
Adaptive Channel Estimation for OFDM Systems
with Doppler spread

Rocco Claudio Cannizzaro†, Paolo Banelli†, and Geert Leus‡
† University of Perugia, D.I.E.I., 06125 Perugia, Italy.

‡ Delft University of Technology, EEMCS Faculty, 2628 CD Delft, The Netherlands

Abstract— In this paper, we propose adaptive channel estima-
tion for Orthogonal Frequency Division Multiplexing (OFDM)
in fast time-varying (TV) channels. A Basis Expansion Model
(BEM) approach is used to capture the time variation of the
channel within each OFDM block, and to reduce the estimator
dimensionality. Capitalizing on the BEM structure and on a
frequency domain training, two adaptive approaches are pro-
posed, based on Kalman filtering and Recursive Least Squares
(LS) methods, which exploit the time correlation of the channel
between successive blocks and do not require any a-priori
knowledge of the channel statistics. Simulation results show that,
compared to classical Least Squares and statistically-aided Linear
Minimum Mean Squared Error (LMMSE) approaches, the two
proposed techniques effectively estimate the channel, adapt fast
to its non stationary changes, thus enabling efficient TV channel
equalization of the inter-carrier interference (ICI) induced in
OFDM systems by high Doppler spreads.

I. Introduction

The wireless channel that affects Orthogonal Frequency-Division
Multiplexing (OFDM) [1] in high-mobility scenarios, cannot be
considered time-invariant (TI) over an entire OFDM block. A time-
varying (TV) channel destroys the orthogonality among subcarriers
and introduces intercarrier interference (ICI), which drastically re-
duces the equalization performance of single-tap equalizers [2] [3]
that are classically used in OFDM systems. Thus, more complex
equalizers are required, such as those recently proposed [4] [5]
[6] [7] [8]. All these approaches require the knowledge of the
channel variation within each OFDM block and, consequently, TV
channel estimation plays a crucial role influencing the ultimate
BER performance. Either basis expansion models (BEM) [9] or
reduced rank estimation techniques [10] [11], coupled with training
based approaches, are commonly used in order to parsimoniously
model and rapidly estimate the channel unknowns in a time-limited
observation. In this framework deterministic least squares (LS) and
statistically-aided linear minimum mean squared error (LMMSE)
channel estimators have been recently considered for both single and
multiple OFDM block observations [8] [12] [13] [14] [15]. However,
in practical applications we may lack statistical information and,
moreover, the channel could not be wide-sense stationary (WSS).
We propose two adaptive estimation techniques, based on Kalman
filtering and RLS approaches, which are able to exploit the time
correlation of the channel over consecutive OFDM blocks, and can
also track the statistical variations of the channel in the absence of
any a-priori statistical information. Our approach is different from
similar works on the subject in that:

• several papers, such as [16] [17] [18], assume the channel to
be time-invariant inside each OFDM block (e.g. a block fading
channel) and try only to adaptively estimate the approximated
flat-fading channel for each subcarrier. Differently, we are also
interested in estimating the time variation of the channel inside
each OFDM block.

• other papers, such as [10] [19], assume a time domain Kalman
filter approach with a scalar-observation. Differently, we rely
on a frequency-domain Kalman filtering approach with a vector
observation.

Specifically, our approach capitalizes on a BEM channel model
where the BEM bases capture the channel variation within each
OFDM block, and adaptively estimates the BEM coefficients from
one OFDM block to another. This significantly reduces the Kalman
filter and RLS complexity compared to batch methods, similar to the
channel modes tracking proposed in [10].

II. System Model
Due to user mobility, the Doppler spread causes the channel to be

modelled in the discrete domain by a TV Finite Impulse Response
(FIR) filter. In the following subsections we will show the relations
between the TV-FIR coefficients and the physical channel model, and
we will subsequently describe how to approximate the TV channel
through a BEM.

A. Channel Statistics
Denoting byh[n, l] the lth channel tap at thenth time interval,

under the assumption of WSS uncorrelated scattering we can write

E(h[n, l] h∗[n−m, l − p]) = r[m, l]δ[p] (1)

whereδ[·] is the Kronecker delta. Assuming finite delay-spreadL,
we can writer[m, l] = 0, for l 6∈ [0, · · · , L].

