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Abstract—We construct unitary noncoherent space–time constellations,
which can be considered as a concatenation of a training block with an or-
thogonal design. With a simple construction, our constellations are easy to
design, enjoy full antenna diversity, allow for a simplified maximum-likeli-
hood (ML) detector, and achieve error performance comparable to existing
designs that rely on computer search. To exploit the constellation structures
and improve coding gains, we further pursue a trellis-coded modulation
(TCM) approach. Based on the sequence pairwise error analysis, we iden-
tify two simple parameters to quantify the asymptotic error performance,
which enables us to compare among different TCM schemes or uncoded
alternatives.

Index Terms—Fading channel, noncoherent, performance analysis,
space–time (ST), trellis-coded modulation (TCM).

I. INTRODUCTION

Recent information-theoretic results [8], [18], [13], [20] on mul-
tiantenna communications have awakened great interest in coherent,
differential, and noncoherent space–time (ST) system designs. In this
work, we focus on noncoherent ST system designs.

When the channel is unknown at both the transmitter and the re-
ceiver, capacity analysis suggests a scaled unitary matrix ST signaling
structure [13]. Motivated by this result, unitary ST modulation was in-
troduced in [10]. Exact and Chernoff bound expressions for the pair-
wise error probability (PEP) were given, and an initial unitary ST con-
stellation design method was described. More advanced constellation
design methods were reported in [11], [1] and [14], relying on different
distance metrics: [11], [1] used the chordal distance, which does not
guarantee full diversity; whereas [14] adopted a distancemetric derived
from the asymptotic union bound (AUB), which guarantees full diver-
sity. For large constellations, however, the AUB is generally a loose
bound for the SEP. Constellations achieving the best AUB do not nec-
essarily achieve the best performance. In [1] and [14], no extra structure
was imposed on the unitary ST constellations, and the proposed design
methods were based on a cumbersome computer search. In [11], on
the other hand, a block circulant correlation structure was imposed on
the unitary constellations. This rendered the computer search and op-
timization more tractable, but still rather inefficient when the constel-
lation size is large. Pilot-based noncoherent designs became available
recently [5], [6], [17]. In these approaches, channel coefficients are first
estimated based on the pilot symbols. Then, coherent detection is per-
formed using the obtained channel estimates. However, this detection
approach is inherently suboptimal.
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In the first part of this work, we introduce novel unitary constella-
tions based on the orthogonal design. They can be viewed as a spe-
cial pilot-based design that enables low-complexity noncoherent max-
imum-likelihood (ML) detection. In Section II, we describe our channel
and system models. In Section III, we present our unitary constella-
tion in the framework of pilot-based designs, identify several useful
properties that characterize the error performance and structure of this
constellation, and most importantly, develop a low-complexity detector
that enjoys ML optimality. We also compare the error performance of
our constellations with those in [11].
It is widely accepted that ST signals can serve as their own channel

codes [15], [16]. Nonetheless, due to the inherent orthogonal structure,
our constellations may exhibit limited coding gains. To exploit the rich
diversity and boost coding gains, we pursue a trellis-coded modulation
(TCM) approach for the noncoherent ST system in the second part of
our work. In Section IV, we describe the block diagram of the nonco-
herent ST TCM scheme, perform set partitioning for the unitary con-
stellations, and identify two simple parameters to quantify asymptotic
error performance based on the sequence PEP. Of these two parame-
ters, the primary one is the diversity order; whereas the secondary one
is the asymptotic coding gain. We also provide TCM design examples
and simulations to verify our analysis. Finally, we conclude our work
in Section V.

Notation: Upper (lower) bold face letters denote matrices (column
vectors); (�)�, (�)T , and (�)H denote conjugate, transpose, and Hermi-
tian, respectively; k � k represents the Frobenius norm; IIIN denotes the
N �N identity matrix; and 0M�N denotes theM �N all-zero ma-
trix. Finally, and stand for the natural and complex number field,
respectively.

II. CHANNEL AND SYSTEM MODELING

We consider a noncoherent ST communication system with M

transmit and N receive antennas. The channels between the different
transmit and receive antennas are assumed to be mutually independent
and block Rayleigh faded. Let HHH be the channel coefficient matrix
with (i; j)th entry, hi;j , denoting the channel coefficient from the
ith transmit to the jth receive antenna. Then, hi;j � CN (0; 1),
i 2 f1; . . . ;Mg, j 2 f1; . . . ; Ng. The matrix HHH remains constant
during the channel’s coherence interval of length T , and varies
independently from block to block. During each block interval of
length T , a matrixXXX 2 C is transmitted, where C is a noncoherent ST
constellation and comprises L scaled unitary matrices with dimension
T �M . Mathematically, XXXH

XXX = T IIIM , 8 XXX 2 C. Transmitting
the M columns of XXX simultaneously via the M transmit antennas,
we obtain the received matrix YYY in additive white Gaussian noise
(AWGN) as

YYY =
�

M
XXXHHH +NNN (1)

where � is the signal-to-noise ratio (SNR) per receive antenna andNNN is
the AWGN matrix with independent and identically distributed (i.i.d.)
entries ni;j � CN (0; 1), i 2 f1; . . . ; Tg, and j 2 f1; . . . ; Ng.

