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Abstract—In this paper, we propose adaptive channel estima- « other papers, such as [10] [19], assume a time domain Kalman

tion for Orthogonal Frequency Division Multiplexing (OFDM) filter approach with a scalar-observation. Differently, we rely
in fast time-varying (TV) channels. A Basis Expansion Model on a frequency-domain Kalman filtering approach with a vector
(BEM) approach is used to capture the time variation of the observation.

channel within each OFDM block, and to reduce the estimator gpecifically, our approach capitalizes on a BEM channel model
dimensionality. Capitalizing on the BEM structure and on a \here the BEM bases capture the channel variation within each
frequency domain training, two adaptive approaChes aré pro- OFDM block, and adaptively estimates the BEM coefficients from
posed, based on Kalman filtering and Recursive Least Squares opne OFDM block to another. This significantly reduces the Kalman

(LS) methods, which exploit the time correlation of the channel fijjter and RLS complexity compared to batch methods, similar to the
between successive blocks and do not require any a-priori channel modes tracking proposed in [10].

knowledge of the channel statistics. Simulation results show that,
compared to classical Least Squares and statistically-aided Linear Il. System Model
Minimum Mean Squared Error (LMMSE) approaches, the two
proposed techniques effectively estimate the channel, adapt fast
to its non stationary changes, thus enabling efficient TV channel
equalization of the inter-carrier interference (ICl) induced in
OFDM systems by high Doppler spreads.

Due to user mobility, the Doppler spread causes the channel to be
modelled in the discrete domain by a TV Finite Impulse Response
(FIR) filter. In the following subsections we will show the relations
between the TV-FIR coefficients and the physical channel model, and
we will subsequently describe how to approximate the TV channel
through a BEM.

[. Introduction
_ ~__A. Channel Statistics
The wireless channel that affects Orthogonal Frequency-Division Denoting byh[n, 1] the I** channel tap at the!" time interval,

Multiplexing (OFDM) [1] in high-mobility scenarios, cannot be . . .
consi‘?jeredgtir(ne-inva)ria{nl (TI) o?/er an en)t/ire OFDM block. A timeynder the assumption of WSS uncorrelated scattering we can write

varying (TV) channel destroys the orthogonality among subcarriers E(h[n, ]| h*[n —m,1 — p]) = r[m, [|5[p] 1)
and introduces intercarrier interference (ICI), which drastically re- ’ ’ ’

duces the equalization performance of single-tap equalizers [2] [Bhere §[-] is the Kronecker delta. Assuming finite delay-spread
that are classically used in OFDM systems. Thus, more compl@g can writer[m,l] =0, for I &€[0,---,L].

equalizers are required, such as those recently proposed [4] [SJAssuming a Jakes’ model [20], which however is not crucial in
[6] [7] [8]. All these approaches require the knowledge of thenhe paper, we further have

channel variation within each OFDM block and, consequently, TV

channel estimation plays a crucial role influencing the ultimate r[m, 1] = of Jo(2mrvpm/N), 2
BER performance. Either basis expansion models (BEM) [9] or h . i _
reduced rank estimation techniques [10] [11], coupled with trainirf§nereJo denotes”:[hé) -order Bessel function of the first kind;
based approaches, are commonly used in order to parsimoniod8fy Power of theé™ channel tap, and

model and rapidly estimate the channel unknowns in a time-limited v fo fp

observation. In this framework deterministic least squares (LS) and UD = AT T AL 3)
statistically-aided linear minimum mean squared error (LMMSE) cas f

channel estimators have been recently considered for both single &nthe normalized Doppler frequency, withthe speed of the mobile
multiple OFDM block observations [8] [12] [13] [14] [15]. However,in m/s, fc the carrier frequency i z, c the speed of lightfp the

