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Abstract—In this paper, we address the problem of identifying
convolutive channels using a Gaussian maximum-likelihood (ML)
approach when short training sequences (possibly shorter than
the channel impulse-response length) are periodically inserted in
the transmitted signal. We consider the case where the channel is
quasi-static (i.e., the sampling period is several orders of mag-
nitude smaller than the coherence time of the channel). Several
training sequences can thus be used in order to produce the chan-
nel estimate. The proposed method can be classified as semiblind
and exploits all channel-output samples containing contributions
from the training sequences (including those containing contri-
butions from the unknown surrounding data symbols). Experi-
mental results show that the proposed method closely approaches
the Cramer–Rao bound and outperforms existing training-
based methods (which solely exploit the channel-output samples
containing contributions from the training sequences only). Exist-
ing semiblind ML methods are tested as well and appear to be
outperformed by the proposed method in the considered context.
A major advantage of the proposed approach is its computational
complexity, which is significantly lower than that of existing semi-
blind methods.

Index Terms—Block transmission, maximum-likelihood (ML)
estimation, stationary multipath channel, training sequence.

I. INTRODUCTION

A MAJOR impediment of broadband communication sys-
tems is that the sampling period can become smaller

than the delay spread of the channel, especially in multipath
scenarios. This results in intersymbol interference (ISI), a phe-
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nomenon that needs to be combated at the receiver in order
to restore the transmitted information. This is usually done
using serial or block equalization techniques. Channel-state
information (CSI) is needed at the receiver in order to design
the equalizer and combat the ISI in an efficient way. The CSI is
obtained through the use of channel-identification algorithms.
These can be divided in three families that are termed “blind,”
“semiblind,” and “training-based.”

Training-based techniques assume that known symbols
(training or pilot symbols) are inserted in the transmitted sig-
nals. It is then possible to identify the channel at the receiver
exploiting the knowledge of these known symbols (see, e.g.,
[1], [2], or [3]). Most existing methods require the training
sequences to be significantly longer than the channel impulse
response and only exploit the channel-output samples that are
not corrupted by unknown data symbols. In additive-white-
Gaussian-noise (AWGN) conditions, the problem of perform-
ing maximum-likelihood (ML) channel identification when
only these data-free received symbols are used is then a simple
least-squares problem.

Blind algorithms, on the other hand, estimate the channel
based on the properties of the transmitted signals (finite al-
phabet properties, higher order statistics, cyclostationarity, see,
e.g., [4] or [5], and references therein) and do not exploit the
knowledge of possibly inserted pilots or training sequences in
the stream of transmitted symbols.

Semiblind techniques have been proposed recently, which
show improved performance as they simultaneously exploit
the knowledge of the pilots or training symbols and blind
properties of the transmitted signals towards the determination
of the channel model. These techniques are most useful when
the transmitted signals contain a mix of training symbols and
unknown data symbols, in which case neither blind nor
training-based techniques are optimal. A method that explic-
itly combines a blind and a training-based cost function was
proposed in [6] and seems to be the first suboptimal semiblind
method proposed in the literature. Later, this idea has also been
adopted in [7] and [8]. A deterministic method exploiting all
the energy that is received from the training sequences was
presented in [9] and is suited to the case where a constant
training sequence, which must be at least as long as the chan-
nel order, is periodically inserted in the transmitted sequence.
Several semiblind ML channel-estimation techniques have been
proposed as well. Depending on the hypothesis upon which
the expression of the likelihood function is built, one can dis-
tinguish between three families of ML methods: deterministic
ML, in which the data symbols are considered as deterministic
disturbances, Gaussian ML, in which the data symbols are
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assumed to be Gaussian distributed, and stochastic ML, where
the true distribution of the data symbols is exploited. Some
deterministic ML methods are presented, for instance, in [10].
In [11], a theoretical comparison of the Cramer–Rao bounds
(CRBs) indicates that Gaussian ML methods outperform de-
terministic ML methods. In [12]–[14], Gaussian ML methods
are proposed. The method presented in [14] is based on the
expectation-maximization (EM) algorithm and will be used as
a benchmark in this paper. Stochastic ML methods theoretically
perform better as they assume a more realistic distribution
for the data symbols, but suffer from a higher complexity. A
method based on hidden Markov models and the EM algorithm
was presented in [15], but performs significantly worse than the
achievable CRB.

When facing a given transmission scheme, the choice be-
tween these three families of channel-estimation techniques
depends on the way the transmitted data are formatted. When a
long preamble of training symbols is inserted at the beginning
of a packet of data, the training-based methods are the most
attractive, as they generally allow the accurate identification of
the channel at a very low computational cost. In this situation,
the use of semiblind methods only marginally improves the
quality of the channel estimate with a significantly higher
computational cost. When there are not much training symbols
or no training symbols at all, the channel cannot be estimated
accurately relying on the knowledge of these training symbols
and one has to rely on blind methods in order to obtain the
CSI. When the number of training symbols is significant but
not large enough to enable a sufficiently accurate channel esti-
mation, or when the training symbols are not grouped in a long
preamble and the classical training-based methods cannot be
used efficiently, semiblind methods outperform others as they
simultaneously exploit the knowledge of the training symbols
and the useful properties of the transmitted signals.

