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Abstract— This paper assesses in AWGN and dense multipath
environments several equalization alternatives for a digital pulsed
UWB receiver sampling below Nyquist rate. A suboptimal but
implementation efficient Minimum Mean-Square Error (MMSE)
equalizer which reaches performances similar to the ideal MMSE
equalizer is proposed. By making an efficient use of orthogonal
codes, the UWB transceivers have flexible channelization means
to accomodate time-varying data rate in the order of magnitude
of 100 Mb/s with sampling rates below 1 GHz. The proposed
multicode approach takes into account the peculiarities of pulsed
UWB signals and avoids high peak-to-average amplitude ratios.

I. INTRODUCTION

The design of UWB receivers presents unique challenges.
The most popular receiver is based on matched filtering
(correlation) with the transmitted pulse followed by a RAKE
structure capturing the multipath diversity of the channel.
However, the pulse distortion introduced by the transceiver
antennas and the channel can vary among the multipaths.
As a result, the RAKE receiver can not achieve the optimal
performance. Transmitted reference (TR) systems [1] sample
the received signal avoid the need for local template generation
ans sample at the pulse repetition rate, but require extremely
wideband delay lines in the analog domain which are par-
ticularly difficult to realize. On the other hand, digital based
receivers provide more flexibility and benefit from CMOS
technology scaling, but require ADCs sampling at Nyquist rate
which are hardly realizable and highly power consuming. As
the ADC power consumption of Flash ADCs, the standard
solution for digital UWB architectures, scales linearly with
the sampling rate and as a factor close to 4 with the bit
width [2], the UWB system architect can choose either a
high (Nyquist) sample rate or multi-bit resolution but not
both. Several high speed 1-bit receiver architectures have been
proposed, e.g. in [3], [4]. However, 1-bit receivers suffer
from poor robustness against interferers, which needs to be
improved using notch filters in the RF front-end or by shaping
appropriately the transmitted pulse. The first solution comes
at the cost of flexibility, whereas the second requires the
transmitter to know the interference at the receiver via some
kind of feedback loop. Parallel multi-bit ADC architectures
based on signal channelization in time ([4], [5]) or frequency
domain ([6], [7]) reach an aggregate sampling rate equivalent
to Nyquist’s criterion and support interference cancellation
in the digital domain. However, this advantage comes at the
cost of increased area and power consumption, as each ADC

typically consumes about 100 mW using state-of-the-art Flash
ADCs, see e.g. [8]. The sampling rate speed is relaxed in [4] by
using a bank of discrete-frequency matched filters followed by
parallel ADCs. Still, all these solutions require careful control
of the circuit mismatches between the parallel branches.

Subsampling techniques provide an attractive alternative.
For example, a direct sampling approach is used in [9].
However, it is only applicable for signals in the 3-5 GHz
band and still requires a 2 GSamples/s ADC. In this paper,
we compare different equalization techniques in the context
of the subsampling receiver based on line spectrum methods
proposed in [10]. Following this comparison, we improve
substantially the receiver’s performance without affecting its
complexity. Additionally, we show how to reach data rates in
the order of magnitude of 100 Mb/s with sampling rates below
1 GHz, by adopting a multicode approach which takes into
account the peculiarities of pulsed UWB signals and avoids
high peak-to-average amplitude ratios.

II. APPLICATION OF SUBSAMPLING TECHNIQUES TO

PULSED UWB SIGNALS

A. Basic Signal Model and Subsampled Pulse Detection Al-
gorithms

A received pulsed UWB signal srx(t) can be modelled as
the convolution between a stream of Diracs sent at frame rate
1/Tf , the received pulse shape prx(t), and the channel h(t):

srx(t) = prx(t)⊗h(t)⊗
+∞∑

n=−∞

K∑
k=1

an,kδ(t−nTf−tn,k)+n(t)

(1)
where an,k ∈ {0,±A,±3A, . . . } and tn,k ∈ {0,∆, 2∆, . . . }
are the data streams modulating K pulse amplitudes and
positions per period Tf , respectively, and n(t) is the received
additive while gaussian noise (AWGN). This model is valid
provided that the channel h(t) does not modify the pulse
shape, i.e. h(t) =

∑Np

i=1 αiδ(t − τi), where Np is the total
number of paths.