in practical applications we may lack statistical information andhctual Doppler frequency, and; the subcarrier spacing. For very
moreover, the channel could not be wide-sense stationary (WSBW speedsv, the time variation is generally not perceptible in an
We propose two adaptive estimation techniques, based on Kaln@RDM block and we can assume to deal with a time-invariant purely
filtering and RLS approaches, which are able to exploit the tinfeequency-selective channel such as in [17] [18]. On the contrary,
correlation of the channel over consecutive OFDM blocks, and caren the speed increases, this assumption no longer holds true.
also track the statistical variations of the channel in the absence of

any a-priori statistical information. Our approach is different fronB. Basis Expansion Model

similar works on the subject in that: OFDM systems work on data blocks of lengthand each OFDM
« several papers, such as [16] [17] [18], assume the channelbiock is transmitted through th@l + 1)-tap TV-FIR channel. Since
be time-invariant inside each OFDM block (e.g. a block fadingach tap varies in time, the total number of parameters to estimate
channel) and try only to adaptively estimate the approximatedbuld be(L+1)N (we need to know[n, (], forn =0,..., N—1,1 =
flat-fading channel for each subcarrier. Differently, we are ald® ..., L), whereas the number of transmitted and received symbols
interested in estimating the time variation of the channel insigeer block is only N. In order to reduce the number of unknown
each OFDM block. parameters needed to represent the channel, a useful approach is to
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After the FFT demodulation stage, the input-output relation is

L g N
| x
: = C,A4 s +np 9)
=—Q

Fig. 1. OFDM System: windowed channel equalization . . . .
9 y a wherenp := FDy,nr, C, := FA,F¥ is a circulant matrix with

entries
1 DS 7i27r(k'77n)n
—_ N
approximate the channel time variation by the superpositicof 1 [Calem = Aq[ne ' (10)
basis functions\;[n], ¢ = —Q,--- ,Q n=0
< and .
hln;1] ~ hgiXq[n], mn=0,---,N—1, (4) A, :=FH,F" = diag(Fph,), (11)
=—-Q
. . . whereh, = [hg0,--- ,hq,r]”, andF is the matrix containing the
or, equivalently, in matrix form first L + 1 columns of VN F
hy = Bhy, (5) We re_mark_that (9) implicitly s_ubsumes th_e expressior_] for Tl chan-
nels, in which cas&) = 0, C, is a scaled identity matrix, and,
wherehy = [R[0;1],--- ,h[N — 1;I)]7, hey = [h_gu,--- ,hou]", is a diagonal matrix, resulting in a diagonal channel matrix. The
B = [A_g,---,Aq], and Ay, = [A\[0],--- ,A¢[N — 1]]¥. The more the channel is TV, the more the channel matrix departs from a

basis functions\, are fixed, therefore we only need to determingiagonal one, which means that ICl is introduced, and the subcarrier
the (L + 1)(2Q + 1) expansion coefficients,; to approximate orthogonality is destroyed.
the channel within each OFDM block. It is now clear that it is

possible to solve the estimation problem if we chogséo satisfy I1l. Channel Estimation
(L+1)(2Q +1) < N, < N, whereN,, is the number of known
pilots that cannot obviously exceed the OFDM block lendth To estimate the channel, we will rely on Pilot Symbol

Usually, a small set of basis functions is sufficient to get a goossisted Modulation (PSAM) where, as suggested in [23],
approximation, according to the empirical rule given®y> [vp]. known pilots will be grouped inP blocks each of length
It follows that, for realistic mobile speeds and carrier frequencidsp and interleaved with the information data to foren =

up to several Ghz, practical values 6f are very small @ = [d®7 p®T ... a®7T p™T qP+DTT a5 shown in Fig 2.

