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ABSTRACT
Transmitted reference ultra wideband (TR-UWB) communi-

cation systems have gained increasing interest lately, because of
their ability to solve the timing and channel estimation problems
encountered in conventional UWB systems. Traditionally, an au-
tocorrelation receiver is employed in a TR-UWB system, which
is based on correlating the signal with a delayed version of itself.
To reduce the noise squaring effect related to this autocorrelation
receiver, we propose to split up the correlation interval leading to a
number of smaller correlations, which are then linearly combined
in some efficient manner. We refer to this receiver as a weighted
autocorrelation receiver. We present both optimal and practical
design algorithms for this receiver. We also carry out a number of
simulations using real UWB channel measurements, and show that
the weighted autocorrelation receiver significantly outperforms the
conventional one. Moreover, we illustrate that the proposed TR-
UWB system can compete favorably with a realistic digital imple-
mentation of a conventional UWB system.

1. INTRODUCTION

Ultra wideband (UWB) communication has attracted a lot of at-
tention recently, for instance due to its capability to accommo-
date high data rates over short distances at a very low power con-
sumption. Especially transmitted reference UWB (TR-UWB) [1]
schemes turn out to be of practical use, since they ease the timing
and channel estimation requirements, and allow for sampling rates
far below the Nyquist rate. In the original Hoctor-Tomlinson TR-
UWB system [2], the transmitter sends a reference pulse along
with each data pulse. This reference pulse implicitly provides
(noisy) timing and channel information at the receiver, which can
be exploited by correlating the received signal with a delayed ver-
sion of itself, such that the received reference pulse lines up with
the received data pulse. The problem of this so-called autocor-
relation receiver is that it squares the noise. To avoid this prob-
lem, some generalized TR-UWB systems have been developed in
[3, 4]. These methods basically rely on an averaging operation
to compute an almost noise-free version of the received reference
pulse, which can then be used for matched filtering. However, this
averaging operation requires large delays, which can not be imple-
mented very accurately.

In this paper, we therefore go back to the original Hoctor-
Tomlinson TR-UWB system and try to deal with the noise squar-
ing problem in a different fashion. One way is to restrict the cor-
relation interval to the area of interest [5]. However, this requires
accurate timing, and sometimes the correct interval is missed due
to noise. We go for another approach and basically split up the
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correlation interval leading to a number of smaller correlations,
which are then linearly combined taking into account the received
signal-to-noise ratio (SNR) at the output of each of these smaller
correlations. We refer to this receiver as a weighted autocorre-
lation receiver. It is similar in spirit as the one we proposed in
[6]. However, in contrast to [6], we now allow for overlapping re-
ceived pulses. Both optimal and practical design algorithms for the
weighted autocorrelation receiver will be investigated, and simula-
tion results using real UWB channel measurements will be carried
out.

2. DATA MODEL

We consider the original Hoctor-Tomlinson TR-UWB system in
this work [2]. The transmitted signal consists of frames of duration
Tf (Nf frames per symbol). Each frame consists of a reference
pulse p(t) and a modulated/coded version thereof. Specifically, for
the nth frame, the reference pulse is modulated with the data sym-
bol s[bn/Nfc] ∈ {+1,−1} and coded with an amplitude code
c[n] ∈ {+1,−1} and a delay code d[n] ∈ {Td/D, 2Td/D, . . . ,
(D − 1)Td/D, Td}. Hence, the transmitted signal is given by

x(t) =
∞
∑

n=−∞

p(t − nTf ) + x[n]p(t − nTf − d[n]),

where the chip x[n] is given by x[n] = s[bn/Nfc]c[n].
The received signal can then be written as

ynf(t) =

∞
∑

n=−∞

hnf(t−nTf )+x[n]hnf(t−nTf −d[n])+vnf(t),

where hnf(t) is the response of the overall channel (including trans-
mitter and receiver antenna effects) to the pulse p(t) and vnf(t) is
additive noise. The subscript (·)nf stands for the fact that these sig-
nals are not yet filtered. In general, we of course apply a receive
filter f(t) to focus on the band of interest. We then obtain

y(t) = f(t) ∗ ynf(t)

=

∞
∑

n=−∞

h(t − nTf ) + x[n]h(t − nTf − d[n]) + v(t),

where h(t) = f(t)∗hnf(t) and v(t) = f(t)∗vnf(t). The received
signal y(t) without noise will be denoted by ȳ(t).