III. CONSTELLATION DESIGN

In this section, we will present a simple constructive design of uni-
tary ST constellations. After reviewing some preliminaries, the pro-
posed design for two transmit antennas, M = 2, will be studied in
detail. Some useful properties of the obtained constellation indicating
its error performance and structure will be identified. Furthermore, a
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simple ML detector will be derived, and comparisons with the system-
atic design of [11] will be provided. Finally, we will give an example
guiding the generalization of this design to more than two transmit an-
tennas.

A. Preliminaries

To put our work in context, we will first go over some existing results
on unitary ST modulations. The following results are available in [10]
and [11]. Given the data model (1) and the constellation C, the ML
estimate for XXX is

X̂XXML = argmax
XXX2C

p(YYY jXXX) = argmax
XXX2C

kXXXHYYY k2 (2)

where X̂XXML is found by maximizing the energy ofXXXHYYY . We can de-
rive a union-type upper bound for the symbo error probability (SEP) as

Ps � 1

L
XXX;XXX 2C; XXX 6=XXX

Pe(XXX ! XXX 0) (3)

whereL is the cardinality of C and Pe(XXX ! XXX 0) is the PEP defined as

Pe(XXX ! XXX 0) := P (kXXX 0 YYY k2 > kXXXHYYY k2 j XXX):

The closed-form PEP expression is known when theM singular values
ofXXXHXXX 0=T are equal. The Chernoff upper bound for the PEP can be
derived as follows:

Pe(XXX ! XXX 0) � 1

2

M

m=1

1

1 +
(�T=M) (1�d (XXX;XXX ))

4(1+�T=M)

N

where 1 � d1(XXX;XXX 0) � � � � � dM(XXX;XXX 0) � 0 are theM singular
values of XXXHXXX 0=T . For high SNR, a distance metric, the diversity
product distance, can be extracted from this bound to guide constella-
tion designs

�DP (XXX;XXX 0) =

M

m=1

(1� d2m(XXX;XXX 0))

1=2M

=

M

m=1

sin(�m(XXX;XXX 0))

1=M

(4)

where �m(XXX;XXX 0) is the mth principal angle between the two sub-
spaces spanned by the columns ofXXX andXXX 0. A related distance metric
is the subspace distance defined in [9, p. 603]

�S(XXX;XXX 0) = min
m=1;...;M

(1� d2m(XXX;XXX 0))1=2

= min
m=1;...;M

sin(�m(XXX;XXX 0)): (5)

Finally, the diversity product � of a constellation C is defined as

� = min
XXX;XXX 2C; XXX 6=XXX

�DP (XXX;XXX 0):

When � > 0, C enjoys full antenna diversityMN .

B. Constellation Design for M = 2

We now introduce a novel class of unitary ST constellations that can
be designed in an algebraic fashion, without requiring any computer
search. As pointed out in [12], to guarantee full antenna diversity, a
unitary ST constellation must satisfy T � 2M . We will concentrate on
the case T = 2M . Due to its importance, we will describe and analyze
the constellation for two transmit antennas M = 2. Specifically, our
goal here is to construct a unitary ST constellation Ca with L matrices
of dimension 4�2. Our design is inspired by the well-known Alamouti
scheme [2], which is the unique complex orthogonal design for two

transmit antennas that achieves full diversity at 1 symbol per channel
use in coherent ST systems [15].
The design procedure for Ca with L = Q2, Q 2 , is as follows.

We first construct a single matrix XXX 2 Ca by concatenating a known
unitary matrix TTT with the 2 � 2 complex orthogonal design OOO2�2.
Intuitively, thematrixTTT can be considered as a trainingmatrix; whereas
OOO2�2 carries information symbols. The matrices TTT andOOO2�2 are

TTT =
1 1

�1 1
and OOO2�2 =

s0 s1
�s�1 s�0

where s0; s1 2 are the two information symbols. In the coherent
case, OOO2�2 achieves 1 symbol per channel use. To guarantee the uni-
tarity of XXX := [TTT T OOO2�2

T ]T , we confine s0 and s1 to be Q-PSK
symbols. Specifically, definingXXXk;l as

XXXk;l :=
1 �1 e

j k �e�j l

1 1 e
j l

e
�j k

T

where (k; l) 2 S�S and S = f0; . . . ; Q�1g, a unitary ST constella-
tion of sizeL = Q2 can be designed as Ca = fXXXk;l j (k; l) 2 S�Sg.
It can be easily verified thatXXXH

k;lXXXk;l = 4III2, 8 (k; l) 2 S � S. The
uncoded bit rate is (2=T ) log2(Q) = (1=2) log2(Q).
This constellation can be considered as an example of the more gen-

eral pilot-based designs. Nonetheless, the constellation’s inherent or-
thogonality and enforced unitarity make it a special class. On the one
hand, these properties may harm the spectral efficiency; on the other
hand, they enable low-complexity ML detection, unlike other pilot-
based designs.