1,2, 3). Among the different alternatives, we focus on the Generalized —| L |—
Complex Exponential BEM (GCE-BEM) (other BEMs have been ‘ ‘ ‘ ‘ ‘
widely analyzed in [21]). Denoting bBcce-sEMm the definition

. . . . . . a@ p® P q® @™
given in [22], we will use the following basis expansion model
B = QsDuBccr_neu, (6) Fig. 2. Pilot placement
where D,, = diag(w) is the diagonal matrix withw = By inspecting the structure of thH» matrix we can say that it
[w[0],--- ,w[N — 1]]” an opportune window function, an@z a is almost banded with bandwidth + 1, and that the residual values
square matrix that makes the columnsBforthonormal. out of the band can be neglected. Intuitively, can be interpreted
as an index of the amount of ICI: the higher the Doppler spread, the
C. Data Model larger will be the bandwidth3.
Consider the OFDM system depicted in Fig. 1. The data symbols
are first modulated byV orthogonal subcarriers through the IFFT
block, a cyclic prefix (CP) of length is appended to the IFFT
output to induce a circular convolution with the channel and to
prevent intersymbol interference from adjacent blocks (if the CP
length L is greater than the channel delay spread). At the receiver
side, after CP elimination, the data are reshaped by a time-domain
window w = [wo,...,wn_1]7 (which helps to reduce Doppler
effects [8]) and are demodulated by the FFT block. Assuming
s = [s[0],--- ,s[N — 1]]T represents the stacked data symbols, the
received data.,, = [2,[0], -, zo[N — 1]]¥ can be written as
7z, = D,HrF”s + Dynr, @) 1,
whereF is the unitary DFT matrixnzr = [n[0],--- ,n[N —1]]T is T
an additive white gaussian noise (AWGN), abd, Hr is the N x N . )
time-domain windowed channel matrix Fig. 3. Structure of the matriC,
X Assuming B + 1 is the bandwidth of the matrix, we sdtp =
D,Hr = AgH,, (8) 2B + 1 and select the correspondirig + 1 received samples (see
=—Q Fig. 3). By fixing the total number of pilots t&v, = P(2B + 1)
. . T T
whereH, is a circulant matrix generated by thédimensional vector (see [21] for further details), and denotipg= [p")",--- ,p!"" "

(g0, har,0,---,0]" andA, = diag(X,). ,d=[d®7,... a®+Y"T andN, = N — N, the total number



of data symbols, we can write the received vegt6t’ related to the B. Kalman Filter
th
m™" selected block as We assume that a* order Gauss-Markov model is enough to

) X aw X @ A (m) model the variation of the BEM coefficients from one OFDM bock
yr = ComAg’ P+ Cim Ay’ d+np to the next one, as expressed by
=—Q iifQ ’
{7— } h, = Ahy_1 + v, (18)
iq

- @ (12) whereh, are the BEM coefficients that model the channel during
where C¢%7. and Cg;7, are the(B + 1) x N, and (B + 1) x Ng  the k*"* OFDM block, A drives the model evolution, andy, is the
matrices representing the hatched and the shaded par€,dh process noise characterized by
Fig. 3, respectiverAff) and Afzd) are N, x N, and Ng X Ny -
diagonal matrices which are carved out &f,, corresponding to ~ E(Ve) =0cqin+nx1 i E(vivi_,,) = Qd[m] (19)

. . . A H _
th(e )pllOt subcarriers and symbol subcarriers, respectively. Moreover,E(hxvy_.,) = 02 r1)(L+1)-
frlﬁp " 'f’ t:e ct?]rrtespcr);ldmfg? Frfrtthofﬁ{far?g 1% (;féldzg‘jreprtes;ntsf thte Thanks to the ICI reduction induced by windowing, and to the
thet}? ence ta Cﬁ) ss dod Ne 0 ‘.":. 0 th { bue 0 the tz_ac almost orthogonal FDKD training pilots in [13], the interference
at*lr 1S notrealy banded. Now, rewriling the above equation afi,k = D¢hy in (14) can be neglected for the Kalman filter design,

i = T e T T
a function ofh = [h=g, v hol™, we have and thus for thé:!* OFDM symbol we can write
y(m) — C(m)Vph + P(M)le? + n%m)’

—{z (13) $r = Phy, + iy, (20)
iq
. ) (D) ® B ) »  Where we omitted the subscript for simplicity.
with ¢ = [CEGms s Camls Vo = a1 ® diag(p) F,", The Kalman filtering algorithm for the model described by (18)
D™ =[c), ... .c¥) JandV, =L © diag(d) F{”. and (20)