3. AUTOCORRELATION RECEIVERS

The conventional autocorrelation receiver computes

y[n] =

∫ ε+nTf +TI

ε+nTf

y(t)y(t + d[n])dt, (1)

where TI is the integration interval and ε is the timing-offset. Note
that if we take TI large enough, e.g., TI ≥ Tf + Th, where Th



is the duration of h(t), we are robust against the timing within a
frame, i.e., we may assume ε ∈ [−Tf , 0). Then, the resulting
sequence y[n] is despread with the amplitude code c[n], and the
data symbols are detected by taking the sign of the despreaded
sequence z[k], corrected by a bias term:

z[k] =

(k+1)Nf−1
∑

n=kNf

c[n]y[n],

ŝ[k] = sign(z[k] − b̂),

where b̂ is the adopted bias term.
However, some parts of the correlation interval in (1) are more

affected by noise than others, which is not exploited. As in [6],
we therefore split up the correlation interval in (1), leading to Q
smaller correlations yq[n], q = 0, 1, . . . , Q − 1:

yq[n] =

∫ τq+1,n

τq,n

y(t)y(t + d[n])dt, (2)

where τq,n = ε+nTf +qTI/Q. Note that this approach resembles
a fractional sampling approach, but it is different in the sense that
the integration interval is inversely proportional to the oversam-
pling factor. Similar to the conventional autocorrelation receiver,
we then despread the resulting Q sequences yq[n], but we now de-
tect the data symbols by taking the sign of a linear combination of
the Q despreaded sequences zq[k], corrected by a bias term:

zq[k] =

(k+1)Nf−1
∑

n=kNf

c[n]yq[n],

ŝ[k] = sign

{(

Q−1
∑

q=0

âqzq[k]

)

− b̂

}

, (3)

where the âqs are the adopted linear combining weights and b̂ is
the adopted bias term. We call such an autocorrelation receiver a
weighted autocorrelation receiver. We will show that it can signif-
icantly outperform the conventional autocorrelation receiver. Note
that when Q = 1, the weighted autocorrelation receiver falls back
to the conventional one.

Although it is possible to analyze the weighted autocorrelation
receiver in a general fashion, we will now make a few assump-
tions, simplifying the derivations and allowing for a more com-
prehensive analysis. First of all, we will assume that there is no
inter-chip interference (ICI) after correlation, i.e., Tf ≥ Th +2Td.
Furthermore, we assume that there is a limited form of synchro-
nization and that ε ∈ (−Tf + Th, 0]. In that case, it suffices to
take TI = Tf and thus τq,n = ε + nTf + qTf/Q.

In the following sections, we will derive a data model for yq[n]
and zq[k]. First, let us split yq[n] into a useful signal and noise:

yq[n] = ȳq[n] + vq[n],

where

ȳq[n] =

∫ τq+1,n

τq,n

ȳ(t)ȳ(t + d[n])dt, (4)

and
vq[n] = v(1)

q [n] + v(2)
q [n] + v(3)

q [n], (5)
with

v(1)
q [n] =

∫ τq+1,n

τq,n

ȳ(t)v(t + d[n])dt,

v(2)
q [n] =

∫ τq+1,n

τq,n

v(t)ȳ(t + d[n])dt,

v(3)
q [n] =

∫ τq+1,n

τq,n

v(t)v(t + d[n])dt.

Similarly, we can split zq[k] into a useful signal and noise:

zq[k] = z̄q[k] + wq[k],

where z̄q[k] =

(k+1)Nf−1
∑

n=kNf

c[n]ȳq[n] and wq[k] =

(k+1)Nf−1
∑

n=kNf

c[n]vq[n].

4. USEFUL SIGNAL MODEL

4.1. Chip Level

In this subsection, we will model the useful signal at chip level,
ȳq[n]. Defining Rq,n(κ1, κ2) as

Rq,n(κ1, κ2) =

∫ τq+1,n

τq,n

ȳ(t + κ1)ȳ(t + κ2)dt, (6)

we can express ȳq[n] as ȳq[n] = Rq,n(0, d[n]). We will now ana-
lyze the structure of the general function Rq,n(κ1, κ2), since this
will also be useful for the noise analysis. We will then specialize
it to ȳq[n].