Assuming a Jakes’ model [20], which however is not crucial in
the paper, we further have

r[m, l] = σ2
l J0(2πvDm/N), (2)

whereJ0 denotes the0th-order Bessel function of the first kind,σ2
l

the power of thelth channel tap, and

vD =
v fC

c ∆f
=

fD

∆f
(3)

is the normalized Doppler frequency, withv the speed of the mobile
in m/s, fC the carrier frequency inHz, c the speed of light,fD the
actual Doppler frequency, and∆f the subcarrier spacing. For very
low speedsv, the time variation is generally not perceptible in an
OFDM block and we can assume to deal with a time-invariant purely
frequency-selective channel such as in [17] [18]. On the contrary,
when the speed increases, this assumption no longer holds true.

B. Basis Expansion Model
OFDM systems work on data blocks of lengthN and each OFDM

block is transmitted through the(L + 1)-tap TV-FIR channel. Since
each tap varies in time, the total number of parameters to estimate
would be(L+1)N (we need to knowh[n, l], for n = 0, ..., N−1, l =
0, ..., L), whereas the number of transmitted and received symbols
per block is onlyN . In order to reduce the number of unknown
parameters needed to represent the channel, a useful approach is to
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Fig. 1. OFDM System: windowed channel equalization

approximate the channel time variation by the superposition of2Q+1
basis functionsλq[n], q = −Q, · · · , Q

h[n; l] ≈
QX

q=−Q

hq,lλq[n], n = 0, · · · , N − 1, (4)

or, equivalently, in matrix form

htl = Bhcl, (5)

wherehtl = [h[0; l], · · · , h[N − 1; l]]T , hcl = [h−Q,l, · · · , hQ,l]
T ,

B = [λ−Q, · · · , λQ], and λq = [λq[0], · · · , λq[N − 1]]T . The
basis functionsλq are fixed, therefore we only need to determine
the (L + 1)(2Q + 1) expansion coefficientshq,l to approximate
the channel within each OFDM block. It is now clear that it is
possible to solve the estimation problem if we chooseQ to satisfy
(L + 1)(2Q + 1) ≤ Np ≤ N , whereNp is the number of known
pilots that cannot obviously exceed the OFDM block lengthN .
Usually, a small set of basis functions is sufficient to get a good
approximation, according to the empirical rule given byQ ≥ dvDe.
It follows that, for realistic mobile speeds and carrier frequencies
up to several Ghz, practical values ofQ are very small (Q =
1, 2, 3). Among the different alternatives, we focus on the Generalized
Complex Exponential BEM (GCE-BEM) (other BEMs have been
widely analyzed in [21]). Denoting byBGCE−BEM the definition
given in [22], we will use the following basis expansion model

B = QBDwBGCE−BEM , (6)

where Dw = diag(w) is the diagonal matrix withw =
[w[0], · · · , w[N − 1]]T an opportune window function, andQB a
square matrix that makes the columns ofB orthonormal.

C. Data Model
Consider the OFDM system depicted in Fig. 1. The data symbols

are first modulated byN orthogonal subcarriers through the IFFT
block, a cyclic prefix (CP) of lengthL is appended to the IFFT
output to induce a circular convolution with the channel and to
prevent intersymbol interference from adjacent blocks (if the CP
length L is greater than the channel delay spread). At the receiver
side, after CP elimination, the data are reshaped by a time-domain
window w = [w0, ..., wN−1]

T (which helps to reduce Doppler
effects [8]) and are demodulated by the FFT block. Assuming
s = [s[0], · · · , s[N − 1]]T represents the stacked data symbols, the
received datazw = [zw[0], · · · , zw[N − 1]]T can be written as

zw = DwHT FHs + DwnT , (7)

whereF is the unitary DFT matrix,nT = [n[0], · · · , n[N − 1]]T is
an additive white gaussian noise (AWGN), andDwHT is theN×N
time-domain windowed channel matrix

DwHT =

QX
q=−Q

Λq Hq, (8)

whereHq is a circulant matrix generated by theN dimensional vector
[hq,0, · · · , hq,L, 0, · · · , 0]T andΛq = diag(λq).