Following the work on sampling signals with finite rate of
innovation [11], it has been suggested in [10], [12], [13] to
apply parametric PSD estimation methods in the frequency
domain to estimate the position of the Diracs. Line spectrum
PSD estimation methods can be used, for example, to retrieve
the position of the pulses after deconvolving the received
signal by the pulse shape [13]. This operation is done by



dividing in the frequency domain the sampled received signal
FFT (srx[n]) by the pulse spectrum FFT (prx[n]). However,
the number of paths which contribute significantly to the re-
ceived energy is very high for typical UWB channels, requiring
parametric estimation methods with unafordable high order.
Although a reduced set of principal components is estimated
in [13], the order remains prohibitive (>10 for Channel Model
1 in [14]) and affects the receiver complexity and the sampling
rate. Moreover, it is assumed that the received pulse shape is
known at the receiver, while it can differ significantly from the
transmitted pulse shape. Pulse distortion is caused in particular
by the transceiver antennas if these do not have a constant
gain and linear phase frequency response. Such distortion is
hard to estimate independently from the channel effect. A
more realistic model which takes into account the frequency
selective distortion is given by

srx(t) = hc(t)⊗
+∞∑

n=−∞

K∑
k=1

cn,kδ(t−nTf − tn,k) + n(t) (2)

where hc(t) =
∑Np

i=1 αipi(t − τi) is the compound channel
impulse response, which includes the distortion caused by the
antennas and the dispersive behavior of the building materials
in the propagation channel. The deconvolution by the pulse
shape can therefore not be applied. A combination of rational
PSD estimation methods and a polynomial model for the
frequency domain representation of hc(t) is proposed in [15].
However, this approach also suffers from a high sampling rate
caused by the required polynomial order. Instead, the authors
of [10], [12] propose to deconvolve the received signal by
the compound channel using a simple Zero-Forcing equalizer,
and apply a line spectrum PSD estimation method of minimal
order. This approach is extended in section II-C to improved
equalization techniques.

B. Basic Principles of the Subsampling Receiver

The received signal srx(t) is filtered and sampled
following [11] and 2M+1 frequency domain samples
y = [y[−M ], . . . , y[M ]] are available, with M≥K. Let Hfc

be defined as a diagonal matrix with the 2M+1 frequency
domain representation of the filtered compound channel. For
the sake of simplicity, we consider here a single user system
and do not take the PN spreading into account. The received
signal in the frequency domain y can be expressed as

y = T−1
f HfcBa + n = Hfcs + n (3)

where n corresponds to the filtered noise in the frequency
domain, B = [b1 . . . bK ], bk =

[
z−M
k , . . . , zM

k

]
with

zk = e−2πjtk/Tf , a = [a1, . . . , aK ], and s = T−1
f Ba. We

omit n in tn,k and an,k since we focus in this section on a
single frame. The filtered compound channel impulse response
hfc(t) is assumed available via appropriate training of the
receiver using a known preamble sent at the beginning of the
data stream. An equalization filter with frequency response
Heq is constructed based on this training information, and
is applied to the received signal in the frequency domain:

ŝ = Heqy. A conventional line spectrum method of order
K, for example ESPRIT or RootMUSIC, is then applied to
the equalized signal ŝ to estimate the positions

{
t̂i

}K

i=1
. The

estimated amplitudes {âi}K
i=1 are given by the least-squares

(LS) solution of system (3) after equalization:

â = TfB†ŝ (4)

C. Channel Equalization Alternatives

We consider here the particular case of linear equalizers
working at symbol rate, such as Zero-Forcing (ZF) and Min-
imum Mean-Square Error (MMSE) equalizers. Indeed, frac-
tionally spaced equalizers exacerbate the sampling rate issue
and are not suitable for subsampling digital UWB receivers.