From the noise analysis, it will be clear that we need to inves-
tigate Rq,n(κ1, κ2) for a range κ1, κ2 ∈ (−2Td, 0]. In order to
avoid ICI for this range, we actually need Tf ≥ Th + 3Td. Intro-
ducing this assumption, we can express (6) for κ1, κ2 ∈ (−2Td, 0]
as

Rq,n(κ1, κ2) =
∫ τq+1,n

τq,n

[h(t − nTf + κ1) + x[n]h(t − nTf − d[n] + κ1)]

· [h(t − nTf + κ2) + x[n]h(t − nTf − d[n] + κ2)]dt

= I
τq+1,0+κ1

τq,0+κ1
(κ2 − κ1) + I

τq+1,0−d[n]+κ1

τq,0−d[n]+κ1
(κ2 − κ1)

+ x[n]I
τq+1,0−d[n]+κ1

τq,0−d[n]+κ1
(d[n] + κ2 − κ1)

+ x[n]I
τq+1,0+κ1

τq,0+κ1
(−d[n] + κ2 − κ1),

where

Iτ2
τ1

(s) =

∫ τ2

τ1

h(t)h(t + s)dt.

Grouping the constant and linear terms in the above equation,
we obtain

Rq,n(κ1, κ2) = r
(κ1,κ2)
const,q,n + x[n]r

(κ1,κ2)
lin,q,n ,

where

r
(κ1,κ2)
const,q,n = I

τq+1,0+κ1

τq,0+κ1
(κ2 − κ1) + I

τq+1,0−d[n]+κ1

τq,0−d[n]+κ1
(κ2 − κ1),

r
(κ1,κ2)
lin,q,n = I

τq+1,0−d[n]+κ1

τq,0−d[n]+κ1
(d[n] + κ2 − κ1)

+ I
τq+1,0+κ1

τq,0+κ1
(−d[n] + κ2 − κ1).

Since ȳq[n] = Rq,n(0, d[n]), the useful signal at chip level can be
expressed as

ȳq[n] = β̃q,n + x[n]α̃q,n, (7)

where
β̃q,n = r

(0,d[n])
const,q,n, α̃q,n = r

(0,d[n])
lin,q,n .

4.2. Symbol Level

Based on the previous results, it is easy to derive that the useful
signal at symbol level, z̄q[k], can be written as

z̄q[k] = βq,k + s[k]αq,k,

where βq,k =

(k+1)Nf−1
∑

n=kNf

c[n]β̃q,n and αq,k =

(k+1)Nf−1
∑

n=kNf

α̃q,n.



5. NOISE ANALYSIS

5.1. Chip Level

In this subsection, we will analyze the correlation function of the
noise at chip level, vq[n], given by (5).

Let us first assume that the noise v(t) is zero-mean with corre-
lation function Rv(t) = E{v(τ)v(τ+t)}. Assuming that Rv(t) =
0 for |t| > Td/D, it is then easy to show that the noise vq[n] is also
zero-mean and that the quadratic noise term is uncorrelated with
the linear noise terms: E{v(1)

q [n]v
(3)

q′ [n′]} = E{v(2)
q [n]v

(3)

q′ [n′]} =
0. The crosscorrelation between the two linear noise terms can be
derived as:

E{v(1)
q [n]v

(2)

q′ [n′]}

=

∫ τq+1,n

τq,n

∫ τq′+1,n′−τ−d[n]

τq′,n′−τ−d[n]

ȳ(τ)ȳ(τ + t + d[n] + d[n′])Rv(t)dtdτ

≈ δq,q′δn,n′

∫

∞

−∞

Rq,n(0, t + 2d[n])Rv(t)dt

= δq,q′δn,n′

∫

∞

−∞

r
(0,t+2d[n])
const,q,n Rv(t)dt

+ δq,q′δn,n′x[n]

∫

∞

−∞

r
(0,t+2d[n])
lin,q,n Rv(t)dt,

where the approximation is obtained by changing the integration
interval for t by (−∞,∞). This approximation holds if we as-
sume that the span of Rv(t) is much smaller than Tf/Q and that
Td is much smaller than Tf/Q. Similarly, we can derive that