C. Constellation Properties

We have illustrated a simple construction of unitary ST constella-
tions for two transmit antennas. We discuss some important properties
of these constellations next.

Property 1: For a design Ca and any XXXk;l;XXXk ;l 2 Ca, it can be
shown that

0 � d1(XXXk;l;XXXk ;l ) = d2(XXXk;l;XXXk ;l ) � 1:

Proof: For any Ca and anyXXXk;l;XXXk ;l 2 Ca, it is easy to verify
that

1

T 2
XXXH
k;lXXXk ;l

H

XXXH
k;lXXXk ;l

=
1

4
2 + cos

2�

Q
(k � k0) + cos

2�

Q
(l� l0) III2:

Therefore, the matrix XXXH
k;lXXXk ;l =T clearly has two equal singular

values between 0 and 1, i.e.,

0 � d1(XXXk;l;XXXk ;l ) = d2(XXXk;l;XXXk ;l ) � 1:

If

dk;l;k ;l = d1(XXXk;l;XXXk ;l ) = d2(XXXk;l;XXXk ;l )

then

dk;l;k ;l =
1

2
2 + cos

2�

Q
(k � k0) + cos

2�

Q
(l� l0): (6)

It is clear that dk;l;k ;l achieves its maximum 1 when (k0; l0) is
matched to (k; l). In general, it may not achieve its possible min-
imum 0.

Property 2: The constellation Ca enjoys full antenna diversityMN
and the corresponding diversity product is � = sin(�=Q)=

p
2.
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Proof: Themaximum singular value dmax related to any twoma-
trices XXXk;l;XXXk ;l 2 Ca with XXXk;l 6= XXXk ;l can be calculated from
(6) as

dmax = max
0�k;l;k ;l <Q

(k;l) 6=(k ;l )

dk;l;k ;l =
1

2
3 + cos

2�

Q
:

Hence, the diversity product for this design is � = sin(�=Q)=
p
2.

Property 3: The constellation Ca is geometrically uniform with re-
spect to the subspace distance.

Proof: The notion of geometric uniformity was introduced in [7].
Instead of the conventional Euclidean distance, we adopt the subspace
distance as our distance metric. An important consequence of this uni-
formity is that allXXXk;l 2 Ca share the same distance profile. Our proof
proceeds in two steps. First, for any two matrices belonging to Ca,
we identify a mapping from Ca onto Ca that maps one matrix to the
other. Second, we show that this mapping is isometric with respect to
(w.r.t.) the subspace distance. For any XXXk;l;XXXk ;l 2 Ca, we can al-
ways find some integers p and q, such that k0 = (k + p)mod Q and
l0 = (l+ q)mod Q. Let us then define the mappings

M1(x) = (x+ p)mod Q and M2(x) = (x+ q)mod Q:

By definition,M1(�) maps k to k0, andM2(�) maps l to l0. It is clear
that bothM1(�) andM2(�) map S onto S. Defining the mappingM
asM(XXXk;l) = XXXM (k);M (l), 8XXXk;l 2 Ca, we obtain

M(XXXk;l) = XXXk ;l and M(Ca) = Ca:
Hence, it remains to show that the mapping M is isometric w.r.t. the
distance metric �S(�; �). LetM(XXXk ;l ) = XXXk ;l andM(XXXk ;l ) =
XXXk ;l . To show

�S(XXXk ;l ;XXXk ;l ) = �S(XXXk ;l ;XXXk ;l )

it is sufficient to prove that for any XXXk ;l ;XXXk ;l 2 Ca, the
matrix XXXH

k ;l XXXk ;l =T has the same common singular value as
XXXH

k ;l XXXk ;l =T . From the definition ofM, we can deduce that

(k1 � k2)mod Q =(k01 � k02)mod Q

(l1 � l2)mod Q =(l01 � l02)mod Q:

Then, it follows from (6) that the common singular value dk ;l ; k ;l

ofXXXH
k ;l XXXk ;l =T is equal to the common singular value dk ;l ; k ;l

ofXXXH
k ;l XXXk ;l =T .

We discuss the consequences of these properties next. As mentioned
in Section III-A, a closed-form expression exists for Pe(XXX ! XXX 0),
whenXXXHXXX 0=T has equal singular values. Property 1 enables such an
exact PEP analysis. The importance of Property 2 for error performance
is apparent, since it ensures full diversity. Following Property 3, we can
simplify (3) as follows:

Ps �
XXX 2C; XXX 6=XXX

Pe(XXX ! XXX 0):

Furthermore, combining Ca with uniform trellises, we obtain geomet-
rically uniform codes for noncoherent ST systems, which will be de-
veloped in Section IV.

D. Simplified ML Detection

For large constellations, a major drawback of unitary ST modula-
tions is their relatively high ML detection complexity. However, our
constellations based on the orthogonal design allow for an ML detector
with much less complexity, especially for large constellation sizes. In
this section, we will derive this new simplified ML detector, and com-
pare it to the original ML detector of [10].