In this paper, we consider the situation where short train-
ing sequences (possibly shorter than the channel impulse re-
sponse length) are repeatedly inserted between blocks of data
symbols, which corresponds to known-symbol-padding (KSP)
transmission [16] or pilot-symbol-assisted modulation (PSAM)
[17]. We consider multipath single-input single-output (SISO)
channels with a relatively large coherence time (the chan-
nel stays constant during the transmission of several blocks
of data). In the presented work, we aim at finding channel-
estimation strategies that are suited to this specific context.
Given the placement of the training symbols in the considered
framework, semiblind channel-estimation strategies seem most
appropriate to obtain accurate channel models. We propose a
new Gaussian ML method for semiblind channel identification
that is well suited to this situation. The proposed method is
able to cope with arbitrarily short training sequences (pos-
sibly shorter than the channel impulse-response length) and
performs channel estimation exploiting all the received sym-
bols that contain contributions from the training sequences.
The proposed method asymptotically achieves the CRB, has
a small computational complexity, and seems to outperform
existing semiblind methods in a similar context. For the sake
of simplicity, we consider all the training sequences to have the
same length, but it is straightforward to adapt the method to

the more general case of training sequences of variable length.
We consider quasi-static channels (the channel stays constant
during the transmission of several blocks of data), which allows
us to use several training sequences to construct the channel
estimate. We investigate both the situation where the same
training sequence is repeated after each block of data and the
situation where the training sequence is changed after each
block of data.

The structure of the paper is as follows. In Section II, we
present our data model. In Section III, we derive an expression
for the Gaussian likelihood function of a channel estimate
and introduce some approximations which we have to rely
on in order to derive low-complexity ML channel estimates.
In Section IV, we show that the proposed approximations
have a negligible impact on the achievable performance of
ML channel estimation through a CRB analysis. We then
propose an iterative algorithm that converges to the ML channel
estimate (Section V). We next derive an approximate closed-
form expression of the ML channel estimate, both for a con-
stant (Section VI-A) and for a changing training sequence
(Section VI-B). We then discuss the identifiability conditions
of the proposed methods (Section VI-C). We experimentally
test the proposed methods and compare them with existing
ML methods in Section VIII, and finally draw a conclusion in
Section IX.
Notation: We use upper (lower) case boldface letters to

denote matrices (column vectors). IN is the identity matrix of
size N × N and 0M×N is the all-zero matrix of size M × N .
The operator (·)∗ denotes the complex conjugate, and Re(·), the
real part, and Im(·), the imaginary part, of a complex number.
The superscript (·)T denotes the transpose of a matrix and (·)H,
the complex conjugate transpose. Finally, tr(·) denotes the trace
of a matrix, | · | its determinant, and A(i, j) denotes the ith
element of the jth column of A.

II. DATA MODEL

We consider a finite impulse response (FIR) convolutive
channel of order L : h = [h[0] · · · h[L]]T. A burst x[n], n =
1, . . . , N , of symbols is transmitted over the channel. Consid-
ering that the coherence time of the channel is larger than the
duration of the transmitted burst, the received sequence y[n]
is the linear convolution of the transmitted sequence with the
channel impulse response

y[n] =
L∑

i=0

h[i]x[n − i] + η[n] (1)

where η[n] is the AWGN at the receiver.
A total number of K training sequences is inserted in the

burst. The kth training sequence, tk = [tk[1] · · · tk[nt]]T,
starts at position nk : [x[nk] · · · x[nk + nt − 1]]T = tk. Two
possibilities are considered in the text: either the same training
sequence is repeated after each block of data (constant-training-
sequence case), or the training sequence is changed after each
block (changing-training-sequence case). Define the vector uk

of received symbols that contain a contribution from the kth
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transmitted training sequence: uk = [y[nk] · · · y[nk + nt +
L − 1]]T. It is the sum of a deterministic and a stochastic term

uk = Tkh + εk (2)

where Tk is an (nt + L) × (L + 1) tall Toeplitz matrix with
[tT

k 0 · · · 0]T as its first column and [tk[1] 0 · · · 0] as its first
row. The stochastic term εk is described as

εk =




hL · · · h1 0
. . .

... h0

hL

...
. . .

