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Abstract—Frequency-selective channels can be converted to
a set of flat-fading subchannels by employing orthogonal fre-
quency-division multiplexing (OFDM). Conventional differential
encoding on each subchannel, however, suffers from loss of
multipath diversity, and a very high peak-to-average power ratio
(PAPR), which causes undesirable nonlinear effects. To mitigate
these effects, we design a block differential encoding scheme
over the subchannels that preserves multipath diversity, and in
addition, results in constant modulus transmitted symbols. This
property is shown to ensure that the PAPR of the continuous-time
transmitted waveform is reduced by a large factor. The max-
imum-likelihood decoder for the proposed scheme, conditioned on
the current and previous received block, is shown to have linear
complexity in the number of subcarriers. The constant modulus
scheme will yield good bit-error rate performance with full rate
only if short blocks are used. However, one may mitigate this
problem by relaxing the constant modulus requirement. We show
that in a practical OFDM system, we can group the subcarriers
into shorter subblocks in a certain manner, and apply the constant
modulus technique to each subblock. Thus, we improve diversity
at a very low decoder complexity, and at the same time, we
introduce an upper bound on the discrete-time PAPR, which, in
turn, may lead to appreciable reduction in continuous-time PAPR,
depending on the system parameters. Finally, in situations where
we can sacrifice rate, additional complex field coding may be used
to exploit the multipath diversity provided by channels longer
than those the simple scheme can handle.

Index Terms—Block differential encoding, frequency-selective
channels, orthogonal frequency-division multiplexing (OFDM),
peak-to-average power ratio (PAPR).

Paper approved by C. Tellambura, the Editor for Modulation and Signal De-
sign of the IEEE Communications Society. Manuscript received August 16,
2002; revised May 5, 2003 and August 16, 2003. The work of Y. Larsen was
supported by the Research Council of Norway under Contract 134676/432. Pre-
pared through collaborative participation in the Communications and Networks
Consortium sponsored by the U.S. Army Research Laboratory under the Collab-
orative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-
0011. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon. This
work was also supported by the National Science Foundation Wireless Initia-
tive under Grant 99-79443. This paper was presented in part at the 36th Annual
Conference on Information Sciences and Systems, Princeton, NJ, March 2002.

Y. Larsen was with the Department of Physics, University of Tromsø,
NO-9037 Tromsø, Norway. He is now with NORUT Information Technology
Ltd., NO-9294 Tromsø, Norway (e-mail: yngvar@itek.norut.no).

G. Leus is with the Faculty of Electrical Engineering, Mathematics, and Com-
puter Science, Delft University of Technology, 2628 CD Delft, The Netherlands
(e-mail: leus@cas.et.tudelft.nl).

G. B. Giannakis is with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail: geor-
gios@ece.umn.edu).

Digital Object Identifier 10.1109/TCOMM.2004.826413

I. INTRODUCTION

I N CASES WHERE it is undesirable or impossible to
estimate the channel accurately at the receiver, one can

rely on differential encoding schemes to eliminate the need
for channel estimation at the receiver. Despite its importance,
conventional differential encoding has been designed only for
flat-fading channels, and exhibits an error floor when used
with frequency-selective channels. Certainly, one can rely
on orthogonal frequency-division multiplexing (OFDM) to
transform a frequency-selective channel into a set of flat-fading
subchannels; see, e.g., [13]. On each subchannel, one can
then use the conventional differential encoding. Unfortunately,
this technique suffers from loss of multipath diversity, and
undesirable nonlinear effects due to very high peak-to-average
power ratio (PAPR). A conventional way to exploit mulitpath
diversity and reduce the PAPR is to employ coded differential
OFDM (CDOFDM) [1], combined with a suitable PAPR
reduction scheme, such as tone reservation [12].

In [7], a block differential encoding scheme over the subchan-
nels that preserves the multipath diversity is designed. In this
paper, we take a major step further, and design a block differ-
ential encoding scheme over the subchannels that not only pre-
serves the multipath diversity, but also preserves the constant
modulus property. The constant modulus transmitted symbols
ensure that the PAPR remains low.