1) ZF: In this case, Heq = H−1
fc and the deconvolution by

hfc(t) is implemented as a division in the frequency domain.
This simple solution requires only (2M+1) inversions during
training and (2M+1) multiplications for each data symbol.

2) Optimal MMSE: The MMSE equalizer minimizes
J = E

{‖s − ŝ‖2
}

. Solving for ∂J /∂Heq = 0, the general
expression of the MMSE is given by

Heq =
(
HH

fcR
−1
n Hfc + R−1

s

)−1
HH

fcR
−1
n (5)

where Rs=E
{
ssH

}
and Rn=E

{
nnH

}
are the data and noise

covariance matrices in the frequency domain. This equalizer
involves the inversion of a (2M+1)-by-(2M+1) matrix, as

Heq = RsHH
fc

(
HfcRsHH

fc + Rn

)−1
(6)

using the matrix inversion lemma. The equalization of each
data symbol y by Heq requires 2(2M+1)2 operations.

3) Suboptimal MMSE: Provided that the pulse shape has a
flat spectrum in the band selected by the receiver bandwidth,
we can relax the assumption of colored noise and signal
covariance matrices. By approximating Rs and Rn with their
diagonal only, (6) requires then only the inversion of 2M+1
numbers, since Hfc is already diagonal. The estimation of
the approximated noise covariance matrix Rn,diag =σ2

nI2M+1

requires only the estimation of the noise power at the equalizer
input, which can be done during training. The approximated
signal covariance matrix Rs,diag = σ2

sI2M+1 is known at the
receiver since it corresponds to the power of the transmitted
pulse. This assumption is valid provided that the Voltage Gain
Amplifier (VGA) sets the signal power at a known reference
level according to the Automatic Gain Control (AGC), irre-
spective of the received power at the antenna. Otherwise the
signal power at the equalizer input must be estimated as well.
Defining SNR=σ2

s/σ2
n, the suboptimal MMSE equalizer can

be expressed as

Heq = HH
fc

(
HfcHH

fc + SNR−1I2M+1

)−1
(7)

and only involves the manipulation of complex numbers
with a complexity of O(2M + 1). The equalization of each
data symbol requires (2M+1) multiplications, like the ZF
equalizer.
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Fig. 1. BER PPM, fs = 312.5 MHz, for AWGN channel (top), CM1
averaged over 100 realizations (middle), CM1 realization 1 (bottom).

D. Performance of the Equalization Alternatives

A subsampling receiver based on ESPRIT has been simu-
lated with an AWGN channel and multipath conditions [14].
Given a desired (Eb/N0)des, the AWGN noise power σ2

n

added to the receiver input signal is such that (Eb/N0)des =(
σ2

s/σ2
n

)
TfW , where σ2

s is the average signal power and W
the model bandwidth. This definition of SNR allows for a fair
comparison of the receiver performance when using different
filter bandwidths and sampling rates fs. The simulation results
presented in this paper have been obtained with the second
derivative of the gaussian monocycle, but no significant differ-
ence was observed with other pulses. A single pulse per period
(K =1) is assumed for simplicity. The pulse repetition period
is high enough (Tf = 51.2 ns for CM1) to avoid inter pulse
interference (IPI). The central frequency fc of the receiver
bandpass filter is chosen as the maximum of the pulse PSD.