0 hL−1 · · · h0




︸ ︷︷ ︸
Hs(nt+L)×(2L)

sk + ηk (3)

where sk =[sk[1] · · · sk[2L]]T =[x[nk−L] · · · x[nk−1]
x[nk + nt] · · · x[nk + nt + L − 1]]T is the vector of sur-
rounding data symbols, and ηk = [η[nk] . . . η[nk + nt +
L − 1]]T is the AWGN term. Assuming that both the noise
and the data are white and zero mean (E{sk[i]sk[j]∗} =
E{η[i]η[j]∗} = 0, ∀i, j, k : i �= j, and E{sk[i]} = E{η[k]} =
0), we can say that εk is zero mean. Defining ns as the length
of the shortest sequence of data symbols (ns = mink{nk+1 −
(nk + nt − 1)}), we assume ns � 2L. This ensures that the
sk’s are uncorrelated, i.e., E{sksH

l } = 0 ∀k, l : k �= l. Defining
the signal and noise variances as λ2 = E{sk[i]sk[i]∗} and σ2 =
E{η[k]η[k]∗}, respectively, we can derive the first- and second-
order statistics of εk

E{εk} =0(nt+L)×1

E
{
εkεHk

} �
=Q = λ2HsHH

s + σ2I

E{εkεHl } =0(nt+L)×(nt+L) ∀k, l : k �= l. (4)

III. ML APPROACH FOR

CHANNEL IDENTIFICATION

The Gaussian likelihood function is established making the
hypothesis that unknown data symbols are Gaussian variables,
hence uk = N (Tkh,Q). It has been shown in [11] that the
Gaussian approach yields more accurate channel estimates than
the deterministic approach where the unknown data symbols
are considered as unknown deterministic disturbances. Adopt-
ing the Gaussian hypothesis, we can express (up to a constant
term) the negative log likelihood function of the system as

−L = K ln |Q| +
K∑

k=1

(uk − Tkh)HQ−1(uk − Tkh). (5)

Relying on the definition of Q, the loglikelihood can be ex-
pressed as a direct function of the unknown parameters h
and σ2. The corresponding ML channel estimate minimizes
this expression with respect to h and σ2. This minimization
problem boils down to a computationally demanding (L + 2)-
dimensional nonlinear search. To overcome this complexity
problem, we propose that the structure of Q be disregarded, and
ignore the relation that binds it to the parameters h and σ2. We

thus assume that the covariance matrix Q of the stochastic term
εk can be any symmetric positive definite matrix, regardless
of h and σ2. This hypothesis turns the initial ML problem
into a new one. We call the initial problem the parametric
ML problem; the problem resulting from the proposed ap-
proximations will be called the nonparametric ML problem.
The nonparametric ML channel estimate thus maximizes the
likelihood function with respect to h and Q (instead of h and
σ2). These assumptions transform the parametric ML problem
in h and σ2 into a new optimization problem that is separable in
its two variables h and Q. We exploit this separability property
in the next sections in order to solve the optimization problem
in a less complex way than the (L + 2)-dimensional nonlinear
search of the parametric ML problem. The solution of the
nonparametric ML problem differs from the solution of the
parametric ML problem. Hence, it is worthwhile to first check
the impact of the proposed hypothesis on the accuracy of the
resulting ML channel estimates. This is what we do in the next
section through an analysis of the respective CRBs.

IV. CRBS

We show later (see Section VII) that the channel estimates
derived from the nonparametric ML problem are consistent
and thus asymptotically unbiased. The CRB is a theoretical
lower bound on the covariance matrix of an unbiased esti-
mate (see, e.g., [18, p. 562]). In this section, we analyze the
impact of the nonparametric hypothesis on the accuracy of
the derived channel estimate through this theoretical bound.
Adapting the results presented in [11], the real Fisher infor-
mation matrix (FIM) of the parametric ML problem can be
formulated as

J (h) = 2
[

Re(J1) −Im(J1)
Im(J1) Re(J1)

]
+ 2

[
Re(J2) −Im(J2)
Im(J2) Re(J2)

]
(6)

where

J1(i, j) =

(
K∑

k=1

TH
k Q−1Tk

)
(i, j)

+ tr
{
Q−1 ∂Q

∂h[i − 1]∗
Q−1 ∂Q

∂h[j − 1]∗

}
(7)

J2(i, j) = tr
{
Q−1 ∂Q

∂h[i − 1]∗
Q−1 ∂Q

∂h[j − 1]∗

}
(8)

and

∂Q
∂h[i]∗

= λ2Hs

(
∂Hs

∂h[i]

)
. (9)

The approximation inserted in the nonparametric ML problem
simplifies the expression of the FIM since the ∂Q/∂h[i]∗ terms
are equal to zero. The complex FIM can then be used and is
expressed as

J (h) =

(
K∑

k=1

TH
k Q−1Tk

)
. (10)
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Since the traces in (7) and (8) are always positive, the CRB
of the parametric ML problem will always be tighter than
the CRB of its nonparametric counterpart. However, numer-
ical evaluations of the CRB in realistic situations show that
the impact of these trace terms is negligible: the relative
difference between the two CRBs (i.e., (parametric CRB −
nonparametric CRB)/parametric CRB) is less than 10−4 for
experimental setups similar to the ones that are used in
Section VIII. We can thus safely work under the proposed
hypothesis and consider the solutions we will obtain in this
framework as the true ML channel estimates. The nonparamet-
ric CRB can be evaluated as

J (h)−1 =

(
K∑

k=1

TH
k Q−1Tk

)−1

. (11)

Note that this bound depends both on the channel realization
(through the covariance matrix Q) and on the chosen training
sequences (through the training sequence matrices Tk).

