speeds
when higher order constellations are used resulting from the
increased modeling errors at high speeds (plus the loss of car-
rier orthogonality for the FD equalization scheme). In contrast
to this, coded transmissions show stable or (slightly) improved
performance as the speed increases even though the uncoded
performance undergoes a significant degradation. This results
from the increased diversity offered by higher terminal speeds
that is exploited by the coded schemes. The performance gap
between optimal and FD equalization is largely reduced as
coded schemes are used; both schemes offer similar perfor-
mance for BPSK and QPSK constellations whilst the optimal

KSP equalizer offers a performance gain generally ranging
from 1 to 3.5 dB depending on the constellation and the
speed of the mobile terminal when higher order constellations
are considered. The only exception arises for high speeds,
low-target BERs and 64-QAM constellations where the coded
FD equalization scheme shows an error floor above .

Finally, the achievable data rates of the different schemes
(coded or uncoded transmission, FD or optimal equalizers) for
target bit error rates of respectively and as a func-
tion of the SNR are presented in Fig. 5 and Fig. 6 for speeds
of 25 and 400 km/h respectively. The coded scheme gener-
ally dominates the uncoded scheme. The uncoded scheme is
suitable only at low speeds and when the optimal equalizer
is used, in which case the achievable data rates are increased
and the coded scheme are slightly outperformed for interme-
diate data rates. The coded scheme significantly outperforms
the uncoded scheme when lower data rates are considered, in-
dependently of the speed. At high speeds, the coded scheme al-
ways dominates and the uncoded scheme can be used only with
BPSK or QPSK constellation, if the optimal equalizer is used
at the receiver. The presented results also highlight the fact that
the coded schemes show very stable performance. The achiev-
able data rates remain approximately the same or are slightly
improved as the speed increases, except in the specific case
where the speed is high, the FD equalizer is used together with
64-QAM constellation.
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Fig. 5. Achievable data rates with the optimal and FD KSP equalizers
relying on the channel estimates of the proposed BEM method when different
constellations and coding schemes are used for a target BER of (a) 10 and
(b) 10 at a speed of 25 km/h.

The coded scheme always dominates in the low SNR region.
At low speeds and for low-target BERs, the uncoded scheme
performs best in the medium- and high-SNR regions. The
difference between coded and uncoded schemes reduces as
the speed or BER performance requirement increases. For
low-target BERs and high speeds, the coded schemes always
perform better. The presented results also highlight the more
stable performance of the coded scheme for different speeds
and target BERs.

VI. CONCLUSION

In this paper, we have introduced two new methods that
allow to identify doubly selective channels relying on the
knowledge of the guard bands introduced by a KSP transmis-
sion scheme. The first method copes with the time-variations of
the transmission channel using an adaptive scheme whilst the

Fig. 6. Achievable data rates with the optimal and FD KSP equalizers
relying on the channel estimates of the proposed BEM method when different
constellations and coding schemes are used for a target BER of (a) 10 and
(b) 10 at a speed of 400 km/h.

second directly identifies the BEM parameters of the channel.
Both methods are able to cope with training sequences of
various lengths and compositions. Taking into account the
channel output samples that contain contributions from both the
training symbols and the unknown surrounding data symbols
allows the proposed methods to clearly outperform existing
ones, especially for large channel orders. The proposed BEM
method performs significantly better than the adaptive one but
has a higher latency and requires to buffer the channel output
samples before the channel is identified and equalizers can
be designed whilst the adaptive method estimates the channel
on the fly. Block equalizers for KSP transmission were also
described in this paper and experimental results show their
efficiency.

Finally, experiments where these equalizers are designed re-
lying on the channel estimates provided by the proposed BEM
method show that KSP transmission is a suitable candidate in
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order to deliver high data rates ranging from 3 Mb/s to 36 Mb/s
to users experiencing high mobility. When these equalizers are
used in combination with a coding scheme allowing to exploit
the diversity offered by the time variation of the channel, it is
possible to deliver a speed-independent quality of service to the
mobile users.
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