Figures 1–3 illustrate the BER curves for PPM for various
sampling rates as a function of the modulation index ∆. The
MMSE and ZF equalizers present the same performance in
AWGN channels since only the pulse PSD, which is almost
flat in the considered band, is equalized. When considering
realistic multipath conditions, such as CM1, which present
numerous amplitude dips in their frequency response, the ZF
may still be close to the MMSE for particular channel real-
izations. However, the MMSE outperforms the ZF equalizer
when the results are averaged over several realizations. The
noise power term in (6) and (7) prevents noise enhancement
at these locations, as confirmed by the increasing performance
improvement of the MMSE vs. the ZF equalizer for larger
receiver bandwidths and sampling rates. Interestingly, the
suboptimal MMSE based on diagonal covariance matrices
does not introduce any BER penalty for the sampling rates
which allow for reliable communication, i.e. Mmin ≈ 8 or
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Fig. 2. BER PPM, fs = 625 MHz, for AWGN channel (top), CM1 averaged
over 100 realizations (middle), CM1 realization 1 (bottom).
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Fig. 3. BER PPM, fs = 1250 MHz, for AWGN channel (top), CM1
averaged over 100 realizations (middle), CM1 realization 1 (bottom).

fs,min ≈ 16/Tf . Indeed, the receiver bandwidth is then high
enough, compared to the pulse repetition rate, to guarantee
almost diagonal signal and noise covariance matrices.

The comments for PAM modulation (fig. 4) are similar to
PPM. The superior results of the MMSE vs. the ZF equalizer
for increasing bandwidth are particularly visible on figure 4
for the curves averaged over 100 different CM1 realizations.

As a result, the important conclusions of this section are
that 1) the MMSE provides a clear performance advantage
compared to a ZF solution, and 2) the simplified MMSE
provides a BER similar to the optimal MMSE but avoids
inverting a (2M+1)-by-(2M+1) matrix.
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Fig. 4. BER PAM, for AWGN (top), CM1 (middle), CM1 nr. 1 (bottom).

III. ORTHOGONAL MULTICODE CHANNELIZATION

The BER curves for PAM and PPM indicate that the
subsampling receiver is more suitable for lower data rates.
Indeed, an important fraction 1−F of the signal bandwidth
is filtered out, and the pace at which the receiver collects the
signal energy is reduced by a factor F . On the other hand,
narrowband interference can easily be rejected by avoiding
the affected subband (interference excision). Data rates in
the order of few Mb/s only can be typically achieved at a
pulse repetition rate of 20 MHz. Shorter pulse periods allow
reducing the pulse peak amplitude and increasing the data rate,
for a given modulation order and signal power. However, this
solution is limited by the increased risk of IPI and cannot
reach the target date rate of several hundreds of Mb/s.

Instead, we propose to multiplex Nc substreams between
two UWB transceivers by means of orthogonal spreading
codes of given length Lc ≥Nc, such as Walsh codes, applied
on top of the classical PN spreading code. The transmitter
sends the signal stx(t) =

∑Nc

i=1 s
(i)
tx (t) , with

s
(i)
tx (t) =

+∞∑
n=−∞

w(i) (t − nLcTf ) ·

K∑
k=1

a
(i)

� n
Lc
�,k

ptx

(
t − nTf − t

(i)

� n
Lc
�,k

)
(8)

where w(i)(t) =
∑Lc−1

l=0 w
(i)
l u(t − lTf ) is the Walsh code

applied to the ith substream (w(i)
l ∈ {1,−1}, u(t) = 1 for

0 ≤ t ≤ Tf and 0 otherwise). As in section II, we consider a
single user system for the sake of simplicity, and do not take
into account the PN spreading in (8).

The receiver recovers the different substreams by applying
the different Walsh codes to the received aggregated signal.
This approach is similar to the multiplexing of forward-
traffic channels in the IS-95 standard, but must be customized
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Fig. 5. Channelization technique (Nc =Lc =4), no delay. The Walsh codes
and symbol boundaries are shown with bold and dashed lines respectively.
In this example, the bits sent on the multiplexed substreams are {1, 1,−1},
{−1, 1, 1}, {1, 1,−1}, {1, 1, 1}.

here towards the specificity of UWB. Indeed, the transmitted
signal resulting from a direct application of this channelization
technique leads in worst case to a peak-to-average ratio
increased by a factor Nc (fig. 5). This constructive addition
may cause harmful interferce and complicates the design of
the transceivers analog part. It can be avoided by sending the
pulses of each substream with a different time offset εi (fig. 6):

s
(i)
tx (t) =

+∞∑
n=−∞

w(i) (t − nLcTf ) ·

K∑
k=1

a
(i)

