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Abstract—Frequency-shift keying (FSK) is a popular modu-
lation scheme in power-limited communication links. This paper
introduces space–time FSK (ST-FSK), which does not require any
channel state information at the transmitter and the receiver, as in
conventional noncoherent FSK. ST-FSK can be viewed as a special
unitary ST modulation design. However, ST-FSK has a number
of advantages over existing unitary ST modulation designs.
ST-FSK is easier to design, and enjoys lower decoding complexity.
Furthermore, ST-FSK guarantees full diversity. Finally, ST-FSK
can be adopted in the digital as well as in the analog domain, and
merges very naturally with frequency-hopping multiple access.
As expected, all these advantages come at the cost of a decrease
in spectral efficiency.

Index Terms—Frequency-shift keying (FSK), orthogonal design,
space–time (ST) coding, unitary modulation.

I. INTRODUCTION

DESPITE the accompanying spectral inefficiency,
frequency-shift keying (FSK) and other orthogonal

modulation schemes are of interest in power-limited setups,
such as those in military and satellite communications. In this
letter, we introduce space–time FSK (ST-FSK), which does not
require any channel state information (CSI) at the transmitter
and the receiver, as in conventional noncoherent FSK. ST-FSK
transmits FSK waveforms that are structured according to the
full-rate real orthogonal designs of [6]. It is similar in spirit to
the unitary ST modulation introduced in [3]. We actually show
that ST-FSK can be viewed as a special unitary ST modulation
design. However, ST-FSK has a number of advantages over the
unitary ST modulation designs of [4].

1) ST-FSK is very simple, whereas the unitary ST modula-
tion designs of [4] require a complex numerical search
procedure.
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2) The above design complexity advantage might not be
such a big issue, because the code design can be carried
out offline. However, there is also a complexity advan-
tage in decoding. ST-FSK allows for a simplified max-
imum-likelihood (ML) detector, whereas the unitary ST
modulation designs of [4] require a full-blown ML de-
tector.

3) For two transmit antennas, ST-FSK can be proven
to achieve full diversity. For more than two transmit
antennas, this is more difficult to prove, but exhaustive
search confirms that it still holds. For the unitary ST
modulation designs of [4], on the other hand, it depends
on the search criterion that is used, whether full diversity
is guaranteed or not. However, this is not addressed
thoroughly in [4]. We will show in the sequel that the
search criterion explored in [4] does not guarantee full
diversity.

4) As for conventional FSK, ST-FSK can be adopted in
the digital as well as in the analog domain, and merges
very naturally with frequency-hopping multiple access
(FHMA), which is employed in ad-hoc networks, for
instance.

The aforementioned advantages come at a cost. For a fixed
bandwidth, the unitary ST modulation designs of [4] may
achieve a higher rate, or similarly, for a fixed rate, they may
occupy a smaller bandwidth. This is expected, since FSK is
known to be power efficient, but not spectrally efficient.

Notations: Upper (lower) boldface letters denote matrices
(column vectors); and denote transpose and Her-
mitian, respectively; is used for the Kronecker product;
represents the Kronecker delta; represents the Frobenius
norm; denotes the th entry of the matrix , and

denotes the th entry of the column vector is
reserved for statistical average; denotes the identity
matrix; denotes the all-zero matrix; and finally,

is used to denote the cardinality of the set .

II. DATA MODEL

We adopt here a similar data model as in [3]. Consider a
communication link from transmit antennas to receive
antennas signaling over a flat-fading channel that is constant
over symbol periods. Denoting the vector transmitted
from the th transmit antenna as , the vector
received at the th receive antenna can be written as

, where is the flat-fading channel
coefficient from the th transmit antenna to the th receive
antenna, and is the noise vector received at the th receive
antenna. Denoting the matrix obtained by stacking the
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transmitted vectors as , the ma-
trix obtained by stacking the received
vectors can be expressed as , where , de-
fined by , is the flat-fading channel
matrix obtained by stacking the flat-fading channel co-
efficients, and is the noise matrix
obtained by stacking the noise vectors. We assume that the
entries of and are independent and identically distributed
(i.i.d.) zero-mean complex Gaussian variables with variance
and , respectively.

From [3], we know that it is advantageous from a noncoherent
capacity point of view to consider a constellation that satis-
fies . Such a signaling scheme is re-
ferred to as unitary ST modulation. In [4], a number of different
unitary ST modulation designs are presented. In this letter, we
consider a much simpler unitary ST modulation design, which
we label as ST-FSK.

III. ST-FSK

First, we design a set of real matrices that
satisfies and , for ,
also known as a full-rate real orthogonal design [6]. Note that
full-rate real orthogonal designs only exist for [6], but
these are the cases of practical interest. Furthermore, we take
as small as possible (delay optimal), which results in
for for , and for

[6]. We then choose , which represents the number of
FSK waveforms that we want to include in our design. Defining

, the corresponding set of FSK waveforms
is , where .
We finally construct the constellation ,
where

(1)

Note that this resembles a full-rate real orthogonal ST code
written in the form of a linear dispersion code [2], except that the
scalar product is now replaced by a Kronecker product, and the
real data symbols are replaced by FSK waveforms. The block
size of ST-FSK is . The rate of ST-FSK is the same as
that of conventional FSK, using the same set of FSK waveforms.
Defining as the rate expressed in bits per symbol, we obtain

.
Relying on the fact that represents a full-rate real

orthogonal design and represents a set of FSK
waveforms, it is clear from (1) that

. Hence, we can view ST-FSK as a special unitary ST
modulation design. This allows us to use all the results that were
presented in [3].