The proposed approach relies on constant modulus sequences
that have ideal periodic autocorrelation properties, i.e., their au-
tocorrelation functions are nonzero only for the zeroth lag [2],
[9]. In order to design a differential encoding scheme that re-
sults in constant modulus transmissions, we will exploit the dual
property: constant modulus sequences with ideal periodic auto-
correlation properties have constant modulus entries also in the
frequency domain.

Since the proposed constant modulus technique includes a
form of repetition coding in the frequency domain with a rate
that is inversely proportional to the square root of the number
of subcarriers, we need to make up for the rate loss by using
large size constellations. This implies that the block length can
not be chosen arbitrarily large without losing either rate, or,
bit-error rate (BER) performance. Thus, even common OFDM
block lengths, like 64 or 128 symbols, may result in poor BER
performance at full rate. However, if we relax the constant mod-
ulus requirement, it is possible to construct a system with low
PAPR by grouping the subcarriers into shorter subblocks in a
certain way, and apply the constant modulus scheme to each
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subblock. This establishes an upper bound on the PAPR of the
symbol-rate samples, which leads to an appreciable reduction
of the continuous-time PAPR.

The rest of this paper is organized as follows. In Section II, we
introduce the system model, and describe the concept of block
differential encoding, in general. In Section III, we focus on the
design of a block differential encoder that results in perfectly
constant modulus transmissions. A low-complexity maximum-
likelihood (ML) detector is introduced in Section IV, and its per-
formance is analyzed in Section V. A subgrouping scheme that
employs the constant modulus scheme on groups of subcarriers,
with PAPR reduction as a result, is outlined in Section VI. In
Section VII, we describe how additional complex field coding,
linear in the phase domain, can enable extra multipath diversity,
and thus improve performance, relative to the simple scheme in
certain tradeoff situations. Finally, the methods are compared to
existing schemes in Section VIII, and our main conclusions are
summarized in Section IX.

Notation: Upper (lower) bold face letters are used for matrices
(column vectors); and denote transpose and Hermi-
tian transpose, respectively; denotes the th entry of a
matrix, and denotes the th entry of a vector; denotes
the identity matrix; denotes an all-zero
matrix; denotes an all-one matrix; is
a diagonal matrix with the vector on its diagonal; de-
notes matrix trace; denotes statistical average; and finally,
the matrix defined by is the

normalized fast Fourier transform (FFT) matrix.

II. SYSTEM DESCRIPTION

In transmissions over frequency-selective channels,
channel-induced intersymbol interference (ISI) arises. To
mitigate this dispersive effect, it has been proven useful to
transmit and process the serial information symbols in blocks
[13]. Specifically, the serial information symbols are grouped
into blocks , where is the block index, and the block
length is much larger than the channel order . We define
the channel tap vector by ,
which throughout this paper is assumed to be zero-mean,
multivariate complex Gaussian distributed. Define as
a lower triangular Toeplitz matrix with the first
column given by , and as a
upper triangular Toeplitz matrix with the first row given by

. We can now relate the
received signal blocks to the transmitted signal
blocks by [13]

(1)

where denotes the noise block, which has independent
and identically distributed (i.i.d.) zero-mean complex Gaussian
entries with variance per dimension.

The interblock interference (IBI), the second term in the
right-hand side (RHS) of (1), can be removed by using a cyclic
prefix of length , at the cost of reducing the spectral efficiency
to , where is an upper bound on the channel

order, which for the rest of this paper is assumed equal to the
true channel order , and available to both transmitter and
receiver.

Now, replace the information block in (1) by an
information block preceded by a cyclic prefix of length ,

such that . At the receiver side, we discard the first
entries of the received vector to obtain the

vector . The resulting combined channel matrix
is now circulant with as its first column.
This brings the input–output relationship to the matrix-vector
form , where the noise block
consists of the last entries of the original noise vector ,
see, e.g., [13].