Based on the ML detector for unitary constellations in (2), we con-
sider the ML detection when Ca is employed. For anyXXXk;l 2 Ca, it is
possible to decompose kXXXH

k;lYYY k2 into three parts

XXXH
k;lYYY

2

=tr YYY HXXXk;lXXX
H
k;lYYY

=2kYYY k2 + tr YYY YYY HAAAk + tr YYY YYY HBBBl (7)

where

AAAk =

0 e�jk 0 ejk

ejk 0 �ejk 0

0 �e�jk 0 ejk

e�jk 0 e�jk 0

BBBl =

0 e�jl 0 �ejl
ejl 0 ejl 0

0 e�jl 0 ejl

�e�jl 0 e�jl 0

:

Notice how the second term is only related to the first index k, while
the third term is only related to the second index l. Based on this de-
composition, the new simplified ML detector can now be expressed as

X̂XXML = arg max
XXX 2C

XXXH
k;lYYY

2

= XXX k̂ ;̂l

where k̂ML and l̂ML are computed as follows:

k̂ML = argmax
k2S

tr YYY YYY HAAAk

l̂ML = argmax
l2S

tr YYY YYY HBBBl :

The original ML decoder needs to calculate kXXXH
k;lYYY k2, Q2

times. However, our simplified approach only needs to calculate
trfYYY YYY HAAAkg, Q times, and trfYYY YYY HBBBlg, Q times. For large-size
constellations, the detection complexity is considerably reduced.
There are two ways to treat the two indexes. One is to treat them as

a single symbol. Alternatively, we can treat them as two independent
symbols. In the latter case, two questions arise:Will each index achieve
full diversity? What is the diversity product for each index? To address
these questions, we first focus on the index k. The ML detector for k is

k̂ML = argmax
k2S

trfYYY YYY HAAAkg:
To show that k achieves full diversity, we consider the PEP between k
and k0

Pe(k ! k0) =P tr YYY YYY HAAAk < tr YYY YYY HAAAk j k
=P XXXH

k;lYYY < kXXXH
k ;lYYY k j k; l

=Pe(XXXk;l ! XXXk ;l):

Since the maximum singular value related to any two matrices
XXXk;l;XXXk ;l 2 Ca with XXXk;l 6= XXXk ;l is the same as the one related
to any two matrices XXXk;l;XXXk ;l 2 Ca with XXXk;l 6= XXXk ;l (see (6)),
it is clear that k achieves full diversity and enjoys the same diversity
product asXXXk;l. The same result holds for l.

E. Comparison With Systematic Design

We will compare our unitary constellations with those from the sys-
tematic design of [11]. For systematic designs, we follow the com-
puter search procedures described in [11], but adopt either the diversity
product distance or the subspace distance to replace the original chordal
distance. These new distance metrics guarantee full diversity. We have
designed three sets of constellations with cardinality L = 16, L = 32,
and L = 64. There are three constellations in each set, which are ob-
tained from our constructive design, the systematic design with diver-
sity product distance, and the systematic designwith subspace distance,
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Fig. 1. Constellation performance comparison based on Monte Carlo simulations.

respectively. The Monte Carlo simulation results of SEP for these con-
stellations are depicted in Fig. 1. We can observe that the constellations
in each set enjoy similar SEP performance. Nonetheless, our construc-
tive design enables a low-complexity ML detection.

F. Extensions for M > 2

To enable low-complexity ML detection, we have constructed our
constellations based on the orthogonal designs. Orthogonality limits
the spectral efficiency of noncoherent signaling. Hence, this design is
not suitable for high spectral efficiency with large M . Having this in
mind, we only generalize our constellation construction toM = 3 and
M = 4, since these constellations may still be of practical interest.

We first design unitary constellations for four transmit antennas.
Each matrix in the constellation has dimension T �M = 8� 4. The
construction is similar to the one described in Section III-B. For sim-
plicity, we will focus on a constellation size of L = Q3, Q 2 , and
derive only the diversity product and the simplified ML receiver. For
M = 4, we employ the training matrix TTT 4�4 and the rate-3=4 orthog-
onal design OOO4�4 as our building blocks, where

TTT 4�4 =

1 1 1 0

�1 1 0 �1
�1 0 1 1

0 1 �1 1

and

OOO4�4 =

s0 s1 s2 0

�s�1 s�0 0 �s2
�s�2 0 s�0 s1
0 s�2 �s�1 s0

:

The designOOO4�4 is available in [19]. Enforcing s0, s1, s2 inOOO4�4 to
be Q-PSK symbols, we obtain one matrixXXXk;l;m 2 Ca as follows:

XXXk;l;m

=

1 �1 �1 0 rk �r�l �r�m 0

1 1 0 1 rl r�k 0 r�m

1 0 1 �1 rm 0 r�k �r�l
0 �1 1 1 0 �rm rl rk

where (k; l;m) 2 S � S � S, S = f0; . . . ; Q � 1g, and r = e
j .