E{v(1)
q [n]v

(1)

q′ [n′]} = δq,q′δn,n′

∫

∞

−∞

r
(0,t)
const,q,nRv(t)dt

+ δq,q′δn,n′x[n]

∫

∞

−∞

r
(0,t)
lin,q,nRv(t)dt,

E{v(2)
q [n]v

(2)

q′ [n′]} = δq,q′δn,n′

∫

∞

−∞

r
(d[n],t+d[n])
const,q,n Rv(t)dt

+ δq,q′δn,n′x[n]

∫

∞

−∞

r
(d[n],t+d[n])
lin,q,n Rv(t)dt.

Finally, we have to find an expression for the correlation func-
tion of the quadratic noise term. Assuming that Rv(t) = 0 for
|t| > Td/(2D), we can show that

E{v(3)
q [n]v

(3)

q′ [n′]} ≈ δq,q′δn,n′Tf/Q

∫

∞

−∞

R2
v(t)dt,

where we have again used the assumption that the span of Rv(t)
is much smaller than Tf/Q.

As a result, the correlation function of the noise at chip level
can be expressed as

E{vq[n]vq′ [n′]} ≈ δq,q′δn,n′(η̃q,n + x[n]γ̃q,n)

+ δq,q′δn,n′TI/Q

∫

∞

−∞

R2
v(t)dt, (8)

where

η̃q,n =

∫

∞

−∞

(r
(0,t)
const,q,n + r

(d[n],t+d[n])
const,q,n + 2r

(0,t+2d[n])
const,q,n )Rv(t)dt,

γ̃q,n =

∫

∞

−∞

(r
(0,t)
lin,q,n + r

(d[n],t+d[n])
lin,q,n + 2r

(0,t+2d[n])
lin,q,n )Rv(t)dt.

5.2. Symbol Level

Based on the previous results, it is easy to derive that the correla-
tion function of the noise at symbol level, wq[k], can be written

as

E{wq[k]wq′ [k′]} ≈ δq,q′δk,k′(ηq,k + s[k]γq,k)

+ δq,q′δk,k′NfTI/Q

∫

∞

−∞

R2
v(t)dt,

where ηq,k =

(k+1)Nf−1
∑

n=kNf

η̃q,n and γq,k =

(k+1)Nf−1
∑

n=kNf

c[n]γ̃q,n.

6. OPTIMAL COMBINING

To simplify the data model after despreading, we will neglect the
data dependence of the noise correlation function and approximate
it by

E{wq[k]wq′ [k′]} ≈ δq,q′δk,k′σ2
q,k,

where

σ2
q,k = ηq,k + NfTI/Q

∫

∞

−∞

R2
v(t)dt.

We have seen in simulations (not shown here) that only a small
error is made by introducing this simplification.

It is further easy to show that when we assume a short (peri-
odic) code system, i.e., c[n] and d[n] are periodic with period Nf ,
the parameters αq,k, βq,k, and ηq,k (or σq,k) become independent
of the symbol index k, and can be denoted as αq , βq , and ηq (or
σq). Under those circumstances, the receiver architecture of (3) is
optimal and the optimal linear combining weights and bias term
are given by

aq = f
αq

σ2
q

, b =

Q−1
∑

q=0

aqβq,

with f an arbitrary positive scaling factor. Assuming the noise
wq[k] is Gaussian, which is a valid assumption in case v(t) is
Gaussian, the bit error rate (BER) for this optimal weighted au-
tocorrelation receiver is given by BER = Q(

√
SNR), where

SNR is the post-detector signal-to-noise ratio (SNR):

SNR =

Q−1
∑

q=0

α2
q

σ2
q

.

In practice, we do not know the optimal linear combining weights
aq and optimal bias term b, and they have to be estimated from the
received data, resulting into the linear combining weights âq and
the bias term b̂. Since these estimated parameters generally differ
from the optimal ones, the BER expression will then change into
BER = 1

2
Q(

√
SNR+1)+ 1

2
Q(

√
SNR−1), where SNR+1 and

SNR−1 are the post-detector SNRs associated to transmitting a
+1 and a −1, respectively:

SNR+1 =

(

∑Q−1
q=0 âqαq + âqβq − b̂

)2

∑Q−1
q=0 â2

qσ2
q

,

SNR−1 =

(

∑Q−1
q=0 âqαq − âqβq + b̂

)2

∑Q−1
q=0 â2

qσ2
q

.