Circulant matrices are diagonalized by FFT and inverse FFT
(IFFT) operations. Thus, if we introduce the matrix

with , the circulant channel matrix
can be factored as , where
is a diagonal matrix with the -point FFT of the channel tap
vector along the diagonal. In order to convert the circulant
channel matrix into a diagonal matrix, we start by letting each
transmitted block be the IFFT of a block differentially en-
coded symbol block ; i.e., . At the receiver,
each block is FFT processed, leading to

(2)

where . Observe that the system now consists of
flat-fading subchannels.
The block encoding process starts by defining a one-to-one

map from the set of information-bearing
symbol blocks , to a group of unitary and diagonal
generator matrices . Here, is the code rate in information
symbols per channel symbol. The generation of differentially
encoded blocks follows the recursion

(3)

where the th generator matrix conveys the informa-
tion corresponding to the th information symbol block

.
Inserting (3) into (2), we obtain

(4)

where the diagonal matrices and commute. Hence, we
find that successive received blocks obey the recursion

(5)

where . Since both the FFT ma-
trix and are unitary matrices, has entries that are i.i.d.
zero-mean complex Gaussian variables with variance per di-
mension. Note that this is twice the variance of the original noise
vector , which is a manifestation of the inherent 3-dB loss of
differential detectors, relative to coherent detectors.
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Fig. 1. Block diagram of the differential system described in Section II. The differential encoder is given in (3), and the differential decoder is given in (10). The
nth original N � 1 information block and the nth N � 1 decoded block are denoted as s[i] and ŝ[i], respectively.

A block diagram of the block differential encoding system
described in this section is shown in Fig. 1.

III. CONSTELLATION DESIGN

The main objective of this paper is to design and such
that the transmitted blocks have constant mod-
ulus entries. As , we choose one of the Zadoff–Chu sequences
[2], [9]

even
odd

(6)

where , and is the energy of the trans-
mitted symbols. This sequence has the remarkable property that

, ; i.e., the FFT and IFFT
of the constant modulus both retain constant modulus.

For a block length , with ,
we can define generator matrices

(7)

where is the cardinality of the alphabet of the
input symbols, denotes the Kronecker product, and the
entries of the information-bearing vector may
be any unit modulus complex numbers. The can, for
instance, be chosen from an alphabet with cardinality

. Thus, since the entries of
must have unit modulus, we take them to be -phase-shift
keying (PSK) symbols.

The finite set now has the following impor-
tant properties.

P1) All generator matrices are diagonal and uni-
tary.
P2) The set forms a group under matrix multiplication.
P3) The block vector has constant modulus en-
tries for all generator matrices [9].

Notice that these properties ensure that all possible transmitted
blocks have constant modulus entries.

IV. DETECTION

The ML detector, conditioned on and , for the
system described in Section III is given by

(8)

The complexity of this ML detector is exponential in the block
length . However, since the subchannels can be grouped into

groups that carry mutually independent information, it turns
out that a major simplification is possible without losing the
ML optimality. Define , , and

. Then we can write (8) as

(9)

where we have used that in (7) is unitary, and
for , . Each of the terms in the outer sum-
mation can be maximized separately, since they correspond to
mutually independent information. Recall that

, where is the phase difference between the com-
plex numbers and . Hence, is maximized when-
ever the phase difference is minimized, and we can write

(10)

where is the phase of , the inner
summation of (9), rounded to the closest multiple of .
The complexity of this simplified ML decoder is linear in the
block length , which yields very efficient decoding.

The Kronecker product operation in (7) essentially corre-
sponds to repetition coding over flat-fading subchannels in the
frequency domain. Because an th-order channel can have
at most zeros, one can argue that unique decodability of
the system (5) in the absence of noise can be guaranteed if
we choose ; i.e., we repeat each information
symbol more times than the maximum possible number of
channel zeros. This can be confirmed also from (9). In the
absence of noise, the inner sum is equal to the desired symbol

, weighted by . This weight is real and
positive if and only if , since, in that case, not all the
(nonnegative) terms can be zero. Hence, for the performance
analysis in Section V, we will assume that .

V. PERFORMANCE ANALYSIS

In this section, we will obtain high-signal-to-noise ratio
(SNR) closed-form expressions for the diversity order and
coding gain enabled by our block differential encoder. Based
on these expressions, we will see that our scheme enables the
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maximum possible multipath diversity order over (possibly
correlated) frequency-selective channels.

