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ABSTRACT

In this paper, we discuss a semi-blind channel estimation algorithm
for rapidly time-varying channels, relying on a complex exponen-
tial basis expansion model (CE-BEM) for the channel. However,
whereas the original CE-BEM approach models a rectangularly
windowed version of the channel, the proposed CE-BEM approach
models a smoothly windowed version of the channel. This allows
for a much better fit, and leads to better channel estimates. The
obtained semi-blind channel estimates are subsequently used to
construct a recently developed CE-BEM serial decision-feedback
equalizer for CE-BEM channels. Simulation results are carried out
to validate the proposed ideas.

1. INTRODUCTION

Doppler shifts due to high mobility cause a major impediment for
some of today’s wireless systems, such as digital video broadcast-
ing applications. To combat these time-varying distortions, non-
trivial equalization techniques are required. Such equalizers can
be designed in a direct fashion or based on channel estimation. We
focus on the latter in this paper. The channel estimation method we
present is a semi-blind method that combines a training-based cri-
terion with a blind criterion. As channel model we employ a com-
plex exponential basis expansion model (CE-BEM). Our semi-
blind method will basically combine the training-based method of
[1, 2] with the blind method of [3]. However, instead of modeling
a rectangularly windowed version of the channel by a CE-BEM as
in the previous papers, we model a smoothly windowed version
of the channel by a CE-BEM [4]. This leads to a much better fit
and thus to better channel estimates. Note that other blind channel
estimation methods for CE-BEM channels have been developed in
[5, 6, 7, 8]. However, they are either stochastic in nature, or they
require many receive antennas for blind identifiability, whereas the
blind method of [4] is deterministic and only requires two receive
antennas for blind identifiability.

Once the CE-BEM channel is estimated, we use it to design
a recently proposed CE-BEM serial decision feedback equalizer
[9, 10], for which the feedforward and feedback filter have a CE-
BEM structure that is related to the CE-BEM used to model the
channels. Note that we only implement this equalizer in the flat
region of the window, since this is the region of interest. In the
simulation results section, we compare our algorithm with a serial
decision feedback equalizer that is designed in a direct fashion.
More specifically, we consider an adaptive serial decision feed-
back equalizer that is first updated in a training-based fashion and
then in a decision-directed fashion. Note that direct CE-BEM se-
rial equalizer designs based on batch processing, such as the one
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proposed in [11], only apply to linear equalizers and not to deci-
sion feedback equalizers (unless we consider an iterative approach
of course). That is why we choose for the more traditional adaptive
serial decision feedback equalizer as our reference method.

Notation: We use upper (lower) bold face letters to denote
matrices (column vectors). (·)∗, (·)T , and (·)H represent com-
plex conjugate, transpose, and complex conjugate transpose (Her-
mitian), respectively. (·)† stands for the pseudo-inverse. We write
the Kronecker delta as δ[n] and the Kronecker product as ⊗. We
denote the N × N identity matrix as IN and the M × N all-zero
matrix as 0M×N . Further, diag{x} denotes the diagonal matrix
with x on its diagonal. Finally, we reserve ‖ · ‖ for the Frobenius
norm.

2. SYSTEM DESCRIPTION

We consider a baseband description of a wireless system with a
single transmit and R receive antennas. Transmitting a data sym-
bol sequence x[n] at symbol rate 1/T , the baseband-equivalent
received signal at the rth receive antenna can generally be written
as

y(r)(t) =
∞∑

n=−∞
g(r)(t; t − nT )x[n] + w(r)(t),

where g(r)(t; t−nT ) is the baseband-equivalent time-varying chan-
nel at the rth receive antenna and w(r)(t) is the baseband-equivalent
additive noise at the rth receive antenna. Sampling each receive
antenna at symbol rate, the received sequence at the rth receive
antenna y(r)[n] := y(r)(nT ) can be written as

y(r)[n] =
∞∑

ν=−∞
g(r)[n; ν]x[n − ν] + w(r)[n], (1)

where g(r)[n; ν] := g(r)(nT ; νT ) and w(r)[n] := w(r)(nT ).