7. PRACTICAL COMBINING

In this section, we highlight some practical schemes that can be
used to compute the linear combining weights âq and bias term b̂.
Note that the algorithm we proposed in [6], which operates on the
chip level and exploits the periodicity of the amplitude code, is not



applicable anymore, since it requires that the chip level parameter
α̃q,n remains constant from chip to chip and that the chip level pa-
rameter β̃q,n is zero. This is only true when the received reference
pulse does not overlap with the received data pulse, which is not
the case in this paper. However, assuming short (periodic) ampli-
tude and delay codes, the symbol level model parameters αq,k and
βq,k remain constant from symbol to symbol, as indicated earlier.
This is what we will exploit in the methods described below.

Stacking zq[k] for the Q integration intervals: z[k] = [z0[k],
. . . , zQ−1[k]]T , we obtain

z[k] = αs[k] + β + w[k],

where α = [α0, . . . , αQ−1]
T , β = [β0, . . . , βQ−1]

T , and w[k] =
[w0[k], . . . , wQ−1[k]]T . Observe that using the above model the
detection rule (3) can be rewritten as

ŝ[k] = sign(âT
z[k] − b̂), (9)

where â = [â0, . . . , âQ−1]
T . Assuming a burst of K data symbols

is transmitted: s = [s[0], . . . , s[K − 1]]T , we can stack the K
vectors z[k]: Z = [z[0], . . . , z[K − 1]], in order to obtain

Z =
[

α β
]

[

s
T

1
T

]

+ W, (10)

where W = [w[0], . . . ,w[K − 1]]. Based on the above data
model we can now derive a very simple algorithm to compute â

and b̂. First, we can estimate β by averaging the columns of Z:

β̂ =
Z1

K
= β + α

s
T
1

K
+

W1

K
.

Then, we can subtract the estimated bias from Z:

Z̃ = Z − β̂1
T = α

(

s
T − s

T
1

K
1

T
)

+ W − W1

K
1

T

= αs
T
(

I − 11
T

K

)

+ W

(

I − 11
T

K

)

. (11)

This operation actually corresponds to projecting the rows of Z on
the row space that is orthogonal to 1

T . Clearly, Z̃ has rank one
in the absence of noise. Hence, we can approximate Z̃ by its best
rank one approximation:

Z̃ ≈ uσv
T , (12)

where u and v are the left and right singular vectors corresponding
to the largest singular value, which is denoted by σ. From (11) and
(12), it is then clear that

u ≈ ±fuα,

where fu is a positive scaling factor. Without spending more ef-
forts to estimate the noise statistics, we then simply take â = u

and b̂ = â
T β̂ in (9). The remaining sign ambiguity can be re-

solved by differential modulation or a few pilot signals.
Alternatively, we could look at (10) as a mixture of two sources,

one of which transmits all ones. Hence, we could apply any exist-
ing source separation algorithm. Methods based on second order
statistics (SOS) will estimate the mixing matrix, but only up to
an invertible matrix ambiguity. Unfortunately, this ambiguity can
not be completely removed by exploiting the fact that one of the
sources transmits all ones. Hence, we have to resort to methods
that exploit the finite alphabet property of the binary data. In that
case, we end up with only an order and sign ambiguity. In theory,
it is possible to remove the order ambiguity by exploiting the fact
that one of the sources transmits all ones. In practice, on the other
hand, this does not turn out to result in a very good performance.

One algorithm that can handle the above order ambiguity prob-
lem well is the adaptation of the real analytical constant modulus

algorithm (RACMA) to a single biased source (see [7, Sec. IV]).
The only difficulty is that the algorithm of [7, Sec. IV] is based
on a single observation of the biased source, whereas we generally
have multiple observations of the biased source (if Q > 1). Hence,
as a first step, we transform the multiple observations into a single
observation, by projecting the rows of Z on the row space that is
orthogonal to 1

T as in (11), resulting into the matrix Z̃, and by
observing from (11) and (12) that

v
T ≈ ±fv

(

s
T − s

T
1

K
1

T
)

,

where fv is a positive scaling factor. Hence, vT can be viewed as
the single observation of the biased source derived from Z, and we
can apply the algorithm of [7, Sec. IV] to v

T . This results into a
beamformer [g1, g2]

T for which

[

g1 g2

]

[

v
T

−1
T

]

≈ ±s
T .