The pairwise error probability (PEP) is defined as the prob-
ability that an ML detector incorrectly decodes an information
block as . Under the assumptions that the channel vector
is multivariate zero-mean complex Gaussian distributed, and the
SNR is high, the conditional PEP is upper bounded by [11]

(11)

where . We have
dropped the block indexes of the information blocks and ,
and generator matrices and for notational convenience. At
high SNR, we can ignore the terms of that depend on

. This means that , with
, such that we can write the Euclidean dis-

tance as
, where

. Note that since ,
is independent of the previous transmitted symbol

.
In general, the entries of the channel vector are

correlated, with correlation matrix . The rank
of this matrix satisfies . Eigenvalue
decomposition of yields

(12)

where is an
positive definite diagonal matrix with the nonzero eigen-
values along the diagonal, and is an
matrix with the corresponding orthonormal eigenvectors as
columns. Now, define the prewhitened channel vector

, with correlation
matrix given by . Then we can write

(13)

where , and . To
further simplify this equation, we start by dividing the matrix
into submatrices , where

, , such that
we have . Observe that

, if , which is already assumed in order to
guarantee unique decodability. If we then define the error
vector as the difference between the information
vectors corresponding to and , respectively [cf. (7)], we
can write

(14)

which shows that (13) can be written as

(15)

Fig. 2. Required SNR versus K for systems with rate R log Q = 1, and
given values of BER.

Inserting (15) into (11), and averaging with respect to the i.i.d.
Rayleigh random variables gives us an upper bound on the
average PEP at high SNR (see also [11])

(16)

The diversity order is defined as , i.e., the
slope of the average PEP as a function of SNR, on a doubly
logarithmic scale, minimized over all possible error vectors .
This slope is, in general, determined by the rank of the matrix

. If has full rank , the diversity order is

(17)

which is the maximum achievable for a given channel. In our
case, (14) shows that has full rank , which implies
that maximum diversity is achieved by our method.

The coding gain is defined as

(18)

where is the min-
imum distance between two symbols in a -PSK constel-
lation. Despite the linear factor , the exponential decrease of

with causes the coding gain to decrease monotonically
with . Fig. 2 shows the SNR needed to achieve a given BER
as a function of , estimated from Monte Carlo simulations.
We have used a rate of . Due to the require-
ment that , we cannot use the same channel for each
value of (unless , which is uninteresting). Thus, we
choose , which enables the maximum possible multi-
path diversity for each . The results also hold for cases where
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, i.e., if we do not exploit all multipath di-
versity provided by the channel. Note that including the cyclic
prefix overhead, the overall rate is now, in fact, a slowly varying
function of given by
b/s/Hz. We observe that for , the required SNR to achieve
a given BER starts to increase exponentially. Thus, may
be the largest acceptable value in a practical situation, which
limits the maximum block length to . In Section VI, we
will propose a subchannel grouping scheme, where each sub-
channel group may contain only elements. This
will improve BER performance at the cost of higher PAPR than
the proposed constant modulus scheme.

The factor 1/2 in (18) reflects the 3-dB loss, compared with
a coherent receiver. By employing multiple-symbol differential
detection [4], this 3-dB loss can be partially recovered, at the
cost of increased decoding complexity and delay. This method
exploits the fact that a differentially encoded system has infinite
memory under time-invariant channel conditions. Analysis of
such a system, however, is beyond the scope of this paper.

VI. PAPR REDUCTION BY SUBCHANNEL GROUPING

Recall that the coding gain in (18) is a monotonically de-
creasing function of for fixed and . This is due to the
need for a higher order PSK constellation to make up for the
rate loss caused by the inherent repetition coding, cf. (7). In
an OFDM context where the channel, and thus the required
block length, may be long, this is an obvious drawback. For in-
stance, in a system with subcarriers, we need
to use -PSK symbols. To maintain a reasonable rate, say

with binary (B)PSK signaling , this amounts
to using 64-PSK symbols, which, in turn, leads to unaccept-
able performance, in spite of the eight-fold repetition code. In
fact, it has been noted in related contexts that in order to keep
the discrete-time PAPR under a specified threshold when the
block length increases, one has to sacrifice either rate or min-
imum Euclidean distance in the constellation [8]. Thus, perfect
constant modulus transmitted symbols in a differential OFDM
system may not always be practical (though in the coherent
case, one can, for instance, achieve this by using single-carrier
block transmissions as suggested in [15]). However, we may
relax the constant modulus requirement. Keeping the PAPR of
symbol-rate samples below a specified level may be sufficient
for practical purposes, and that is the approach we will follow
in this section.