V. ITERATIVE PROCEDURE

When a minimization problem is separable in its variables, a
common approach to find the solution is an iterative one. One
iteration consists of analytically minimizing the cost function
with respect to one variable while keeping the other(s) fixed.
The variable with respect to which the cost function is mini-
mized is changed in each iteration (see, e.g., [19], where this
approach is used to jointly estimate the transmitted data sym-
bols and the channel). This procedure converges to a minimum
of the cost function. If the cost function is convex, this conver-
gence point is the global minimum. If the cost function is not
convex, the convergence point is the global minimum only if
the starting point is sufficiently close to the global minimum.1

In the sequel, we apply this approach to the likelihood function
of the system, which leads to the ML estimate of Q and h. The
convergence properties in this context are discussed at the end
of this section.

Assume that at the ith iteration, an estimate Q̂i of the
covariance matrix Q is available. We first seek the channel
estimate ĥi that minimizes the cost function (5) with respect to
h for a fixed Q = Q̂i, i.e., we compute ĥi = hML(Q̂i), where
hML(Q) = arg minh −L. The solution to this optimization
problem can be computed as

hML(Q) =

(
K∑

k=1

TH
k Q−1Tk

)−1 K∑
k=1

TH
k Q−1uk. (12)

We then seek the covariance matrix Q̂i+1 that minimizes
(5) with respect to Q for a fixed h = ĥi : Q̂i+1 = QML(ĥi),

1The convergence to the global minimum is guaranteed iff the cost function
evaluated at the starting point of the iterations is lower than any local minimum,
in which case the trajectory of the iterative procedure is limited to the convex
region around the global minimum.

where QML(h) = arg minQ −L, the solution to this optimiza-
tion problem can be computed as (see, e.g., [20])

QML(h) = K−1
K∑

k=1

(uk − Tkh)(uk − Tkh)H. (13)

Q̂i+1 is then used as a starting point for the next iteration. The
procedure is stopped when there is no significant difference
between the estimates produced by two consecutive iterations.

Assessing the convergence properties of this iterative pro-
cedure is not straightforward in this context as the likelihood
function has not been proven as convex. Moreover, it is not
straightforward either to assess the possible local minima of
the likelihood function. Hence, it is hardly possible to derive
theoretical conditions under which a given starting point would
yield a guaranteed convergence of the iterative procedure to the
global minimum.

Experimental results presented in [21] show however that
when the iterative procedure is initialized with a simple least-
squares (LS) channel estimate, the convergence point is sys-
tematically equal to the global minimum. Initializing the iter-
ative procedure with the LS channel estimate is equivalent to
choosing Q̂0 = I. In that case, it is possible to show analytically
that the channel estimate ĥ1 obtained after two iterations is a
good approximation of the closed-form ML channel estimates
that are derived in the next section. Hence, after two iterations,
the iterative scheme proceeds from a channel estimate that
lies in the immediate vicinity of the global minimum, which
ensures the convergence of the iterative procedure to the true
ML channel estimate when Q̂0 = I is chosen as starting point.

VI. CLOSED-FORM SOLUTION

An alternative strategy to the iterative procedure described
above consists of directly finding an analytical expression for
the global minimum of the likelihood function (5). The sepa-
rability property of the cost function can be exploited again in
order to find this global minimum. The idea is to analytically
minimize the cost function with respect to one variable. This
minimum is a function of the other variable. The first variable
can then be eliminated in the original cost function, which then
becomes a single variable expression. When the problem is
separable in its two variables, minimizing this new expression
of the cost function with respect to the only variable left
yields the global minimum (see, e.g., [22]). This approach is
often used in ML problems and is known as the process of
compressing or concentrating the likelihood function onto one
variable (see, e.g., [20] or [23]). In this section, we concentrate
the likelihood function on the variable h in order to derive the
closed-form channel estimate.

First observe that the likelihood function (5) can be ex-
pressed as

−L = K ln |Q| + tr

(
Q−1

K∑
k=1

(uk − Tkh)(uk − Tkh)H
)

.

(14)
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We first minimize this cost function with respect to Q leading
to QML(h) as given by (13). Replacing Q by QML(h) in (14)
leaves us with the following expression of the concentrated
likelihood function

−L = K ln

∣∣∣∣∣K−1
K∑

k=1

(uk − Tkh)(uk − Tkh)H
∣∣∣∣∣+ Ktr(I).