3. CHANNEL MODEL

As channel model, we will make use of the complex exponential
basis expansion model (CE-BEM). However, instead of using a
CE-BEM to model a rectangularly windowed version of the chan-
nel, we will use it to model a smoothly windowed version of the
channel.

Assume the windowed channel at the rth receive antenna is
defined as ğ(r)[n; ν] := d[n]g(r)[n; ν], where d[n] is a smooth
window given by

d[n] :=

⎧⎪⎨
⎪⎩

s[n] if n ∈ [0, M)
1 if n ∈ [M, N − M)
s[N − 1 − n]if n ∈ [N − M, N)
0 elsewhere

.
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As long as the window is smooth, the exact shape does not influ-
ence performance much. Hence, we will always assume a cosine
window taper: s[n] = (1 − cos(πn/M))/2. We model ğ(r)[n; ν]
in the interval n ∈ [0, N) as:

ğ(r)[n; ν] ≈ h(r)[n; ν], n ∈ [0, N), (2)

where h(r)[n; ν] is a CE-BEM with period N :

h(r)[n; ν] =
1

N

L∑
l=0

δ[ν − l]

Q/2∑
q=−Q/2

h
(r)
l,q ej2πqn/N ,

with L and Q chosen such that LT and Q/(2NT ) are larger
than the channel delay and Doppler spread, respectively: LT ≥
τmax and Q/(2NT ) ≥ fmax. The best possible fit of this CE-
BEM is obtained by selecting {h(r)

l,q }Q/2

q=−Q/2 as the Q + 1 sam-
ples around zero from the critically sampled Doppler spectrum of
the lth windowed channel tap ğ(r)[n; l]. Existing channel estima-
tion approaches based on the CE-BEM only consider a rectangular
window [1, 2, 3]. However, since only a limited Doppler range of
the windowed channel taps is considered in the above fitting proce-
dure, it is beneficial to reduce the sidelobes by means of a smooth
window, as shown in [4].

To observe a windowed channel at the rth receive antenna, we
obviously have to window the received sequence at the rth receive
antenna, leading to y̆(r)[n] := d[n]y(r)[n]. From (1) and (2), we
then obtain

y̆(r)[n] =
∞∑

ν=−∞
ğ(r)[n; ν]x[n − ν] + w̆(r)[n]

≈
∞∑

ν=−∞
h(r)[n; ν]x[n − ν] + w̆(r)[n], n ∈ [0, N),

(3)

where w̆(r)[n] is similarly defined as y̆(r)[n].

4. BLOCK DATA MODEL

It is convenient to rewrite (3) on a block level. This block data
model will form the basis of our semi-blind channel estimation
algorithm.

Defining the (N +L)× 1 data symbol block as x := [x[−L],
. . . , x[N − 1]]T , the N × 1 windowed received sample block at
the rth receive antenna y̆(r) := [y̆(r)[0], . . . , y̆(r)[N − 1]]T can
be written as

y̆(r) = H(r)x + w̆(r), (4)

where w̆(r) is similarly defined as y̆(r), and H(r) is the N ×(N +
L) band matrix given by

H(r) =

L∑
l=0

Q/2∑
q=−Q/2

h
(r)
q,l DqZl, (5)

with Dq := diag{[1, ej2πq/N , . . . , ej2πq(N−1)/N ]T }, and Zl :=
[0N×(L−l), IN ,0N×l]. Substituting (5) in (4), the N × 1 win-
dowed received sample block at the rth receive antenna can be
written as

y̆(r) =

L∑
l=0

Q/2∑
q=−Q/2

h
(r)
q,l DqZlx + w̆(r). (6)

Based on this block data model we will now derive a training-
based and blind criterion, which will subsequently be combined
to obtain a semi-blind criterion. The approach is reminiscent of
the semi-blind methods that have been proposed for time-invariant
channels [12].