It is easy to show that the corresponding estimates for the linear
combining weights and bias term are then given by â = uσ−1g1

and b̂ = g2 + â
T β̂. The remaining sign ambiguity can again be

resolved by differential modulation or a few pilot signals. Note
that the above method is equivalent to the simple method derived
earlier if g2 = 0. Since g2 is approximately proportional to the
mean of the symbols in s, it is clear that when the burst length K
increases, the difference in performance between the two methods
decreases. This will also be illustrated by simulation results.

8. SIMULATION RESULTS

In this section, we simulate the proposed algorithms on actual
UWB channel measurements that were conducted at the Delft Uni-
versity of Technology in the context of the Airlink project. We
focus on a set of 10 measured channels hnf(t) that were obtained
by sending a Gaussian pulse p(t) with a bandwidth around 12 GHz
over distances ranging from 1 m to about 20 m in line-of-sight con-
ditions. Hence, the measurements include all the transmitter and
receiver antenna effects. For simplicity reasons, we assume the ad-
ditive noise vnf(t) is zero-mean white Gaussian noise with power
spectral density N0. To comply with the FCC spectral mask for
UWB communications, we employ a simple bandpass filter f(t)
from 4 to 8 GHz at the receiver (in practice, we should of course
also restrict the transmitted pulse p(t) to this band). Since the du-
ration of the filtered channels h(t) = f(t) ∗ hnf(t) never exceeds
Th = 50 ns, we can satisfy the condition Tf ≥ Th + 3Td, by
choosing Tf = 100 ns and Td = 2 ns. Note that it is important
to keep Td small, since this is the maximal required delay, and
large delays can not be implemented very accurately. We further
take D = 4 and Nf = 4 and select our codes as c[n] = 1 and
d[n] = (mod(n, D) + 1)Td/D for n = 0, 1, . . . , Nf − 1. This
means that we achieve an uncoded data rate of 2.5 Gbit/s. For each
channel, we randomly select a timing-offset ε ∈ (−Tf +Th, 0] and
carry out 100 (for K = 20) or 50 (for K = 40) Monte carlo runs,
where we generate a new data and noise realization in each run.

Figure 1 shows the BER versus Eb/N0 of the optimal weighted
autocorrelation receiver for different values of Q 1. We clearly ob-
serve that the performance greatly improves with increasing Q. As
a result, the weighted autocorrelation receiver (Q > 1) can signif-
icantly outperform the conventional one (Q = 1). In Figure 2

1The received bit energy Eb is computed as 2Nf

∫

h
2
nf (t)dt, where

the factor 2 is due to the fact that we transmit two pulses per chip.
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Fig. 1. Performance comparison of the optimal weighted autocor-
relation receiver for different values of Q.

we compare the proposed practical designs with the optimal de-
sign for Q = 2. We see that the RACMA-based practical design
is very close to the optimal design, whereas the simple practical
design only works well if the burst length K is large enough.

We also compare our system with a conventional UWB sys-
tem, where only one pulse per chip is transmitted and where a co-
herent receiver is adopted. To make a fair comparison, we consider
a digital implementation of the coherent receiver with a realistic
sampling rate. In other words, the received signal is first filtered
with a narrow passband filter f(t) with a bandwidth of B around
some carrier frequency fc, then downconverted to baseband, next
sampled at a frequency of fs = 2B, and finally matched filtered
assuming perfect channel knowledge. We take fc = 5 GHz, since
this is the frequency region where a high average power is ob-
served (within the 4-8 GHz band), and consider B = 50, 100, 200
MHz (hence, fs = 100, 200, 400 MHz). A performance com-
parison between the two systems is illustrated in Figure 3 2. The
gap between the conventional UWB system and the proposed TR-
UWB system depends on the chosen design parameters. However,
it is clear that for realistic sampling rates and realistic uncoded
BER values, the conventional UWB system is outperformed by
the proposed TR-UWB system.
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