Let the transmitted block be the block
, with a cyclic prefix of length inserted. Let

also the block length of the OFDM system be , where
as in Section V, and is the number of partitions. The

discrete-time PAPR is now defined as

(19)

where we have assumed -norm ergodicity of the ensemble
, i.e., we have transmitted enough blocks for to

reach its maximum value for some . This is equivalent to the
true PAPR, when rectangular shaping pulses are assumed. For
realistic shaping pulses, one has to consider the PAPR of an

oversampled and filtered version of the symbol block , de-
fined as in (19), but with replaced by the oversampled and
filtered version. In the simulations, we will take this into ac-
count. However, the analysis below will use the definition in
(19), assuming that reduction of the PAPR of the critically sam-
pled signal will lead to a PAPR reduction also for the contin-
uous-time waveform.

For any OFDM with PSK symbols, we have
. Also, we

have , with equality if
, where is any PSK symbol. Substituting these into

(19), we find that .
Note that since the channel order could be relatively large,

we may not choose , such that we do not enable
maximum diversity anymore. However, a diversity order of, for
instance, may be sufficient, since the scheme must be
combined with some kind of error-control coding in practice.

Let the index set of the subchannels be denoted by
. Following the idea in [3], [5], and [13], we

can now represent the subchannel grouping by partitioning
into nonintersecting index subsets of equal size given by

(20)

In the following, we will drop the block index for nota-
tional convenience. Now, let be the subblock of
the information block corresponding to the index
subset , and define the diagonal matrix

. Then
the transmitted symbol block can be written as

(21)

By applying the constant modulus block differential encoding
described in Section III on the subblocks separately, we ob-
tain

(22)

where we have used that , by design,
which means that each entry per subblock has a maximum mod-
ulus of . The maximum -norm is attained, for instance,
if . The discrete-time PAPR can now be expressed
as . This amounts to a re-
duction of the discrete-time PAPR by a factor of
relative to the conventional OFDM system. This will lead to a
reduction of the continuous-time PAPR. The resulting reduction
of nonlinear effects will be good to moderate depending on the
system parameters, as will be shown in Section VIII.

VII. COMPLEX-FIELD CODING

In Section VI, we have mapped groups of
information bits to each -PSK entry in the vector by,
for instance, a Gray mapping. This enables the simplified ML
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decoder in (10). Letting denote entrywise exponentia-
tion, we can write this as

(23)

where is a bit vector formed by stacking the bits
corresponding to the symbols in the input block ,
and is a Gray mapping from a bit vector to the cor-
responding PSK waveform number. (Note that this is a slight
abuse of the Kronecker notation, since the mapping is not
strictly linear.) The Gray mapping can be implemented as

(24)

where denotes modulo 2 addition, is a bit vector, and
the matrix is defined by

...
. . .

... (25)

When , this system does not enable maximum di-
versity. Thus, by additional coding, we may enable the max-
imum possible diversity in (17). A bandwidth-efficient means
of enabling extra diversity is by complex field coding over the
different elements in , at the cost of increased receiver com-
plexity. Since the elements of still need to have unit mod-
ulus, we may only perform transformations in the phase domain.
Toward this end, we define a new mapping

(26)

where is a matrix. The design of the coding matrix
is somewhat different from the coding matrices in, e.g., [14],

in that they operate in the (modular) phase space. This implies
that has to be real, and that the sum of the entries of the vector

need to be bounded to avoid phase wrapping.
In addition, the sum of the elements of any row in must be
strictly less than , and all elements must be
nonnegative. One way to construct such a matrix is to let it be
a circulant matrix with as its
first row. Using such a will enable us to recover the vector
from a single entry of , since it corresponds to mapping
the bits in the vector to a -PSK constellation in
different ways. Following steps similar to those in [14], it can be
shown that such a will ensure the maximum possible diversity
order , even when .

The design in the previous paragraph will work, but since
the rightmost elements of the first row of are very small (or
equivalently, the resulting constellation has a very large dimen-
sion), the diversity enabled by the complex field coding will
show up only at very high SNR. In practice, only the two largest
elements will contribute to the performance for realistic SNR

values. Therefore, we may choose to be a circulant matrix
with as its first row. Note that
may be a very small number if is large. The size of this
number obviously determines the level of SNR for which the
extra diversity starts to show up. Thus, we may conclude that for
given values of and , the complex field coding discussed in
this section may only be worthwhile for small values of . In
practice, this means that for full-rate systems , complex
field coding will not improve performance for practical SNR
values. In Section VIII-D, we demonstrate this effect by numer-
ical simulations.