5. TRAINING-BASED CRITERION

Let us start by rewriting (6) as y̆(r)T = h(r)T X + w̆(r)T , where
X = [D−Q/2Z0x, . . . ,D−Q/2ZLx, . . . ,DQ/2ZLx]T and h(r)

:= [h
(r)

−Q/2,0, . . . , h
(r)

−Q/2,L, . . . , h
(r)

Q/2,L]T . Suppose now that
training packets are inserted in x. Then some columns of X are
known, which can be stacked into Xtr . Stacking the correspond-
ing entries of y̆(r) into y̆

(r)
tr , we obtain y̆

(r)T
tr = h(r)T Xtr +

w̆
(r)T
tr , where w̆

(r)
tr is similarly defined as y̆

(r)
tr . Stacking the R

vectors y̆
(r)
tr as y̆tr = [y̆

(1)T
tr , . . . , y̆

(R)T
tr ]T , we finally obtain

y̆T
tr = hT (IR ⊗ Xtr) + w̆T

tr , where w̆tr is similarly defined as
y̆tr and h := [h(1)T , . . . ,h(R)T ]T . A training-based channel es-
timate can then be obtained by solving

ĥtr = arg min
h

‖y̆T
tr − hT (IR ⊗ Xtr)‖2. (7)

The solution is given by ĥtr = (IR ⊗ XT†
tr )y̆tr . Identifiability

is guaranteed if Xtr has full row rank, which can be satisfied by
design.

6. BLIND CRITERION

To construct a blind criterion, we first have to mold the block data
model (6) into a special form in order to better expose the structure
of the CE-BEM.

For l′ = 0, . . . , L′ and q′ = −Q′/2, . . . , Q′/2, we premul-
tiply y̆(r) with D̄q′ Z̄l′ , where D̄q′ := diag{[1, ej2πq′/N , . . . ,

ej2πq(N−L′−1)/N ]T }, and Z̄l′ := [0(N−L′)×(L′−l′), IN−L′ ,
0(N−L′)×l′ ]. In other words, we compute a number of time- and
frequency-shifted versions of y̆(r). Using the property Z̄l′Dq =

ej2πq(L′−l′)/ND̄qZ̄l′ , we then obtain

y
(r)

q′,l′ := D̄q′ Z̄l′ y̆
(r)

=
L∑

l=0

Q/2∑
q=−Q/2

h
(r)
q,l e

j2πq(L′−l′)/KD̄q′D̄qZ̄l′Zlx + w
(r)

q′,l′

=
L∑

l=0

Q/2∑
q=−Q/2

ej2πq(L′−l′)/Kh
(r)
q,l D̄q+q′ Z̃l+l′x + w

(r)

q′,l′ ,

where w
(r)

q′,l′ is similarly defined as y
(r)

q′,l′ , and Z̃k

:= [0(N−L′)×(L+L′−k), IN−L′ ,0(N−L′)×k]. Introducing k :=

l + l′ and p := q + q′, and defining xp,k := D̄pZ̃kx, we can also
write this as

y
(r)

q′,l′ =

L+L′∑
k=0

(Q+Q′)/2∑
p=−(Q+Q′)/2

ej2π(p−q′)(L′−l′)/Kh
(r)

p−q′,k−l′xp,k + w
(r)

q′,l′ .

Stacking the (Q′+1)(L′+1) vectors y
(r)

q′,l′ as Y(r) := [y
(r)

−Q′/2,0,

. . . ,y
(r)

−Q′/2,L′ , . . . ,y
(r)

Q′/2,L′ ]
T , we get Y(r) = H(r)X + W(r),
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U (r)
i :=

⎡
⎢⎢⎣
Ω

−Q/2
0:L U (r)

i,−Q′/2Ω
Q/2

−L′:L. . .Ω
−Q/2
0:L U (r)

i,Q′/2Ω
Q/2

−L′:L 0

. . .
. . .

0 Ω
Q/2
0:L U (r)

i,−Q′/2Ω
−Q/2

−L′:L. . .Ω
Q/2
0:L U (r)

i,Q′/2Ω
−Q/2

−L′:L

⎤
⎥⎥⎦

where W(r) is similarly defined as Y(r), X := [x−(Q+Q′)/2,0,

. . . ,x−(Q+Q′)/2,L+L′ , . . . ,x(Q+Q′)/2,L+L′ ]T , and H(r) is the
(Q′ + 1)(L′ + 1) × (Q + Q′ + 1)(L + L′ + 1) block Toeplitz
matrix given by

H(r) :=

⎡
⎢⎢⎣
Ω

−Q/2

−L′:0H(r)

−Q/2. . . Ω
Q/2

−L′:0H(r)

Q/2 0

. . .
. . .