The resulting unitary ST constellation is

Ca = fXXXk;l;m j (k; l;m) 2 S � S � Sg:
For Ca and any matrices XXXk;l;m;XXXk ;l ;m 2 Ca, it can be derived
that XXXH

k;l;mXXXk ;l ;m =T has four equal singular values. Letting
dk;l;m;k ;l ;m be the common singular value, we have

dk;l;m;k ;l ;m =
1

2
+

1

6
cos

2�

Q
(k � k0)

+ cos
2�

Q
(l� l0) + cos

2�

Q
(m�m0)

1=2

:

Hence, the diversity product is � = sin(�=Q)=
p
3. The simplified ML

receiver is

k̂ML = argmax
k2S

XXXH
k;0;0YYY

2

l̂ML = argmax
l2S

XXXH
0;l;0YYY

2

m̂ML = argmax
m2S

XXXH
0;0;mYYY

2

:

As in the coherent case, the constellation for three transmit antennas
can be constructed by simply deleting one specific column from the
design of M = 4.

IV. TRELLIS-CODED MODULATION (TCM)

Even though ST signals can serve as their own channel codes [16],
[15], the inherent orthogonal structure in our unitary constellation may
limit its coding gain. To improve the coding gain and exploit the rich
diversity in fast fading, we pursue a TCM approach. In [14], unitary ST
modulationwas combinedwith convolutional coding to boost error per-
formance, but no constellation expansion and set partitioning concepts
were involved due to the lack of structure in the computer searched
constellations. On the other hand, our constructive design exhibits uni-
formity and enables simple set partitioning.
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Fig. 2. TCM system model.

A. System Diagram and Trellis Decision Metric

The block diagram of the proposed TCM system is shown in Fig. 2.
Assuming the uncoded system has a constellation of size 2n, the TCM
system can be described as follows. From the n-bit input vector bbb :=
[ b1 b2 � � � bn ]

T ,m bits are fed to a rateR = m=(m+1) convo-
lutional encoder. Them+ 1 output bits are used to choose a subset of
the noncoherent constellation; whereas the remaining n �m bits de-
termine a signal within this subset. Hence, one redundant bit is added
every n input bits, which amounts to expanding the constellation size
to 2n+1. If m < n, parallel transitions are allowed in the trellis; If
m = n, no parallel transitions exist.

The Viterbi algorithm (VA) is employed in the ML receiver.
We derive the decision metric for the VA next. A sequence ~X~X~X :=
fXXXk ;l g

1
t=0 of matrices drawn from Ca is transmitted. The received

sequence is denoted by ~Y~Y~Y := fYYY tg
1
t=0, where YYY t = XXXk ;l HHHt +NNN t

and HHHt, NNN t are the channel and noise matrix for the tth coherence
interval, respectively. The conditional probability density function
(pdf) of YYY t is

p (YYY t j XXXk ;l )

=

exp �tr IIIT + �=M XXXk ;l XXX
H
k ;l

�1

YYY tYYY
H
t

�TN detN IIIT + �=M XXXk ;l XXX
H
k ;l

:

Due to the independence of theHHHt’s and theNNN t’s, the conditional pdf
of the received sequence is

p (~Y~Y~Y j ~XXX) =

1

t=0

p (YYY t j XXXk ;l ):

The ML sequence estimate for ~X~X~X generated by the VA is

~XXXML = argmax
~X~X~X

1

t=0

kXXXH
k ;l YYY t k

2:

Based on ~X~X~X = fXXXk ;l g
1
t=0, we define two sequences ~k~k~k = fktg

1
t=0

and ~l~l~l = fltg
1
t=0. It follows from the constellation’s orthogonality that

the ML sequence estimates for ~k~k~k and ~l~l~l are

~k~k~kML = argmax
~k~k~k

1

t=0

tr YYY tYYY
H
t AAAk

~l~l~lML = argmax
~k~k~k

1

t=0

tr YYY tYYY
H
t BBBl :

B. Constellation Expansion and Set Partitioning

Due to the orthogonal structure and the employment of phase-shift
keying (PSK) symbols as entries of our constructive design, the constel-
lation expansion and set partitioning of our noncoherent ST constella-
tion are similar to those of PSK. The only difference lies in the distance
metric. We employ the subspace distance in the set partitioning instead
of the Euclidean distance as in the conventional TCM. We consider

the subspace distance betweenXXXk;l andXXXk ;l next. Plugging the two
equal singular values ofXXXH

k;lXXXk ;l =T from (6) into (5), we obtain

�S(XXXk;l;XXXk ;l )=
1

2
�

1

4
cos

2�

Q
(k�k0) �

1

4
cos

2�

Q
(l�l0) :

(8)

Hence, the subspace distance depends only on (k � k0)mod Q and
(l� l0)mod Q. Examples of the considered constellation expansion and
set partitioning will be given in Section IV-D.

C. Performance Analysis

In this subsection, we analyze the asymptotic error performance of
the proposed noncoherent ST TCM scheme. Our analysis is based on a
simple approximate bounding technique for the asymptotic error prob-
ability (AEP) using the asymptotic sequence PEP. A surprising result
is that the AEP expressions can be derived for certain TCM systems,
while they are not available for uncoded noncoherent ST systems.