The ML channel estimate is thus computed as

hML = arg min
h

∣∣∣∣∣
K∑

k=1

(uk − Tkh)(uk − Tkh)H
∣∣∣∣∣ . (15)

At this point, we need to distinguish between the constant-
training-sequence case and the changing-training-sequence
case.

A. Constant Training Sequence

In order to indicate that the training sequence after each block
is the same, we simply omit the block index (subscript k) for the
vector t and the matrix T.

Define

R̂
�
= K−1

K∑
k=1

ukuH
k ū

�
= K−1

K∑
k=1

uk Q̂
�
= R̂ − ūūH

(16)

where Q̂ is assumed to be positive definite (a necessary con-
dition for this to hold is K � nt + L). Using these defini-
tions, the matrix in the minimization problem (15) can be
reexpressed as

K−1
K∑

k=1

(uk − Th)(uk − Th)H

= Q̂
(
I + Q̂−1(Th − ū)(Th − ū)H

)
.

Keeping in mind that Q̂ is positive definite, our minimization
problem (15) is thus equivalent to

hML = arg min
h

∣∣∣I + Q̂−1(Th − ū)(Th − ū)H
∣∣∣ . (17)

It can be shown that∣∣∣I + Q̂−1(Th − ū)(Th − ū)H
∣∣∣

= 1 + (Th − ū)HQ̂−1(Th − ū).

Hence, the minimization problem (17) is equivalent to

hML = arg min
h

(Th − ū)HQ̂−1(Th − ū).

The solution is obtained by nulling the partial derivative of this
expression with respect to hH, which yields

hML = (THQ̂−1T)−1(THQ̂−1ū). (18)

This ML channel estimate is easy to compute and also intu-
itively quite appealing for it shows that the ML channel estimate
is simply a fit of Th to ū in a weighted-least-squares sense.

B. Changing Training Sequence

Let us first introduce the following notations

hLS
�
=

(
K∑

k=1

TH
k Tk

)−1 K∑
k=1

TH
k uk

g
�
=h − hLS,

gML
�
=hML − hLS

ek
�
=uk − TkhLS

Q̂′ �
=K−1

K∑
k=1

ekeH
k (19)

where Q̂′ is assumed to be positive definite (a necessary con-
dition therefore is K � nt + L). Using these notations, the
minimization problem (15) can be rephrased as

gML = arg min
g

∣∣∣∣∣I + Q̂′−1K−1
K∑

k=1

[
TkggHTH

k

−TkgeH
k − ekgHTH

k

] ∣∣∣∣∣. (20)

When K is large, both hLS and hML are close to the true h (this
hypothesis is confirmed by the experimental results presented
in Section VIII). We can thus assume that g, and consequently,
the second term in (20), is small in the vicinity of the solution.
It is well known that, for ‖∆‖ � 1, |I + ∆| ≈ 1 + tr(∆).
Exploiting this result together with the permutation property of
the trace of a product, the ML problem can be approximated by

ĝML = arg min
g

K∑
k=1

[
gHTH

k Q̂′−1Tkg

−eH
k Q̂′−1Tkg − gHTH

k Q̂′−1ek

]
. (21)

The solution to this minimization problem is given as

ĝML =

(
K∑

k=1

TH
k Q̂′−1Tk

)−1 K∑
k=1

TH
k Q̂′−1ek.

Replacing h by g + hLS and ek by uk − TkhLS, and re-
arranging the resulting expression, we obtain the following
approximation ĥML of the true ML channel estimate hML:

ĥML =

(
K∑

k=1

TH
k Q̂′−1Tk

)−1 K∑
k=1

TH
k Q̂′−1uk. (22)

Note that this solution is obtained after two steps of the previ-
ously proposed iterative procedure.
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C. Identifiability Conditions

In theory (see, e.g., [24] for a broader discussion on channel
identifiability), the channel is identifiable in the considered
Gaussian problem formulation when two conditions are ful-
filled: the number of channel-output samples considered for
channel identification is larger than the channel order L and
there is at least one nonzero training symbol not located at the
edges of the considered burst.

The first condition is always fulfilled in the considered data
model and the second is fulfilled as soon as there is a nonzero
element in each training sequence.

However, as we need to invert the estimate of the matrix
Q in the proposed methods (both the iterative method and the
closed-form solutions), this estimate has to have a full rank.
Relying on the randomness of the noise and the unknown data
symbols, this happens with probability 1 as soon as K � nt +
L. Hence, the identifiability conditions of the proposed method
are summarized as follows.

1) nt � 1.
2) K � nt + L.

VII. ASYMPTOTIC PROPERTIES OF THE

CLOSED-FORM CHANNEL ESTIMATES

In this section, we study the asymptotic properties of the
proposed (approximate) closed-form ML channel estimates,
that is, their properties when the number of transmitted data
blocks K is large.