0 Ω
−Q/2

−L′:0H(r)

−Q/2. . .Ω
Q/2

−L′:0H(r)

Q/2

⎤
⎥⎥⎦ ,

with H(r)
q the (L′ + 1) × (L + L′ + 1) Toeplitz matrix given by

H(r)
q :=

⎡
⎢⎢⎣

h
(r)
q,0. . . h

(r)
q,L 0

. . .
. . .

0 h
(r)
q,0 . . . h

(r)
q,L

⎤
⎥⎥⎦ ,

and Ωn1:n2 := diag{[e−j2πn1/N , . . . , e−j2πn2/N ]T }.
Stacking the R matrices Y(r) as Y := [Y(1)T , . . . ,Y(R)T ]T ,

we finally obtain Y = HX + W, where W is similarly defined
as Y and H is the R(Q′ +1)(L′ +1)×(Q+Q′ +1)(L+L′ +1)

matrix given by H := [H(1)T , . . . , H(R)T ]T .
Let us first assume there is no noise. Hence, we get Y =

HX. Further, let us assume that H is tall, which requires R(Q′ +
1)(L′+1) ≥ (Q+Q′+1)(L+L′+1), and that X is wide, which
requires N−L′ ≥ (Q+Q′+1)(L+L′+1). These conditions can
be satisfied by design. Note that in order to satisfy the first condi-
tion, we need more than one receive antenna, i.e., R > 1. Under
the above assumptions the matrix Y has at most rank (Q + Q′ +
1)(L + L′ + 1), and thus there are at least I = R(Q′ + 1)(L′ +
1) − (Q + Q′ + 1)(L + L′ + 1) left singular vectors of Y with a
zero singular value. Suppose these singular vectors are denoted as
u1, . . . , uI . Then we can write uH

i H = 01×(Q+Q′+1)(L+L′+1).

Let us rewrite ui as ui := [u
(1)T
i , . . . ,u

(R)T
i ]T , with u

(r)
i :=

[u
(r)

i,−Q′/2,0, . . . , u
(r)

i,−Q′/2,L′ , . . . , u
(r)

i,Q′/2,L′ ]
T . We can then re-

formulate the above equation as UH
i h = 0(Q+Q′+1)(L+L′+1)×1,

where h is defined as in Section 5. In this formula, U i is the
R(Q + 1)(L + 1) × (Q + Q′ + 1)(L + L′ + 1) matrix given by
U i := [U (1)T

i , . . . , U (R)T
i ]T , where U (r)

i is the (Q+1)(L+1)×
(Q + Q′ + 1)(L + L′ + 1) matrix given at the top of this page,
with U (r)

i,q′ the (L + 1) × (L + L′ + 1) Toeplitz matrix given by

U (r)

i,q′ =

⎡
⎢⎢⎣

u
(r)

i,q′,0. . . u
(r)

i,q′,L′ 0

. . .
. . .

0 u
(r)

i,q′,0 . . . u
(r)

i,q′,L′

⎤
⎥⎥⎦ .

Stacking the results for the I left singular vectors, we obtain U Hh =
0I(Q+Q′+1)(L+L′+1)×1, where U is the R(Q+1)(L+1)×I(Q+
Q′ + 1)(L + L′ + 1) matrix given by U := [U 1, . . . , U I ].

In the presence of noise, we compute the I left singular singu-
lar vectors of Y with the smallest singular values. We denote them
as û1, . . . , ûI and define Û based on {ûi}I

i=1 in a similar fashion

as we defined U based on {ui}I
i=1. A blind channel estimate can

then obtained by solving

ĥbl = arg min
h

‖ÛH
h‖2. (8)

The solution is given by the left singular vector of Û corresponding
to the smallest singular value. Blind identifiability, i.e., identifia-
bility up to a complex scaling ambiguity, is guaranteed if H has
full column rank and X has full row rank. These conditions can
not fully be guaranteed by design. However, we solve this in the
next section.