After the FFT demodulation stage, the input-output relation is

y = Fzw = HF s + nF = FDwHT FHs + nF

=

QX
q=−Q

Cq∆qs + nF
(9)

wherenF := FDwnT , Cq := FΛqF
H is a circulant matrix with

entries

[Cq]k,m =
1

N

N−1X
n=0

λq[n]e−i
2π(k−m)n

N , (10)

and

∆q := FHqF
H = diag(FLhq), (11)

wherehq = [hq,0, · · · , hq,L]T , andFL is the matrix containing the
first L + 1 columns of

√
N F.

We remark that (9) implicitly subsumes the expression for TI chan-
nels, in which caseQ = 0, Cq is a scaled identity matrix, and∆q

is a diagonal matrix, resulting in a diagonal channel matrix. The
more the channel is TV, the more the channel matrix departs from a
diagonal one, which means that ICI is introduced, and the subcarrier
orthogonality is destroyed.

III. Channel Estimation

To estimate the channel, we will rely on Pilot Symbol
Assisted Modulation (PSAM) where, as suggested in [23],
known pilots will be grouped inP blocks each of length
LP and interleaved with the information data to forms =
[d(1)T

,p(1)T
, · · · ,d(P )T

,p(P )T
,d(P+1)T

]T as shown in Fig 2.

Fig. 2. Pilot placement

By inspecting the structure of theHF matrix we can say that it
is almost banded with bandwidthB +1, and that the residual values
out of the band can be neglected. Intuitively,B can be interpreted
as an index of the amount of ICI: the higher the Doppler spread, the
larger will be the bandwidthB.

Fig. 3. Structure of the matrixCq

AssumingB + 1 is the bandwidth of the matrix, we setLP =
2B + 1 and select the correspondingB + 1 received samples (see
Fig. 3). By fixing the total number of pilots toNp = P (2B + 1)

(see [21] for further details), and denotingp = [p(1)T
, · · · ,p(P )T

]T

, d = [d(1)T
, · · · ,d(P+1)T

]T , andNd = N −Np the total number



of data symbols, we can write the received vectorỹ(m) related to the
mth selected block as

ỹ(m) =

QX
q=−Q

C
(p)
q,m ∆

(p)
q p +

QX
q=−Q

C(d)
q,m ∆(d)

q d

| {z }
+ n

(m)
F

id

,

(12)
whereC

(p)
q,m and C

(d)
q,m are the(B + 1) × Np and (B + 1) × Nd

matrices representing the hatched and the shaded parts ofCq in
Fig. 3, respectively;∆(p)

q and ∆
(d)
q are Np × Np and Nd × Nd

diagonal matrices which are carved out of∆q, corresponding to
the pilot subcarriers and symbol subcarriers, respectively. Moreover,
n

(m)
F is the corresponding part ofnF , and id of (12) represents the

interference that comes from the information datad, due to the fact
that HF is not really banded. Now, rewriting the above equation as
a function ofh = [hT

−Q, · · · ,hT
Q]T , we have

ỹ(m) = C(m)Vph + D(m)Vdh| {z } + n
(m)
F ,

id
(13)

with C(m) = [C
(p)
−Q,m, · · · ,C

(p)
Q,m], Vp = I2Q+1 ⊗ diag(p) F

(p)
l ,

D(m) = [C
(d)
−Q,m, · · · ,C

(d)
Q,m] andVd = I2Q+1 ⊗ diag(d) F

(d)
l .

Here, F(p)
l and F

(d)
l collect the rows ofFL corresponding to the

positions of the pilots and the information symbols, respectively.
Now, stacking all the data in the column vector̃y =h

ỹ(1)T · · · ỹ(P )T
iT

, we obtain

ỹ =

2
64

C(1)Vp

...
C(P )Vp

3
75h +

2
64

D(1)Vd

...
D(P )Vd

3
75h +

2
664

n
(1)
F
...

n
(P )
F

3
775

= Ph + Dh + ñF .