A. Constant Training

Keeping in mind that uk = Th + εk, Q̂ can be rewritten as

Q̂ = K−1
K∑

k=1

εkεHk − K−2
K∑

i,j=1

εiε
H
j . (23)

This expression shows that Q̂ is clearly a consistent esti-
mate of Q

lim
K→∞

Q̂ = Q. (24)

It follows that the ML channel estimate (18) is consistent
as well:

lim
K→∞

hML = lim
K→∞

K−1
K∑

k=1

(THQ̂−1T)−1THQ̂−1uk = h.

(25)

Relying on these results, we can derive the asymptotic effi-
ciency of the proposed channel estimate

lim
K→∞

E
{
K(hML − h)(hML − h)H

}
= E

{
lim

K→∞
(THQ̂−1T)−1THQ̂−1K−1

×
K∑

i=1

εi

K∑
j=1

εHj Q̂−1T(THQ̂−1T)−1

}

= (THQ−1T)−1. (26)

This last expression is equal to the normalized CRB [see (11)].

B. Changing Training

First note that it is possible to show (the derivation is detailed
in the Appendix)

lim
K→∞

Q̂′ = Q. (27)

Replacing uk by its equivalent Tkh + εk in (22) yields

ĥML = h +

(
K∑

k=1

TH
k Q̂′−1Tk

)−1 K∑
k=1

TH
k Q̂′−1εk. (28)

Using this expression of ĥML highlights the fact that the
proposed approximate ML channel estimate is consistent:
limK→∞ ĥML = h.

Here also, it is possible to derive the asymptotic efficiency of
the proposed channel estimate

lim
K→∞

E
{

K(ĥML − h)(ĥML − h)H
}

= E


 lim

K→∞

(
K−1

K∑
k=1

TH
k Q̂′−1Tk

)−1

× K−1
K∑

k=1

TH
k Q̂′−1εk

K∑
k=1

εHk Q̂′−1Tk

×
(

K−1
K∑

k=1

TH
k Q̂′−1Tk

)−1



= lim
K→∞

(
K−1

K∑
k=1

TH
k Q−1Tk

)−1

E
{
TH

k Q−1Tk

}

×
(

K−1
K∑

k=1

TH
k Q−1Tk

)−1

= lim
K→∞

(
K−1

K∑
k=1

TH
k Q−1Tk

)−1

.

The above expression is equal to the normalized CRB
[see (11)].

VIII. EXPERIMENTAL RESULTS

The performance metric that is used throughout this section
is the normalized mean square error (NMSE) of the proposed
channel estimate

NMSE = E

{
‖ĥ − h‖2

‖h‖2

}
.

The results that are presented are obtained with the closed-form
channel estimates (18) and (22). When the iterative method
results are investigated, we explicitly state it in the text. We use
the CRB as a benchmark in the experiments. The CRB curves
displayed on the graphs represent the NMSE of an estimator
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Fig. 1. Comparison of the CRB of the constant-and-changing-training-
sequence cases versus the SNR for different channel orders when nt = 10 and
K = 100.

that achieves the CRB, which is E{tr(J −1)/‖h‖2}. The exper-
iments are performed on convolutive Rayleigh fading channels
of varying order L. The different channel taps are indepen-
dent identically distributed Gaussian random variables. The
training and data sequences are randomly picked white QPSK
sequences. The energy of the transmitted symbols (both data
and training) is set to λ2 = 1. The presented results are obtained
after averaging over a set of 100 channel realizations. For each
of these channel realizations, the results are averaged over 100
different sets of training sequences in the changing-training-
sequence case and over 100 different training sequences in the
constant-training-sequence case. Note that this averaging is also
done for the CRB results, since the CRB depends both on the
channel realization and the training sequences. The signal-to-
noise ratio (SNR) is defined as SNR = E{‖h‖2}(λ2/σ2).

A. Performance of the Proposed Method

In this section, we analyze and compare the algorithms
proposed for the two situations that have been considered
throughout this article: the constant and changing training-
sequence cases.
1) Comparison of the CRBs: To have a first insight in how

these compare, we check the CRB performance for these two
configurations. We consider a transmission scheme where the
length of the training sequences is set to nt = 10 and the
number of observed training sequences is set to K = 100.
The CRB for different channel orders in that context is pre-
sented as a function of the SNR in Fig. 1. We see that the
use of changing training sequences systematically results in
a reduced CRB for all channel orders. In both situations, the
CRB decreases with a constant slope as the SNR increases
when there is an exact solution to the channel-identification
problem in the noiseless case, i.e., when nt � 2L + 1 when
constant training sequences are used and when nt � L + 1
when changing training sequences are used. The CRB saturates
at high SNR, if there is no exact solution to the channel-

Fig. 2. Comparison of the simulated NMSE and the CRB versus SNR for
different channel orders when nt = 5 and changing training sequences are
used. The results are plotted for two different values of K, namely 20 and 150.