IV. ST-FSK DETECTOR

The noncoherent ML detector can be expressed as [3]

Using (1), we can rewrite as

where can be viewed as the matched-filter
output corresponding to the FSK waveform . Hence, the non-
coherent ML detector can be simplified by first computing the

matched-filter outputs , which yield a suffi-
cient statistic, and subsequently determining

(2)

In the next section, we will analyze the performance of this sim-
plified noncoherent ML detector.

V. PERFORMANCE ANALYSIS

We can upper bound the block-error probability through
the union bound as [3]

(3)

where is the pairwise error probability (PEP) of mistaking
for , or vice versa. Furthermore, we can upper bound this

PEP through the Chernoff bound as [3]

(4)

where is the signal-to-noise ratio (SNR) at each
receive antenna, and are the
singular values of . Note in this context that we can
rewrite as

(5)

For a sufficiently large , the Chernoff bound on the PEP
depends dominantly on [5]
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which can be interpreted as the geometric mean of the sines of
the principal angles between the subspaces spanned by the
columns of and . Defining the diversity product as

full diversity is achieved if the diversity product is nonzero
[5].

The unitary ST modulation designs of [4] are designed based
on some search criterion. A good search criterion could be the
maximization of the diversity product (as done in [5] for the
special case of , because it was used for differential
modulation). However, in [4], a different search criterion is ex-
plored, which, as we will show later on, does not necessarily
lead to a nonzero diversity product, and consequently, does not
guarantee full diversity. For , ST-FSK has a nonzero
diversity product, and consequently achieves full diversity, as
discussed next. For , this is more difficult to prove, but
exhaustive search confirms that it still holds.

For , the most general delay-optimal full-rate real
orthogonal design is given by [1], [6]

where is an arbitrary real orthogonal 2 2 matrix. Evaluating
(5) for all possible combinations of and , we then obtain

otherwise

(6)

where we have used and . We see that in
all cases, the two singular values and are equal,
i.e., . Hence, can be expressed

as . We further observe that the maximum

singular value for is obtained in cases 2 and 3
of (6), and equals . Hence, the diversity product can be
expressed as . We can thus conclude that for

, ST-FSK has a nonzero diversity product, and consequently
achieves full diversity.

VI. SIMULATION RESULTS

We first compare the performance of ST-FSK for
(and thus, ) and (hence, ), which corre-
sponds to rate , with the unitary ST modulation de-
sign of [4] for , and rate . We con-
sider only one receive antenna . First of all, the search
criterion used in [4] allows for many solutions, some of which

Fig. 1. Performance comparison between ST-FSK and existing unitary ST
designs. We consider M = 2 transmit antennas, N = 1 receive antenna, and
rate R = 1=2 transmission.

Fig. 2. Performance of ST-FSK with M = 2; 4; 8 transmit antennas, N = 1

receive antenna, and rate R = 1=2 transmission.

have a nonzero diversity product, and thus, achieve full diver-
sity (diversity order 2), and some of which have a zero diversity
product, and thus, do not achieve full diversity (diversity order
1). We look at two solutions: one that has the highest diversity
product (design 1), and one that has a zero diversity product (de-
sign 2). Note that either one of these solutions could be obtained
when adopting the search criterion used in [4]. Symbol-error
probability (SEP) performance results are shown in Fig. 1. Also
shown is the SEP upper bound of the proposed method based
on (3) and (4). We observe that ST-FSK and the unitary ST
modulation design 1 have a comparable performance. However,
ST-FSK is very simple, whereas the unitary ST modulation de-
sign 1 requires a complex numerical search procedure. More-
over, ST-FSK allows for a simplified ML detector, whereas the
unitary ST modulation design 1 requires a full-blown ML de-
tector. As expected, ST-FSK outperforms the unitary ST mod-
ulation design 2.
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Let us finally consider ST-FSK for (and thus,
) and (hence, ), which again corresponds

to rate . By exhaustive search, one can easily show that
the diversity product is for and , and

for and . Hence, both schemes achieve full
diversity, as can also be observed from Fig. 2, where the slope of
the SEP at high SNR approaches for and , and

for and . As a benchmark, Fig. 2 also repeats
the curve for and that was shown in Fig. 1.
Finally, note that full diversity for and also
implies full diversity for and , due to the
construction of delay-optimal full-rate real orthogonal designs
and the geometrical interpretation of the diversity product.

VII. CONCLUSION

In this letter, we have developed a novel unitary ST modula-
tion design coined as ST-FSK, which transmits FSK waveforms
that are structured according to the full-rate real orthogonal de-
signs. ST-FSK has a number of advantages over existing unitary
ST modulation designs. ST-FSK is easier to design, and enjoys

lower decoding complexity. Furthermore, ST-FSK guarantees
full diversity. Finally, ST-FSK can be adopted in the digital as
well as in the analog domain, and merges very naturally with
FHMA. As expected, all these advantages come at the cost of a
decrease in spectral efficiency.
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