� n
Lc
�,k

ptx

(
t − nTf − t

(i)

� n
Lc
�,k

− εi

)
(9)

where εi = (i − 1) Tf/Nc.
When we consider the impact of the UWB channel on the

received signal, however, only partial energy is collected if the
receiver despreads the received signal with the Walsh codes
used by the transmitter (fig. 7). The tail of the channel energy
is lost as the time offset increases, and inter symbol interfer-
ence (ISI) is introduced. On the other hand, despreading the
received signal with appropriately delayed Walsh codes is not
appropriate either, since only partial orthogonality is obtained
between delayed Walsh codes.

Perfect orthogonality can be achieved using zero-correlation
zone (ZCZ) sequences instead of orthogonal codes. The issue
of the limited size of code family for long ZCZ is here strongly
alleviated by the fact that the zero-correlation zone has a length
of 1 chip. A ZCZ multicode approach for UWB was suggested
in [16], for example, but ignores the concern of constructive
addition between the substreams.

Instead, perfect orthogonality can be obtained with shifted
orthogonal codes if the transmitter 1) introduces a cyclic prefix
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Fig. 7. Contributions of the different substreams to the received signal (left)
and suboptimal despread signals (right). The part of the despread signal equal
to perfect despreading is shown in bold. For the sake of clarity, we show here
a hypothetical despread signal before subsampling.

(CP) in each substream, i.e. inserts at the beginning of each
symbol a copy of the last pulse period of the symbol, and 2)
applies the same time offset εi to the Lc/2−1 pairs of Walsh
codes which only differ by a delay when they are cyclically
repeated (such as w(3)(t) and w(4)(t) in the example on fig. 7).
The transmitter uses 	Nc/2
+1 different delays which are
distributed uniformly over [0, Tf [ and allocated to the sub-
streams as follows: [εi]

Nc

i=1 = [0, 1, 2, 2, 3, 3, 4, 4, ... , 	Nc/2
] ·
Tf/(	Nc/2
+1), assuming w(1)(t) and w(2)(t) are the codes
whose cyclic repetition remains orthogonal for any delay (i.e.
w

(1)
l = 1 and w

(2)
l = (−1)l, 1≤ l≤Lc). The risk of the small

residual constructive addition between the pairs of substreams
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Fig. 8. Contributions of the different substreams to the received signal (left)
and optimal despread signals (right). The location of the cyclic prefix in each
stream is shown in gray. [εi]

Nc
i=1 = [0, Tf /3, 2Tf /3, 2Tf /3].

which share the same value of time offset can easily be
reduced, e.g., by using shifted or different PN codes for the
two substreams in each of these pairs.

The insertion of the CP prevents ISI at the receiver if the
channel impulse response is shorter than the pulse period
Tf . It also guarantees the cyclic nature of the Lc pulse
periods selected by the receiver after the CP is removed, i.e.
orthogonality between the Walsh codes delayed by different
time offset values. Compared to a solution based on ZCZ,
the cost of the CP is much smaller than the ZCZ sequence
length required to achieve the same code family size and
multistream capability. Unlike conventional OFDM systems,
where the receiver skips periodically a fixed window of
received corresponding to the CP, the selection of samples
varies here between the substreams.

The delay εi inserted by the transmitter is easily handled at
the receiver by introducing in the frequency domain a phase
compensation term e−2πjεi while equalizing each substream.

We refer to [10] for an overview of the architecture of the
subsampling receiver proposed in this paper, and to [17] for a
study of the precision requirements of the ADC.

IV. LINK BUDGET

We follow here the guidelines proposed in [18] for UWB
link budgets, based on classical narrowband link budgets
using Friis transmission formula Pr=

(
PtGtλ

2
)
/ (4πd)2 with

geometric average frequency f
′
c =

√
fminfmax.