(14)

Different approaches can be pursued to estimate the channel coef-
ficientsh. Herein, after a brief summary of the LMMSE estimator,
we will focus on Kalman filter and MRLS. In order to compare the
estimation performance of the proposed approaches we will refer to
the Normalized Mean Square Error (NMSE) of the true windowed
channel tapsHtw = Dw [ht0, · · · ,htL] with the estimated win-
dowed channel tapŝHtw = [ĥtw0, · · · , ĥtwL], defined as

NMSE =
E(||Htw−Ĥtw||2)

tr(R
(t)
Doppler⊗RMultipath)

=
E(||Htw−Bĥcw||2)
tr(R

(t)
Doppler⊗RMultipath)

,

Ĥcw = [ĥcw0, · · · , ĥcwL]
(15)

where [R
(t)
Doppler]m,n = J0(2π(m − n)vD/N)[w]m[w]n, RMultipath

is the covariance matrix of the channel taps, andhtwl, hcwl are
vectors of the windowed channelDwhtl, analogously defined to those
appearing in (5) for the unwindowed channel.

A. LMMSE Estimator
Assuming that i) the datas are zero mean i.i.d.random, variables,

ii) the noiseñF the datas and the channel coefficientsh are jointly
uncorrelated, iii) the channel taps are statically modelled by Jakes’
equations (2), and iv) the channel modelling errorε can be neglected
with respect to the noise, the LMMSE estimator is given by [14]

ĥLMMSE = RhP
H(PRhP

H + RI)
−1ỹ

= (PHR−1
I P + R−1

h )−1PHR−1
I ỹ,

(16)

where

RDoppler = B†R(t)
DopplerB

†H ; Rh = RDoppler⊗RMultipath;

RI = E(DRhD
H) + RñF

(17)

andRñF is the covariance matrix of the colored noise.

B. Kalman Filter
We assume that a1st order Gauss-Markov model is enough to

model the variation of the BEM coefficients from one OFDM bock
to the next one, as expressed by

hk = Ahk−1 + vk, (18)

wherehk are the BEM coefficients that model the channel during
the kth OFDM block, A drives the model evolution, andvk is the
process noise characterized by

E(vk) = 0(2Q+1)(L+1)×1 ; E(vkv
H
k−m) = Qδ[m]

E(hkv
H
k−m) = 0(2Q+1)(L+1).

(19)

Thanks to the ICI reduction induced by windowing, and to the
almost orthogonal FDKD training pilots in [13], the interference
id,k = Dkhk in (14) can be neglected for the Kalman filter design,
and thus for thekth OFDM symbol we can write

ỹk = Phk + ñk, (20)

where we omitted the subscriptF for simplicity.
The Kalman filtering algorithm for the model described by (18)

and (20)
can be summarized as follows [24]:

MF
k = AMA

k−1A
H + Qk Forward Error Covariance

Kk = MF
k PH(Rñ + PMF

k PH)−1 Kalman Gain
ĥk = Aĥk−1 + Kk(ỹk − PAĥk−1) A-Posteriori Estimation
MA

k = (I − KkP)MF
k A-Posteriori Error Covariance

(21)
From (18) and (19), and based on the Yule-Walker equations, for

TI channel statistics is easy to find:

A = RhcrossR
−1
h ; Q = Rh −ARhcross

Rhcross = E(hkh
H
k−1); Rh = E(hkh

H
k ).

(22)

However, since bothA andQ depend onRhcross = Rhcross,k and
Rh = Rh,k at stepk, it is clear that they change with the Doppler
spread. Hence, we propose to compute (22) by recursively estimating
Rhcross,k with the aid of an exponential window forgetting factorλ,
that is

R̂hcross,k = λR̂hcross,k−1 + (1− λ)ĥkĥ
H
k−1, (23)

and, exploiting the same RLS upadate rule, we update the inverse
covarianceΦk = R−1

h,k directly from the estimated channel coeffi-
cientsĥk [24], as summarized in last equation of (27).

Moreover, for a given estimatêhk, Âk and ĥk−1, similarly to
(23), we can findQ̂k as

v̂k = ĥk − Âkĥk−1

Q̂k = λQ̂k−1 + (1− λ)v̂kv̂
H
k .