1) Asymptotic Sequence PEP: A simple method to examine the
error performance of a TCM scheme is through the sequence PEP. The
PEP between two sequences

~X~X~X = fXXXk ;l g
1
t=0 and ~X~X~X

0
= fXXXk ;l g

1
t=0

is defined as

Pe( ~X~X~X ! ~X~X~X
0
) = P

1

t=0

XXXH
k ;l YYY t

2

>

1

t=0

XXXH
k ;l YYY t

2

j ~X~X~X :

The asymptotic sequence PEP, denoted as P a
e ( ~X~X~X ! ~X~X~X

0
), can be well

approximated by

P a
e ( ~X~X~X! ~X~X~X

0
)��P ( ~X~X~X; ~X~X~X

0
)�1

�
2MN�1

MN

�T

M

�MN
� ( ~X~X~X;~X~X~X )

(9)

where �H( ~X~X~X; ~X~X~X
0
) is the Hamming distance between ~X~X~X and ~X~X~X

0
and

�P ( ~X~X~X; ~X~X~X
0
) is the product distance between ~X~X~X and ~X~X~X

0
defined as

�P ( ~X~X~X; ~X~X~X
0
) =

1

t=0
XXX 6=XXX

1� d2k ;l ;k ;l

MN

:

Note that the above approximation is asymptotically accurate. In a
log-log plot, the asymptotic sequence PEP coincides with the true se-
quence PEP curve for high SNR. Based on the discussions in Sec-
tion III-D, we conclude that similar asymptotic sequence PEP expres-
sions can be derived for index sequences ~k~k~k and ~l~l~l.
We define two sequences in a trellis as close sequences if they

achieve the minimum Hamming distance. Furthermore, we define
two sequences as the closest sequences if they are close and they
achieve the minimum product distance in all close-sequence pairs. The
diversity order of the sequence error probability is dominated by the
diversity order of the close sequence PEP. Letting �H be the Hamming
distance between two close sequences, it follows that this diversity
order is �HMN . If parallel transitions exist in a trellis, then �H = 1
and the diversity order is limited byMN . For this reason, we mainly
consider TCM systems without parallel transitions.

2) AEP Bounds: We study the asymptotic error performance of
noncoherent ST TCM by generalizing the approach in [3]. We will
focus on uniform trellises. Combining our uniform unitary constel-
lations with these uniform trellises, we obtain geometrically uniform
codes [7]. As a direct consequence of the geometric uniformity, all ~X~X~X

sequences in a trellis share the same product distance profile. Hence,
performance analysis is simplified by considering the error patterns on
one arbitrary sequence. We will derive approximate upper and lower
bounds on the AEP that are accurate for high SNR. For certain special
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trellises, we can even determine the AEP expression in closed form.
Note that based on the AEP and trellis mapping, we can derive a corre-
sponding expression for the asymptotic SEP (ASEP) or the asymptotic
bit error probability (ABEP).

Assuming that all possible sequences are equally likely and only se-
quences that are close to the transmitted one have significant proba-
bility to be the ML estimate, an asymptotically accurate approximate
upper bound and a lower bound on the AEP, P a, can be formulated as

P a
e ( ~X~X~X ! ~X~X~X

0

1) � P a �

N

n=1

P a
e ( ~X~X~X ! ~X~X~X

0

n)

where � indicates that the bound is approximate, yet asymptotically
accurate, f ~X~X~X

0

ng
N
n=1 is the set of sequences close to ~X~X~X , and ~X~X~X

0

1 is a
sequence that is the closest to ~X~X~X . Due to Property 1, exact closed-form
expressions can be calculated for the asymptotic sequence PEP.
Nonetheless, we employ the asymptotically accurate approximation
of the asymptotic sequence PEP in (9) for simplicity. With �H being
the Hamming distance between two close sequences, we obtain the
following asymptotically accurate approximate upper and lower
bounds:

f(�; �H)�P ( ~X~X~X; ~X~X~X
0

1)
�1 � P a � f(�; �H)

N

n=1

�P ( ~X~X~X; ~X~X~X
0

n)
�1 (10)

where

f(�; �H) =
2MN � 1

MN

�T

M

�MN �

:

For some trellises, there is only one close sequence, i.e., Nc = 1.
Hence, the approximate upper and lower bounds in (10) then coincide
and yield the exact AEP expression. Based on the trellis mapping, we
can subsequently determine expressions or approximate bounds for the
ASEP P a

s , or ABEP P
a
b .

With examples, we quantify the performance gain of one TCM
system relative to another by two simple parameters. We will consider
an uncoded system as a special TCM with a single-state trellis. The
primary parameter is the diversity order, while the secondary parameter
is the asymptotic coding gain (ACG). The diversity order of a TCM
system is �HMN . For TCM systems enjoying the same diversity
order, we use ACG to further characterize the performance difference.
When the ASEP expressions are known for two TCM schemes with
the same minimum Hamming distance �H , the ACG is calculated as
follows. Letting the minimum product distances be �P;1 and �P;2,
respectively, the SEP-based ACG is  = (�P;2=�P;1)

1=(MN� ).
Whenever ASEP expressions are not available, an approximate range
for the ACG will be provided.