The two cases in table I illustrate the link budget for PAM
and PPM for different code lengths, assuming a sampling rate
equal to 32/Tf =625 MHz, a target data rate of 110 Mb/s and a
channel coding gain of one order of magnitude. The minimum
Rx sensitivity level is defined as the minimum required average
Rx power for a received symbol in AWGN.



TABLE I

LINK BUDGET FOR LINE SPECTRUM SUBSAMPLING RECEIVER

Term case 1 case 2 Unit Comment
Rb,tot 110 110 Mb/s Bit rate
Lc 16 32 — Walsh code length
Rb 6.875 3.348 Mb/s Bit rate for each substream
Pt -2.5 -2.5 dBm Tx power per substream
Gt 0 0 dBi Tx antenna gain
f
′
c 5.7 5.7 GHz Geometric central freq.

PL1m 47.6 47.6 dB Path loss at 1 m and at f
′
c

PL10m 20 20 dB Extra loss at d = 10m
Gr 0 0 dB Rx antenna gain
Pr -70.2 -70.2 dBm Rx power
N0 -174 -174 dBm/Hz Noise PSD
Nb -105.6 -108.6 dBm Noise power per bit
NF 7 7 dB Rx noise figure referred to

the antenna terminal [14]
Pn -98.6 -101.6 dBm/s Total noise power per bit
(Eb/N0) 23 23 — Min Eb/N0 to reach BER

of 1e−5 (AWGN chan.)
I 2.5 2.5 dB Implementation loss [14]
M 3 6 — Link margin
Tf 50 50 ns Pulse Period
B 16 16 — Receiver bandwidth

in multiples of T−1
f

fs 320 320 MHz Sampling rate
Rsymb 1.25 0.625 Msymb/s Symbol rate
b 5.5 5.5 b/symb Bits per symbol

At a fixed pulse repetition rate, increasing Lc and Nc

improves the link budget but does not augment the total data
rate. Longer codes increase the number of parallel streams
which can be sent and the number of pulses per bit. The
net data rate is therefore the same but the coding gain has
improved. The number of bits per symbol is independent of
the Walsh code length, since

b =
Rb

Rsymb
=

Rb,tot/Nc

1/(LcTf )
=

Rb,tot/Lc

1/(LcTf )
= Rb,totTf (10)

Consequently, the two options to increase Rb,tot and reach
higher data rates are 1) to reduce the pulse period Tf , until the
IPI affects the BER performance, 2) to maximize b by resorting
to high order PPM and/or PAM, until the link budget becomes
negative, requiring longer codes to become again positive.
The receiver complexity limits the maximum affordable length
and number of codes. Nc parallel streams must indeed be
accumulated before being processed by the FFT and the
algorithm estimating the pulse position and amplitude.

Channelized streams allow matching dynamically the data
rate and quality of service (QoS) according to the user’s needs.
For a fixed length Lc and a given Eb/N0, less streams Nc<Lc

may be sent if the user’s application has temporarily lower
requirements in terms of data rate. The power consumption
of the transmitter is then reduced by a factor Nc/Lc with
respect to the peak transmission power. At the receiver side,
less computation power is required to process Nc<Lc streams,
which also translates into lower power consumption if ap-
propriate shutdown mechanisms are implemented. When the
application requires higher transmission rates, the transmitter
sends the data using all possible channels and reaches the

peak transmission rate. The information concerning the actual
number of codes used by the transmitter can be preliminary
sent in a header within the preamble of each packet.

V. CONCLUSIONS

This paper has evaluated different equalization alternatives
for a digital based subsampling receiver in the 3.1-10.6 GHz
frequency band. Orthogonal channelization techniques are
used to achieve high data rates, and accommodate for time-
varying rate and QoS requirements of the user, despite low
sampling rate. Future work will concentrate on practical imple-
mentation aspects and assessment of the power consumption
and computational complexity of this receiver.
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