Here, F'”) and F\) collect the rows ofF; corresponding to the ~ can be summarized as follows [24]:

positions of the pilots and the information symbols, respectively. F_ A " .

h Now, stacking all the data in the column vectgr = Mi = AFM ’;{—IA * QI; = 71Forward Error Covariance
Kr = My P*(Ris + PMgPY) Kalman Gain

gOT g btai ~ - - Co
y y ,» We obtain hy = Ah;_1 + Ky (§x — PAhy_1) A-Posteriori Estimation
2 3 2 4,3 M# = (I —KpP)ME A-Posteriori Error Covariance
e (21)
y= 2 : gh —s—ﬁ : Z;h +§ : From (18) and (19), and based on the Yule-Walker equations, for
C(P')Vp D<P.)Vd n{pm (14) TI channel statistics is easy to find:

~ A= Rhcross R}:17 Q = Rh - ARhcross
= Ph + Dh + fip. Ri,.... = E(hyhf )); Ry = E(hghf).
Different approaches can be pursued to estimate the channel coef- .
ficients h. Herein, after a brief summary of the LMMSE estimator JOWeVer, since bottA andQ depend oRy,.,,,, = Ra..,.,,x and
we will focus on Kalman filter and MRLS. In order to compare thdts = Rak at stepk, it is clear that they change with the Doppler
estimation performance of the proposed approaches we will referggf€ad- Hence, we propose to compute (22) by recursively estimating
the Normalized Mean Square Error (NMSE) of the true windowef#cross.+ With the aid of an exponential window forgetting factor

(22)

cross

channel tapsH;, = Dy [hyo,- -, hyz] with the estimated win- that1s
dowed channel tapE;.,, = [hiwo, - - , hiwr], defined as fihmss,k — ,\f{hmss,kf1 +(1— )\)flkflg_h (23)
NMSE — E(lHew—Hiwl?) _ BE(|Hew—Bhewl?) and, exploiting the same RLS upadate rule, we update the inverse
- (1) _ - [€) - ) . S 1 4 X -
tr (Rl ®Rutipatn) 7 (R 1o @Rovutipan) (15) covariance®, = R, ; directly from the estimated channel coeffi
Hew = [hewo, -, hewr] cientshy [24], as summarized in last equation of (27).

Moreover, for a given estimath,, A, and hy_1, similarly to
where [Rooelm.n = Jo(27(m — n)op /N) (Wl [W]n, Runpar (23), we can findQ, as
is the covariance matrix of the channel taps, dnd;, h..; are '
vectors of the windowed channBl, h;;, analogously defined to those Yy = hy — Ahy_

appearing in (5) for the unwindowed channel. Qp = MO + (1 — Nl (24)

A. LMMSE Estimator . . .

) . . i It is well known that the memory factok determines the im-
) Assumlng~that i) the data are zero mean |.|.q.r§1ndom, V.a.”ablesportancerf the new entried, at stepk, for the update of the old
i) the noisenir the datas and the channel coefficients are jointly matricesRy,,.. »_1 and®;_, at stepk — 1. It it is usually chosen

uncorrelated, iii) the channel taps are statically modelled by Jakesty the rangel0.9. 1) trading accurac 1) for convergence
equations (2), and iv) the channel modelling eraran be neglected speed § — 099[) Y ’ A= ’

with respect to the noise, the LMMSE estimator is given by [14] A good trade off would be to maka time-varyingdecreasing\
hiwvse = Ry PP (PR, PP + R;) 'y when the estimation error is high to get faster convergence, while
Hae —1 Nl Hoame 1~ (16) increasing A\ when the convergence is reached to further filter the
=P "R P+R,) PR, noise and reduce the estimation error. To decide whether to increase
where or gecrease\, we can exploit thé\-Posteriorierror covariance matrix
_ pip® tH . _ o M;!, which is embedded in the Kalman filter structure and provides
Reooppler = B'RpgppeB’ ™ 5 R = Rooppler @ Riutipatn; (17) a measure of the estimation error power. By normaliiig to the
R = E(DR.D™) + Ra noise and the channel coefficients powefs,_; = tr(Rnu x—1), we
andRs . is the covariance matrix of the colored noise. find an empirical update rule fox, which is the firs equation of (27).