D. TCM Examples and Simulations

We have derived the ML sequence metric for a TCM receiver, il-
lustrated the set partitioning, and developed two simple measures to
quantify error performance. We are now ready to give several complete
TCM examples to illustrate design procedures and verify our theoret-
ical analysis with simulations.

1) TCM Example 1: To clarify the coding gains of TCM, we com-
pare the error performance of a TCM system with an uncoded system.
The uncoded system employs the constellation Ca = fXXXk;l j (k; l) 2
S � Sg with cardinality L = 16, where S = f0; 1; 2; 3g; whereas the
TCM system employs the constellation Ca = fXXXk;l j (k; l) 2 S�Sg
with cardinality L = 64, where S = f0; 1; . . . ; 7g. Due to the or-
thogonal constellation structure, we can treat the indexes separately for
both the uncoded and coded cases. Hence, the constellation sizes for
the indexes are 4 and 8, respectively. For the coded case, we employ

TABLE I
SET PARTITIONING FOR fk j k 2 Sg, WHERE S = f0; 1; . . . ; 7g

Fig. 3. Three trellis diagrams: (a) R = 1=2 4-state; (b) R = 2=3 4-state; (c)
R = 3=4 16-state.

two identical but independent TCM schemes on the index sequences
f~k~k~ktg

1

t=0 and f~l~l~ltg1t=0.
We analyze the performance of the uncoded system first. Consid-

ering it as a one-state TCM, the minimum Hamming distance for the
uncoded system is �uH = 1. Following (10), the approximate ASEP
bounds are

f(�; 1)(1� d20;0;1;0)
�MN � P a

s � f(�; 1)

3

l=1

(1� d20;0;l;0)
�MN

where d0;0;l;0 is the common singular value of XXXH
0;0XXXl;0=T given in

(6). Plugging in these singular values, we obtain

f(�; 1) � 4MN � P a
s � f(�; 1) � [2 � 4MN + 2MN ]:

Even though the exact upper and lower bounds are available in closed
form, we adopt the approximate bounds for simplicity. These bounds
are sufficient to characterize the ACG.
For the TCM system, the set partitioning follows that of an 8-PSK

constellation and is shown in Table I along with the intrasubset sub-
space distances. One input bit is fed to the rate R = 1=2 4-state trellis
encoder depicted in Fig. 3(a). In this trellis, the numbers next to a
state correspond to the subscripts of the subsets s(2)0 ; . . . ; s

(2)
3 shown

in Table I. The 2-bit output of the trellis encoder determines a subset
in s

(2)
0 ; . . . ; s

(2)
3 and the remaining input bit selects a signal within

thechosen subset. Due to the parallel transitions in the trellis, the min-
imum Hamming distance is �cH = 1. Since there is only one sequence
close to the transmitted one, the ASEP is P a

s = f(�; 1) � 2MN . The



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 6, JUNE 2004 1325

Fig. 4. SEP comparison for TCM Example 1.

approximate range of the ACG for the TCM system relative to the un-
coded one is

4MN

2MN

1=(MN)

�  �
2 � 4MN + 2MN

2MN

1=(MN)

:

More explicitly, when M = 2 and N = 1, the ACG ranges from
3.01 to 4.77 dB; whereas when M = N = 2, the ACG ranges from
3.01 to 3.79 dB. Monte Carlo simulation results for the SEP and ASEP
expressions are reported in Fig. 4 for these two settings. For the TCM
scheme, we can observe that the ASEP curves accurately approximate
the simulated SEP at high SNR. Furthermore, the actual ACGs lie in
the theoretically predicted range for both settings.

2) TCM Example 2: We compare the performance of two TCM
schemes with an uncoded one. The size L = 8 constellation employed
by the uncoded system is Ca = fXXXk;l j (k; l) 2 S1 � S1 [S2 � S2g,
where S1 = f0; 2g and S2 = f1; 3g. The uncoded system has min-
imum Hamming distance �uH = 1 and diversity orderMN .

For both coded systems, we use the size L = 16 constellation Ca =
fXXXk;l j (k; l) 2 S � Sg, where S := f0; 1; . . . ; 3g. Due to (8),
the set partitioning follows the set partitioning of a two-dimensional
4-PSK constellation and is shown in Table II. Two trellis encoders are
considered for this constellation. The first one employs the rate R =
2=3 4-state trellis depicted in Fig. 3(b). The second one employs the
rate R = 3=4 16-state trellis shown in Fig. 3(c).

In TCM scheme 1, the 3-bit trellis output is used to choose among
the eight subsets, s(3)0 ; . . . ; s

(3)
7 in Table II. The remaining bit is used to

select a signal within a subset. Hence, the minimumHamming distance
is the same as for the uncoded system �cH = 1. Based on the unique
close sequence, the ASEP is calculated by P a

s = f(�; 1). Since one
sequence error corresponds to one input bit error, and each code symbol
corresponds to three input bits, the ABEP is P a

b = f(�; 1)=3.
In TCM system 2, the trellis encoder has a 4-bit output, which is used

to choose among the 16 constellation points s(4)0 ; . . . ; s
(4)
16 in Table II.