identification problem in the noiseless case, i.e., when nt <
2L + 1 for constant training sequences and nt < L + 1 for
changing training sequences. When nt is fixed and the channel
order is in the interval ((nt − 1)/2) � L � nt − 1, using
changing training sequences will yield a constant slope in the
CRB for increasing SNR, whereas a floor will appear at high
SNR if a constant training sequence is used. For channel orders
outside this interval, both methods show a similar behavior
(constant slope for small channel orders and saturation for large
channel orders), but there is still an advantage in using changing
training sequences.
2) Changing Training Sequences: After this discussion on

the CRB, we check how the proposed closed-form channel
estimates match this theoretical bound. We first check it for
the closed-form ML channel estimate proposed in the context
of changing training sequences. In Fig. 2, we compare the
simulated performance of our method with the corresponding
CRB as a function of the SNR. We perform this comparison
for two different channel orders: one for which the CRB has a
constant slope, the other being large enough to have the CRB
saturating at high SNR. We repeat these experiments for two
different values of K: a relatively small one and a larger one.
When the channel order is large (saturation of the CRB at high
SNRs), we observe a relatively good match between the CRB
and the experimental curves. The match is tighter for a larger
value of K. When the channel order is small (constant slope
in the CRB curves), the theoretical and experimental curves
match quite well when K is large, but we see the emergence
of a floor on the experimental NMSE for higher SNR when K
is small. In Fig. 3, we evaluate the impact of the number of
data blocks K on the channel estimate NMSE. The simulations
are done for two different channel orders and two different
values of the SNR. The presented results confirm the asymp-
totical efficiency of the closed-form channel estimate as the
experimental performance systematically achieves the CRB for
large values of K. When K gets small, the match between the
CRB and the experimental results remains acceptable, except
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Fig. 3. Comparison of the simulated NMSE and the CRB versus K for
different channel orders when nt = 5 and changing training sequences are
used. The results are plotted for two different values of the SNR, namely 5
and 25 dB.

Fig. 4. Comparison of the simulated NMSE and the CRB versus SNR for
L = 2, nt = 5, and K = 20 using changing training sequences. The NMSE
converges to the CRB after a few iterations when the iterative method is used.

in the situation where the channel order is small and the SNR
is high. In that case, the closed-form estimate is at a significant
distance from the CRB. This difference between the CRB and
the experimental results originates from the approximations
that were needed to derive the approximate closed-form ML
channel estimate. These approximations do not hold when the
SNR is large, K is small, and the channel order is small. How-
ever, when the iterative method is used, the channel estimate
converges to hML. The experiments presented in Figs. 4 and
5 show that the gap between the CRB and the closed-form
estimate is closed after a few iterations. Hence, for small K and
high SNR, performing a few iterations allows us to effectively
achieve the CRB.
3) Constant Training Sequences: In Figs. 6 and 7, we per-

form a similar analysis for the closed-form ML channel esti-
mate in the context of a constant training sequence. The figures

Fig. 5. Comparison of the simulated NMSE and the CRB versus K for L = 2,
nt = 5, and SNR = 35 dB using changing training sequences. The NMSE
converges to the CRB after a few iterations when the iterative method is used.

Fig. 6. Comparison of the simulated NMSE and the CRB versus SNR for
different channel orders when nt = 5 and constant training sequences are used.
The results are plotted for two different values of K, namely 20 and 150.

show us that there is no significant difference between the CRB
and the experimental results, except for very small values of K.
This improved match between the CRB and the experimental
results originates in the fact that we did not need to make any
approximation when deriving the expression of the closed-form
ML channel estimate in this case. Note that there is no point
in using the iterative method in this context, since the closed-
form channel estimate corresponds to its convergence point,
which is confirmed by experimental results (not shown in the
figures).

B. Comparison With Existing Methods

We compare the proposed method with two other methods:
a classical training-based ML approach and a more advanced
semiblind method based on the EM algorithm presented in [14].
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Fig. 7. Comparison of the simulated NMSE and the CRB versus K for
different channel orders when nt = 5 and constant training sequences are used.
The results are plotted for two different values of the SNR, namely 5 and 25 dB.

Classical training-based ML channel-estimation techniques
solely rely on the part of the received symbols that only contain
contributions from the known training symbols. They simply
discard the received samples that are corrupted by contribu-
tions from the unknown data symbols. Such symbols can be
observed at the receiver only when nt � L + 1. In that case,
one can define T′

k = Tk(L + 1 : nt, :) and u′
k = uk(L + 1 :

nt). The ML channel model is then known to be the LS
fit of T′

kh to u′
k

h′
ML =

(
K∑

k=1

T′H
k T′

k

)−1 K∑
k=1

T′
ku

′
k.

When constant training sequences are used, the solution be-
comes h′

ML = (
∑K

k=1 T′H
k T′

k)−1
∑K

k=1 T′
ku

′
k, and only exists

when nt � 2L + 1. Note that the conditions on the training-
sequence length nt are much more stringent than in the pro-
posed method.