SNR=0dB SNR=15dB

Summarizing, the Kalman filter is composed of o 7
1) Initialization e o [T
f}o = 0(2Q+1)(L+1)x1 i Yo =0ppBi1)x1 § : g—n
Ao =Rh...0 Ry ;Mg =Ruo; (25) j'ﬁmw b
QO = Rh70 - AO RhCT'OSSqO ; QO = R}:,%} 7100 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Rhcrosswo = Rhcrosao 5 a—le,o = tr(R}hO) SNR=30dB SNR =45 dB
2) Recursion :33"‘;‘%%55;;3;; Y dceccomonn87T
ME = A, MALAE L+ Qs g TYpTET e Y -0 o
Kr =MIPH(Rs: 4+ PMIPT)~! (26) > 0[S Tamisvares W
hk = Ak_lhk_l + Kk(g’k - PAk_lhk_l) 0 1000 2000 3000 4000 5000 75]0%1%;:?"2000 3000 4000 5000
MA — (| _ KkP)Mf Hterations terations
3) Model Update Fig. 4. Convergence Analysist = 0.5, vp = 0.25 — 0.30 at time
B k = 4001
A =1 — - tr(Mp)
k 57 n1tr(Ra) o
@Qz,k = Ak&i,k—l + (1= Mx)hf hy L
Ricroegh = MR h—1 + (1 = Ae)hrhil IV. Simulation Results
= _ 27 . ) . . .
l}k_ ff{h”ji*”}il@k ! 27) We consider an OFDM system (fig. 1) witN4 active carriers,
Ve = Dk — Arllk—1 Y m Ny = N — N4 zero frequency guard bands, and a Jakes’ channel
Qr = AeQr-1 + (1 = Ap)Vi¥y e with constant power delay profile. The data symbols are carved from
D=2\ 1d - 22 “"fllhkf{vfl’vjl . a QPSK alphabet withE(dd”) = o21y,, whereas the pilots are
e chosen according to the FDKB scheme in [13]: each bip&K is
The algorithm may be initialized with the theoretical matriceformed by a single piloth = = 03(2B +1) (0} is the power of
Ri.......0 andRy, o, assuming Jakes’ model for a given initial mobileeach pilot block)surrounded bj8 zeros at each edge. To reshape
speed. However, simulations show this is not crucial. the received data (as well as the BEM basis functions), we use the

The complexity O([(2Q +1)(L+1)]*)) is increased wrt to LMMSE MBAE-SOE-2 windoww proposed in [7].
due to the matrix inversion computation that is required at each stéjite parameters used for all the simulations, are as follows

by the Kalman gairK. o« N =256 i Na=244 ; Q=2
- . . e« B=2Q=4 ; L=4 . P=L+1=5;
C. Modified Recursive Least Squares Estimator coi=oi=1; o} =1 for 1=0,---,L;

To reduce the complexity involved with the Kalman filteringry siudy the convergence properties of the adaptive algorithms, we
procedure we can rely on a RLS approach [24]. Under the samgiajize the two estimators assuming the knowledge of the true
assumptions made for (20) and with classical derivations that we orgi{annel statistics fopp — 0.25, in such a way they can quickly
due to lack of space, we obtain a Modified RLS estimator expressedch the steady state regime. Aft&§00 time steps (e.g. OFDM
by L blocks), we suddenly change the Doppler spreadfc= 0.3 (20%)

1) Initialization and look what happens for the ned00 time steps. We underscore
that this is quite a hard test for the algorithms because in reality