VIII. NUMERICAL SIMULATIONS

In this section, we will demonstrate the performance of the
methods developed in this paper by numerical simulations.

A. Comparison With Conventional Differential Encoding

To demonstrate the capability of the constant modulus
scheme in a single-carrier context, we consider signaling
over a two-path channel. Such a channel could, in a practical
situation, for instance, arise as the result of an inaccurate
blind channel equalization procedure. The 2 1 channel tap
vector is zero-mean complex Gaussian,
with covariance matrix . To ensure
unique decodability, we choose , which
yields a block length . The spectral efficiency is

. We consider BPSK information symbols
and rate , such that . Thus, the

entries of in (7) must be chosen from a quaternary (Q)PSK
constellation. To increase the coding gain of our system, we let
the map be a Gray mapping, e.g., [10, p. 170].

We will compare the performance of our proposed trans-
mission scheme with that of conventional differential BPSK
(DBPSK); see, e.g., [10, p. 272]. Due to the nonflat channel
response, the DBPSK scheme will suffer from ISI, which will
result in saturation of the BER curve. We will consider two
different channels: Ch1): and ; and Ch2):

and .
For our proposed scheme, we will use the ML detector in

(10), while for the DBPSK scheme, we will use the detector
given by , where
and denote the received samples and the detected symbols,
respectively. This detector is ML optimal in the flat-fading case.
Hence, it is natural to compare the performance of our method
with this.

Fig. 3 shows BER as a function of SNR, where we have de-
fined . In the first
channel, we have significant ISI, and as expected, the perfor-
mance of the conventional DBPSK scheme is poor. Our scheme,
on the other hand, exploits the diversity provided by the multi-
path channel, as seen by the slope of the BER curve. Channel
Ch2) is very close to flat fading, since the second channel path
has much lower power than the first. Nevertheless, a significant
error floor is present in the DBPSK curve. The constant mod-
ulus scheme, on the other hand, exploits the multipath diversity,
but the coding gain decreases compared with the first example,
due to the reduced [cf. (18)].
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Fig. 3. Performance comparison between DBPSK and our proposed scheme
for two different two-path channels. Ch1): R = diagf[ 2=3 1=3 ]g. Ch2):
R = diagf[ 1=1:05 0:05=1:05]g. The block length isN = 4, and we have
used R = 1 and Q = 2.

B. Comparison With Block Differential OFDM

In an OFDM context, standard differential encoding on each
subcarrier yields poor performance due to loss of multipath di-
versity. However, the block differential encoding scheme pro-
posed in [7], called block differential OFDM (B-DOFDM), pre-
serves maximum diversity. This method divides the subcar-
riers into groups of length in an optimal way, and en-
codes each block differentially, similar to (3), but with different
generator matrices .

We will here compare our proposed method with B-DOFDM
for a three-path channel with correlation matrix

. We assume that the original information symbols are BPSK
symbols, and that . For the scheme proposed in this paper,
we choose block length . Hence,
since , the entries of in (7) are chosen
from an 8-PSK constellation. For the B-DOFDM scheme, we
use the same block length, and divide the nine subcarriers into
three groups of subcarriers. For both methods, we let
the map from information blocks to generator matrices be
a Gray mapping to improve the coding gain.

The nonlinear effects introduced by the power amplifier will
degrade the performance of a nonconstant modulus transmis-
sion. To demonstrate this effect, we introduce a clipping of the
transmitted signal. Specifically, we define the input back-off
(IBO) to be , the ratio between
the input power corresponding to a clipping at amplitude and
the signal power. For our transmission scheme, clipping has no
direct effect on the critically sampled symbols, since these al-
ways have a constant amplitude less than the clipping level. For
the B-DOFDM scheme, clipping results in a small loss of coding
gain, and, more importantly, a BER saturation level.