7. SEMI-BLIND CRITERION

To resolve possible blind identifiability problems and the complex
scaling ambiguity of the blind criterion (8), we now combine it
with the training-based criterion (7), leading to a semi-blind chan-
nel estimation method. In other words, a semi-blind channel esti-
mate can be obtained by solving

ĥsb = arg min
h

‖y̆T
tr − hT (IR ⊗ Xtr)‖2 + α‖ÛH

h‖2,

where α is some weighting factor. The solution is given by

ĥsb = [IR ⊗ (X∗
trX

T
tr) + αÛ ÛH

]†(IR ⊗ X∗
tr)y̆tr.

As for the training-based criterion, identifiability is guaranteed if
Xtr has full row rank, which can be satisfied by design.

The choice of the weighting factor α is important. Ideally, one
would want to optimize α with respect to the channel mean square
error (MSE), but this is not an easy problem. In practice, one can
simply select an α based on some initial simulation results making
some assumptions about the statistics of the channel.

8. DECISION FEEDBACK EQUALIZATION

Recently, we have proposed a CE-BEM serial decision feedback
equalizer for CE-BEM channels [9, 10]. The basic idea is to em-
ploy a CE-BEM for the feedforward and feedback filters, which is
related to the CE-BEM of the channel. This allows one to construct
the CE-BEM coefficients of the serial decision feedback equalizer
based on the CE-BEM coefficients of the channel, thereby avoid-
ing to compute a new serial decision feedback equalizer at each
time-instant, which is computationally intensive. In the simulation
results we will use the semi-blind CE-BEM channel estimate to
construct such a CE-BEM serial decision feedback equalizer, but
only for the flat region of the window.

9. SIMULATION RESULTS

In this section, we carry out a few simulations to validate the
proposed approach. We consider a transmission scheme where a
training packet is sent in between every 148 data packets. Each
packet is assumed to contain 10 symbols, modulated using QPSK.
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Fig. 1. NMSE of the semi-blind channel estimate as a function of
α for a received SNR of 15 dB.

Note that such a sparse training structure for instance appears in
the ATSC DTV standard. We assume a system with 1 transmit
and R = 2 receive antennas. The R = 2 channels are mod-
eled as an FIR filter with 2 i.i.d. channel taps, each of which has
a Jakes’ Doppler spectrum with a normalized Doppler spread of
fmaxT = 5.10−4. As block size N we take N = 2000, and as
window taper length we take M = 250. Hence, if we center this
window around one group of 148 data packets, the flat region of the
window contains this group of 148 data packets together with one
training packet on each side of the group. From the above param-
eters, we can accurately model the channels adopting a CE-BEM
with L = 1 and Q = 2. For the semi-blind channel estimation
method, we consider L′ = 5 and Q′ = 4.

In Figure 1, we show the normalized MSE (NMSE) of the
semi-blind channel estimate as a function of α for a received SNR
of 15 dB. Also shown is the NMSE of the best possible fit for the
considered CE-BEM. Note that only the error in the flat region of
the window is considered, since this is the region we are interested
in. We clearly observe that the purely training-based method (α =
0) is useless in this case, because the space in between the two
exploited training packets is too large. The semi-blind method, on
the other hand, does a pretty good job.

Figure 2 shows the BER versus the received SNR of a CE-
BEM serial decision feedback equalizer designed using the semi-
blind CE-BEM channel estimate for α = 100. Note that this de-
sign is only carried out for the flat region of the window. The
feedforward filter consists of 6 taps that are modeled by 5 complex
exponential basis functions, whereas the feedback filter consists of
3 taps that are modeled by 7 complex exponential basis functions.
We also compare this equalizer with an adaptive serial decision
feedback equalizer that is first adapted in a training-based fashion
and then in a decision-directed fashion. We use NLMS to update
the filter coefficients and employ a step-size of µ = 0.1. Again a
6-tap feedforward and a 3-tap feedback filter are considered. Since
this equalizer is not able to converge within a training packet of
10 symbols, we considered a training period of 100 symbols after
which convergence is always achieved. To decode the remaining
symbols in the 148 data packets, we switch to a decision-directed
mode during which we compute the BER. Clearly the adaptive se-
rial decision feedback equalizer is outperformed by the proposed

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR

B
E

R

proposed
adaptive

Fig. 2. Performance comparison between the proposed approach
and an adaptive approach.

approach, because it is not capable of tracking the time-variations
of the channel over such a large period.
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