?10 _ 1)7 Yo OP(],BH)\iX,I -1 (28) they_ have to face smoother changes of the channel statistics (e.g
0= TEADEe+Dx1 5 T0 = PB4 mobile speed and direction). In order to analyze performance, we
2) Recursion average overl000 channel realizations for each of tf®00 time
. steps. Figure 4 shows the results for different values of the SNR
Ak =adp1+(1-a) 1 — Keyer e (SNR =0, 15, 30, 45 dB). As expected, the Kalman filter always
Py = A0y — A2 e ek Ber (29) reaches a better performance. Figure 5 shows the mean value of
. ; (L=2) ™ A T o1 Ik the memory factor for both models: as changes, the estimation
hy =P'(Ippt1) — RaWr)¥e. error increases andl;, decreases to make the estimators’ equations

Since no matrix inversion is involved in the above equations, thf§o'® influenced by the new data and speed up convergence. The
algorithm has a lower computational cost with respect to the modifi€dange in the statistics is more penalizing for the Kalman filter, which

Kalman filter. Differently from the Kalman filter, we cannot rely on€XNibits a peak in the NMSE; however the adaptation speed is so fast
the A-Posteriori error covariance matri# to adjust the memory that the convergence is reached in few steps. Figure 6 compares the

factor A at each step. We note however that, if the estimatio?’l‘:o estilnjaftors with thehLMMhSE (always aided by perr]feoclt ?_trz]atisticz?l_
performance is good. the estimation ertar — hy 1 — hy_; has channel information) when the convergence is reached. The multi-

H : block LMMSE proposed in [15] is also plotted to have a bound for
gellfi)r\:veg%vv:r EX?ressEdP%y(E(f]’;%gr)]'aU;l:;’ éheovrcgrdg)l(llrlgsesrergrb he Kalman filter. For this approach, three consecutive blocks are
Yok = ¥r-1 k=1 gep P onsidered. The MRLS algorithm exhibits very good results, getting

ol = tr(E(evetl)) = tr(PE(&&)PH) + 02 ~ 2. (30) Close to the LMMSE performance. Of course, the strong influence

of the noise at low SNR translates in a higher loss of estimation
We consequently propose the first equation of (29), wheigechosen accuracy. This is due to the fact that the instantaneous noise values
to set how fast\;, should vary, whileK controls the influence of the make the inverse covariance matnik, to continuously oscillate
estimation error on the update. Since we wang [0.9,1) we set around the true theoretical value. The Kalman filter, exploiting the
K = 1/(100032), such that for good estimation scenarios the quantighannel correlation among successive OFDM blocks outperforms the
Kefle, is around10~2 and does not change significantly, in the  single-block LMMSE, getting close to the multi-block LMMSE based
first equation of (29). on three consecutive blocks.



SNR=0dB SNR=15dB

1.002 1.002
MRLS MRLS [6]
~%- Kalmar - Kalman
1 1 2l
0.998 0.998 FV/H’—’V—V
< <
0.996 0.996 [7]

0.994

0.994

0.992

0.992
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 [8]

SNR =30 dB SNR =45 dB

1.002 1
MRLS MRLS [9]
7 Kalman 0.999 -5~ Kalman

0.998

h rr/”“”* [10]

0.996

0.996
0.995

0994 0.994
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 []_1]
Iterations Iterations

Fig. 5. Memory Factorac = 0.5, vp = 0.25 — 0.30 at time k = 4001 [12]
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Fig. 6. Estimation Comparisonx = 0.5, vp = 0.256 [18]

V. Conclusions [19]

In this paper, two novel adaptive channel estimators have been
proposed to weapon OFDM equalizers against Doppler effects. Stgeb]
ing from the LMMSE estimator we derived a Kalman filter and §21]
Modified RLS algorithm. Simulation results showed that both the
estimators present good performances with a reasonable compleX#3]
due to the reduction in unknowns obtained by a BEM approach. Sirg;%
they are adaptive in nature and independent of the channel statisti ],
these estimators find their application when the channel statistics are
not known or cannot be exactly estimated. Future directions are {bg,
investigation of a data-aided channel tracking mode to reduce the
information rate loss associated with training, as well as suboptimal
Kalman filter solutions to further reduce the complexity.
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