We compare our algorithm with an adapted version of [14].
We adapt that method in order to estimate the channel relying
on the channel-output samples contained in the set of uk vec-
tors, as exploiting all the channel output samples would yield
an untractable complexity. Moreover, as the method cannot
be readily adapted to jointly consider all uk’s, we compute a
channel estimate for each received vector. Considering that the
resulting modeling error has a Gaussian distribution, the final
ML channel estimate is obtained after computing the mean of
the K available channel estimates. Note that since we consider
SISO channels rather than the original single-input multiple-
output (SIMO) setup, the training sequences must have a mini-
mal length of nt � L + 1. If that condition is not fulfilled, the
method cannot be applied because of rank-deficiency problems.
Hence, it will not be possible to use this method when the
channel order gets too large.

We can now compare the results obtained using these meth-
ods with the proposed Gaussian ML estimates. The NMSE of

Fig. 8. Simulated NMSE versus SNR for the proposed Gaussian ML method
and existing channel-estimation techniques for different channel orders when
changing training sequences of length nt = 6 are used and the number of
observed blocks is set to K = 100.

the different methods is presented as a function of the SNR in
Fig. 8. We consider changing training sequences and compare
the results for different channel orders when the length of the
training sequences is set to nt = 6.

The proposed method outperforms existing ones in all sit-
uations, except for short channels and at high SNRs where
other methods perform slightly better. We know however that
increasing the number of observed blocks K or performing
a few iterations would restore the advantage of our Gaussian
ML method. When the channel order increases, the advantage
of the new method increases, especially at low SNR. When
the channel order increases and nt < L, the new method still
provides reliable channel estimates while traditional methods
cannot be applied anymore. Finally, note that the proposed
Gaussian ML method has a complexity that is comparable to
those of the training-based method, while the semiblind EM-
based method has a significantly higher complexity (up to 200
iterations are needed to reach convergence).

IX. CONCLUSION

In this paper, we presented a new training-based ML channel-
identification method where the training sequences can be
shorter than the channel impulse-response length. We analyzed
two situations: the situation where the same training sequence
is repeated at the end of each data block (constant-training-
sequence case) and the situation where this training sequence
is changed at the end of each data block (changing-training-
sequence case). We first proposed an iterative ML method and
then derived (approximate) closed-form expressions for the
ML channel estimates. The proposed closed-form expressions
have low complexity and effectively achieve the CRB in most
practical situations. In the few situations where the CRB is not
achieved (i.e., low channel order, large SNR, and small number
of training sequences), the iterative method can be used and will
achieve the CRB in a couple of iterations. The proposed method
can be used in white as well as in colored noise conditions.
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It clearly outperforms existing training-based and semiblind
ML methods.

APPENDIX

In this appendix, we prove that

lim
K→∞

Q̂′ = Q.

Let us first note that ek can be rewritten as

ek =uk − Tk

(
K∑

l=1

TH
l Tl

)−1 K∑
l=1

TH
l ul

=Tkh + εk − Tk

(
K∑

l=1

TH
l Tl

)−1( K∑
l=1

TH
l Tlh + εl

)

= εk − Tk

(
K∑

l=1

TH
l Tl

)−1 K∑
l=1

TH
l εl.

Based on this observation, it is possible to check that the
shorthand notation Q̂′ defined in (19) converges to the true Q
when K tends to infinity

lim
K→∞

Q̂′ = lim
K→∞

K−1
K∑

k=1

ekeH
k

= lim
K→∞

K−1
K∑

k=1

εkεHk

− K−1
K∑

k=1

εk

(
K∑

l=1

εHl Tl

)(
K∑

l=1

TH
l Tl

)−1

TH
k

− K−1
K∑

k=1

Tk

(
K∑

l=1

TH
l Tl

)−1( K∑
l=1

TH
l εl

)
εHk

+ K−1
K∑

k=1

Tk

(
K∑

l=1

TH
l Tl

)−1( K∑
l=1

TH
l εl

)

×
(

K∑
l=1

εHl Tl

)(
K∑

l=1

TH
l Tl

)−1

TH
k .

Using the central-limit theorem, we can replace the limit of
K−1

∑
k by the expected value over k, which yields

lim
K→∞

Q̂′ =Q−QE


Tk lim

K→∞

(
K∑

l=1

TH
l Tl

)−1

TH
k




− E


Tk lim

K→∞

(
K∑

l=1

TH
l Tl

)−1

TH
k


QH

+ E


Tk lim

K→∞

(
K∑

l=1

TH
l Tl

)−1 ( K∑
l=1

TlQTH
l

)−1

×
(

K∑
l=1

TH
l Tl

)−1

TH
k


 .

Since the training sequences have nonzero energy, the limits
present in this last expression are equal to zero. Hence, given
the finite norm of Q, all the terms containing these limits are
equal to zero, which concludes our proof.
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