(24)

It is well known that the memory factorλ determines the im-
portance of the new entrieŝvk at stepk, for the update of the old
matricesR̂hcross,k−1 andΦ̂k−1 at stepk−1. It it is usually chosen
into the range[0.9, 1) trading accuracy (λ → 1) for convergence
speed (λ → 0.9).

A good trade off would be to makeλ time-varyingdecreasingλ
when the estimation error is high to get faster convergence, while
increasingλ when the convergence is reached to further filter the
noise and reduce the estimation error. To decide whether to increase
or decreaseλ, we can exploit theA-Posteriorierror covariance matrix
MA

k , which is embedded in the Kalman filter structure and provides
a measure of the estimation error power. By normalizingMA

k to the
noise and the channel coefficients powersσ̂2

h,k−1 = tr(R̂h,k−1), we
find an empirical update rule forλ, which is the firs equation of (27).



Summarizing, the Kalman filter is composed of
1) Initialization

ĥ0 = 0(2Q+1)(L+1)×1 ; ỹ0 = 0P (B+1)×1

Â0 = Rhcross,0 R−1
h,0 ; MA

0 = Rh,0;

Q̂0 = Rh,0 − Â0 Rhcross,0 ; Φ̂0 = R−1
h,0

R̂hcross,0 = Rhcross,0 ; σ̂2
h,0 = tr(Rh,0)

(25)

2) Recursion

MF
k = Âk−1MA

k−1Â
H
k−1 + Q̂k−1

Kk = MF
k PH(Rñ + PMF

k PH)−1

ĥk = Âk−1ĥk−1 + Kk(ỹk − PÂk−1ĥk−1)
MA

k = (I − KkP)MF
k

(26)

3) Model Update

λk = 1− tr(Mk
A)

σ̂2
h,k−1tr(Rñ)

σ̂2
h,k = λkσ̂2

h,k−1 + (1− λk)ĥH
k ĥk

R̂hcross,k = λkR̂hcross,k−1 + (1− λk)ĥkĥ
H
k−1

Âk = R̂hcross,kΦ̂k−1

v̂k = ĥk − Âkĥk−1

Q̂k = λkQ̂k−1 + (1− λk)v̂kv̂
H
k

Φ̂k = λ−1
k Φ̂k−1 − λ−2

k

Φ̂k−1ĥkĥH
k Φ̂k−1

(1−λk)−1+λ−1
k

ĥH
k

Φ̂k−1ĥk
.

(27)

The algorithm may be initialized with the theoretical matrices
Rhcross,0 andRh,0, assuming Jakes’ model for a given initial mobile
speed. However, simulations show this is not crucial.
The complexity (O([(2Q+1)(L+1)]3)) is increased wrt to LMMSE
due to the matrix inversion computation that is required at each stept
by the Kalman gainKk.

C. Modified Recursive Least Squares Estimator
To reduce the complexity involved with the Kalman filtering

procedure we can rely on a RLS approach [24]. Under the same
assumptions made for (20) and with classical derivations that we omit
due to lack of space, we obtain a Modified RLS estimator expressed
by
1) Initialization

λ0 = 1; ; ỹ0 = 0P (B+1)×1

ĥ0 = 0(L+1)(2Q+1)×1 ; Ψ̂0 = IP (B+1)
(28)

2) Recursion

λk = αλk−1 + (1− α)
�
1−KεH

k εk

�

Ψ̂k = λ−1
k Ψ̂k−1 − λ−2

k

Ψ̂k−1 ỹkỹH
k Ψ̂k−1

(1−λk)−1+λ−1
k

ỹH
k

Ψ̂k−1 ỹk

ĥk = P†(IP (B+1) −RñΨ̂k)ỹk.