Note that in practice, it is the continuous-time waveform en-
tering the power amplifier that gets clipped. This waveform may
have peaks between the symbol-rate samples used in the detec-
tion. Clipping of these peaks introduces some nonlinear effects,
even in our scheme. However, simulation of this phenomenon is
beyond the scope of this paper, and it is thus ignored, assuming

Fig. 4. Performance comparison between B-DOFDM and our proposed
scheme for a three-path channel with autocorrelation matrix R = I , and
block length K = 9. The performance of B-DOFDM is shown for several
values of IBO, as well as the ideal, nonclipped case.

that this effect results in an equal degradation of the BER per-
formance of all considered schemes. The results below should
be interpreted with this in mind.

The simulation results are shown in Fig. 4. Both methods
achieve full diversity without clipping. Consequently, the BER
curves are parallel at high SNR. For BER , B-DOFDM
has about 2 dB better performance. However, as mentioned ear-
lier, clipping degrades the performance of B-DOFDM, while the
scheme proposed in this paper is not affected. For BER ,
the constant modulus transmission scheme performs about 1 dB
better than B-DOFDM with IBO dB. With even more clip-
ping, the B-DOFDM technique never achieves BER
due to a high BER saturation level.

C. PAPR Reduction

Define the instantaneous PAPR by

where is an upsampled and filtered version of , and
is the upsampling factor. This is a much more accurate

approximation of the continuous-time waveform than the
symbol-rate sampled . The oversampling factor used here
is , and the IFFT-based oversampling strategy is given
in [12, p. 18]. This strategy corresponds to using sinc pulses,
which, in practice, are not usable due to high out-of-band
radiation. However, using more realistic shaping pulses, like
a square-root raised cosine, will not alter the results below
significantly. Hence, we will use the IFFT-based oversampling
strategy for simplicity.

Fig. 5 shows estimates of , the PAPR
outage probability, obtained by randomly selecting 100 000
input blocks and channels. For the conventional coded differen-
tial OFDM (CDOFDM) system, we use differential (D)QPSK

over each of the 48 subcarriers. On each side of the
data block, we insert eight zero carriers as a guard band, such
that the overall FFT size is . The information bits are
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Fig. 5. PAPR outage probability of conventional differential OFDM (dashed)
with block length ~N = 48, and the scheme proposed in this paper (solid) with
M = 3 groups of N = 16 subcarriers, respectively. The transmission rate is 1
b/s/Hz for both systems.

coded by an optimal four-state trellis code [10, p. 492] with rate
, yielding an overall rate of . The coded

bits are then mapped onto QPSK symbols and differentially
modulated. The decoding complexity of this scheme is .
For the proposed scheme, we apply the block differential
encoding on groups of subcarriers, also with
eight zero carriers on each side. The rate is
as in the CDOFDM scheme, and the complexity is , as
seen in (9). We have also included the result of combining the
CDOFDM scheme with the PAPR reduction scheme outlined
in [12, p. 81], which is based on tone reservation. To keep
the additional transmitter complexity of this iterative method
reasonable, we limit the number of iterations (each of which
is ) to five, the step size used is , the clip level
is 6 dB, and we aim to cancel only the largest peak. The four
reserved subcarriers are chosen by random optimization [12,
p. 91] from the set , that is, we have reduced
the number of guards to six on each side of the information
block, in order to maintain the same rate as for the proposed
scheme. For completeness, the PAPR outage probability for
a conventional single-carrier DQPSK transmission using sinc
pulses is also shown.

Observe that we have achieved a gain relative to the conven-
tional CDOFDM system of 1.5 dB at

, and 2.5 dB at , respectively.
The PAPR reduction achieved is comparable to the result
achieved by tone reservation with a reasonable number of
iterations.

Fig. 6 shows the corresponding results for a system with 128
subcarriers. The proposed scheme uses groups of

subcarriers, and 16 zero carriers on each side, while the con-
ventional CDOFDM uses 96 subcarriers, and 16 zero carriers
on each side. The tone reservation scheme uses eight reserved
subcarriers chosen from the set by random
optimization, the step size is , the clip level is still 6 dB,
and we use 12 zero carriers on each side.

Observe that with these parameters, the tone reservation
scheme performs about 1 dB better for PAPR outage probabil-

Fig. 6. PAPR outage probability of conventional differential OFDM (dashed)
with block length ~N = 48, and the scheme proposed in this paper (solid) with
M = 3 groups of N = 16 subcarriers, respectively. The transmission rate is 1
b/s/Hz for both systems.