(29)

Since no matrix inversion is involved in the above equations, this
algorithm has a lower computational cost with respect to the modified
Kalman filter. Differently from the Kalman filter, we cannot rely on
the A-Posteriori error covariance matrixMA

k to adjust the memory
factor λ at each step. We note however that, if the estimation
performance is good, the estimation errorξk = hk−1 − ĥk−1 has
a low power expressed by tr(E(ξkξH

k )). Thus, the modelling error
defined byεk = ỹk−1−Pĥk−1 has an average power expressed by

σ2
εk

= tr(E(εkεH
k )) = tr(PE(ξkξH

k )PH) + σ2
ñ ≈ σ2

ñ. (30)

We consequently propose the first equation of (29), whereα is chosen
to set how fastλk should vary, whileK controls the influence of the
estimation error on the update. Since we wantλ ∈ [0.9, 1) we set
K = 1/(100σ2

ñ), such that for good estimation scenarios the quantity
KεH

k εk is around10−2 and does not change significantlyλk in the
first equation of (29).
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Fig. 4. Convergence Analysis:α = 0.5, vD = 0.25 → 0.30 at time
k = 4001

IV. Simulation Results

We consider an OFDM system (fig. 1) withNA active carriers,
NV = N − NA zero frequency guard bands, and a Jakes’ channel
with constant power delay profile. The data symbols are carved from
a QPSK alphabet withE(ddH) = σ2

dINd , whereas the pilots are
chosen according to the FDKD scheme in [13]: each blockp(p) is
formed by a single pilot,b =

p
σ2

p(2B + 1) (σ2
p is the power of

each pilot block)surrounded byB zeros at each edge. To reshape
the received data (as well as the BEM basis functions), we use the
MBAE-SOE-2 windoww proposed in [7].
The parameters used for all the simulations, are as follows

• N = 256 ; NA = 244 ; Q = 2;
• B = 2Q = 4 ; L = 4 ; P = L + 1 = 5;
• σ2

d = σ2
p = 1 ; σ2

htl
= 1 for l = 0, · · · , L;

To study the convergence properties of the adaptive algorithms, we
initialize the two estimators assuming the knowledge of the true
channel statistics forvD = 0.25, in such a way they can quickly
reach the steady state regime. After4000 time steps (e.g. OFDM
blocks), we suddenly change the Doppler spread tovD = 0.3 (20%)
and look what happens for the next1000 time steps. We underscore
that this is quite a hard test for the algorithms because in reality
they have to face smoother changes of the channel statistics (e.g
mobile speed and direction). In order to analyze performance, we
average over1000 channel realizations for each of the5000 time
steps. Figure 4 shows the results for different values of the SNR
(SNR = 0, 15, 30, 45 dB). As expected, the Kalman filter always
reaches a better performance. Figure 5 shows the mean value of
the memory factor for both models: asvD changes, the estimation
error increases andλk decreases to make the estimators’ equations
more influenced by the new data and speed up convergence. The
change in the statistics is more penalizing for the Kalman filter, which
exhibits a peak in the NMSE; however the adaptation speed is so fast
that the convergence is reached in few steps. Figure 6 compares the
two estimators with the LMMSE (always aided by perfect statistical
channel information) when the convergence is reached. The multi-
block LMMSE proposed in [15] is also plotted to have a bound for
the Kalman filter. For this approach, three consecutive blocks are
considered. The MRLS algorithm exhibits very good results, getting
close to the LMMSE performance. Of course, the strong influence
of the noise at low SNR translates in a higher loss of estimation
accuracy. This is due to the fact that the instantaneous noise values
make the inverse covariance matrixΨk to continuously oscillate
around the true theoretical value. The Kalman filter, exploiting the
channel correlation among successive OFDM blocks outperforms the
single-block LMMSE, getting close to the multi-block LMMSE based
on three consecutive blocks.
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V. Conclusions

In this paper, two novel adaptive channel estimators have been
proposed to weapon OFDM equalizers against Doppler effects. Start-
ing from the LMMSE estimator we derived a Kalman filter and a
Modified RLS algorithm. Simulation results showed that both the
estimators present good performances with a reasonable complexity,
due to the reduction in unknowns obtained by a BEM approach. Since
they are adaptive in nature and independent of the channel statistics,
these estimators find their application when the channel statistics are
not known or cannot be exactly estimated. Future directions are the
investigation of a data-aided channel tracking mode to reduce the
information rate loss associated with training, as well as suboptimal
Kalman filter solutions to further reduce the complexity.
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