Fig. 7. Comparison of BER performance for the systems compared in Figs. 5
and 6.

ities smaller than 0.1, and that the PAPR gain of the proposed
scheme is moderate.

Fig. 7 shows the BER performance of the systems used above
for rate , as well as for an uncoded DOFDM with the
same rate. The channel taps are i.i.d. zero-mean
complex Gaussian variables with variance . The pro-
posed scheme provides a diversity order of , and thus has
a performance comparable with the CDOFDM scheme. Notice
that the tone reservation does not affect BER performance, since
the reserved tones simply are discarded at the receiver.

D. Complex Field Coding

As mentioned in Section VII, using turns out to yield
better BER performance only for low rates . We demon-
strate this by an example. Let the block length be , and
the channel order be . Here, , such that we do
not enable maximum multipath diversity without extra complex
field coding, i.e., with . Assuming BPSK symbols

, and defining to be circulant with
as its first row, we enable more diversity.
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Fig. 8. BER curves for the complex-field-coded constant modulus scheme.
Block length isN = 16, and the channel has order L = 10. For the solid lines,
we have used ��� = I with rate R = 1=2 (squares) and R = 1=4 (circles),
respectively. The dashed lines are the corresponding results when we let ��� be
circulant with [ 1 16 0 0 ] as its first row.

In Fig. 8, we show the BER performance with (dashed lines)
and without (solid lines) extra complex field coding for rates

(squares) and (circles), respectively. For
rate , the extra diversity starts to show up at around
6 dB, yielding a 1-dB SNR gain at BER , which is not
a lot, considering that we have sacrificed the linear decoding
complexity of the simple scheme. For rate , however,
the extra diversity shows up already at 0 dB, yielding a 3-dB
SNR gain at BER .

Note that the cyclic prefix overhead in this case is rather large,
which leads to a reduced spectral efficiency. However, this can
be mitigated, without changing the BER performance, by re-
laxing the constant modulus requirement, as discussed in Sec-
tion VI.

IX. CONCLUSIONS

We have in this paper designed a block differential encoding
scheme that exploits the multipath diversity of a frequency-se-
lective channel, and at the same time preserves the constant
modulus property of the original time-domain symbols. Con-
stant modulus transmitted symbols ensure that the PAPR of the
transmitted waveform is reduced by a large factor, thus reducing
the nonlinear effects of the power amplifier.

We have shown that the ML decoder for our system could be
simplified to yield a decoder with complexity that increases only
linearly with the block length. Extension to multiple-symbol
differential detection, at the cost of increased complexity, is
straightforward. Analysis of the PEP showed that our method
preserves the multipath diversity. The coding gain, however,
turned out to be a monotonically decreasing function of the
block length, which means that the performance under moderate
SNR conditions will degrade for large block lengths.

The scheme may be applied in practical OFDM systems
by grouping the subcarriers into shorter subblocks, and ap-
plying the constant modulus scheme to each of the subblocks
separately. This yields an upper bound on the PAPR of the

symbol-rate samples, which, in turn, leads to a reduction in the
continuous-time PAPR.

In situations where we can sacrifice rate, additional com-
plex field coding, linear in the phase domain, yields better per-
formance by enabling more multipath diversity, provided that
the channel is long enough that the simple constant modulus
scheme does not already exploit all the diversity provided by
the channel.

Numerical simulations indicated that the proposed con-
stant modulus scheme significantly outperforms conventional
DBPSK, even in nearly flat-fading channels, such as a channel
with a small blind equalization error. The method was also
compared with an existing B-DOFDM scheme, and found to
have comparable performance in short channels, even when
nonlinear effects are ignored. Due to the constant modulus
property of the transmitted symbols, our method does not suffer
much from nonlinear effects, and consequently has superior
performance for high SNR when input clipping is introduced.
For a moderate number of subcarriers, it was shown that the
proposed subcarrier grouping scheme may improve diversity,
and at the same time, has BER and PAPR characteristics similar
to CDOFDM with tone reservation, with lower encoder and
decoder complexity. For a larger number of subcarriers, the
PAPR reduction is smaller, though this can be mitigated by
increasing the subcarrier group size, thereby trading off rate or
BER performance. Finally, we showed that additional complex
field coding yields better performance when low rates are
considered, at the expense of a higher decoding complexity.
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