There are no parallel transitions in the trellis and the minimum Ham-

TABLE II
SET PARTITIONING FOR f(k; l) j (k; l) 2 S � Sg, WHERE S = f0; 1; 2; 3g,

S = f0;2g, AND S = f1;3g

ming distance is �cH = 2. Hence, the diversity order becomes 2MN .
We determine the close paths to an arbitrary state path, say

0 ! 0 ! � � � ! 0:

Its corresponding symbol sequence is s(4)0 ! s
(4)
0 ! � � � ! s

(4)
0 . For

this path, we can identify four close paths from the trellis in Fig. 3(c).
The first three paths differ from the all-zero state in only one position,
where the trellis states are 2; 4; and 6, respectively. Correspondingly,
the symbol sequences differ from s

(4)
0 ! � � � ! s

(4)
0 in two positions.
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Fig. 5. BEP comparison for TCM Example 2.

They are s(4)4 ! s
(4)
8 , s(4)2 ! s

(4)
4 , and s(4)6 ! s

(4)
12 . The numbers

of input bit errors involved in these events are 1, 1, and 2 bits, respec-
tively. The remaining path achieving Hamming distance 2 diverts from
the all-zero path in two positions. The state and symbol sequences are
0 ! 4 ! 2 ! 0 and s(4)2 ! s

(4)
0 ! s

(4)
8 . There are two bit errors

associated with this event. Based on the bit errors for the close paths
and the fact that each coded symbol corresponds to three input bits, ap-
proximate bounds for the ABEP are given by

2 � f(�; 2) � 4MN=3 � P ab � f(�; 2) � (4MN + 2MN):

The SNR gap between the upper and lower bound is 0.68 dB when
M = 2, N = 1, and 0.25 dB when M = N = 2. The perfor-
mance comparison in terms of the bit error probability (BEP) is shown
in Fig. 5.

Remark 1: If one matrix in the constellation is treated as one
symbol, we may achieve larger subspace distances within each con-
stellation subset than when one matrix is treated as two independent
symbols. This corresponds to doubling the dimension of the signal
space. With a properly designed trellis, larger intrasubset distances
mean better performance. However, the price paid for the performance
gain is the considerably increased complexity.

Remark 2: When each matrix is treated as one symbol and no par-
allel transitions are allowed, the number of trellis states is at least equal
to the cardinality of the uncoded constellation. For large constellations,
the resulting trellis may be unrealistically complex. On the other hand,
when each matrix is treated as two independent symbols, this problem
becomesmuch less severe. Furthermore, the rich diversity in fast fading
can be conveniently collected. For this reason, we advocate using sep-
arate TCM schemes for the two index streams.

V. CONCLUSION

We dealt with noncoherent ST transmissions over block fading chan-
nels and constructed simple unitary ST constellations, which can be

viewed as a special pilot-based design. The novel construction’s full
diversity allows for low-complexity ML detection, and achieves per-
formance comparable to existing computer searched constellations.
To further exploit the constellation structure, we also pursued a TCM

approach.We designed geometrically uniform codes by combining uni-
form trellises with our uniform constellations w.r.t. the subspace dis-
tance. The decision metric for the trellis paths and approximate bounds
on the AEP were derived. Based on the AEP and trellis mapping, we
derived corresponding expressions for the ASEP or ABEP. Two simple
parameters were identified to quantify the performance gain of one
TCM system relative to another or to an uncoded system. The primary
parameter is the diversity order; whereas the secondary one is the ACG.
At the price of increased complexity, we have shown both analytically
and with simulations that our TCM designs exhibit considerably im-
proved error performance.
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Sliding-Block Decodable Encoders Between
Runlength-Limited Constraints of Equal Capacity

Navin Kashyap, Member, IEEE, and Paul H. Siegel, Fellow, IEEE

Abstract—We determine the pairs of ( )-constrained systems,
( ) and ( ^ ^), of equal capacity, for which there exists a rate 1:1

sliding-block-decodable encoder from ( ) to ( ^ ^). In all cases
where there exists such an encoder, we explicitly describe the encoder and
its corresponding sliding-block decoder.

Index Terms—( )-constrained systems, finite-state encoders, sliding-
block decoders.

I. INTRODUCTION

Given nonnegative integers d; k, with d < k, we say that a binary
sequence is (d; k)-constrained if every run of zeros has length at most
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Fig. 1. Graph, Gd;k , generating the (d; k)-constrained system S(d; k) for
finite k.

Fig. 2. Graph, Gd;1, generating the (d;1)-constrained system S(d;1).

k and any two successive ones are separated by a run of zeros of length
at least d. A (d; k)-constrained system is defined to be the set of all fi-
nite-length (d; k)-constrained binary sequences. The above definition
can be extended to the case k = 1 by not imposing an upper bound
on the lengths of zero runs. In other words, a binary sequence is said
to be (d;1)-constrained if any two successive ones are separated by
at least d zeros, and a (d;1)-constrained system is defined to be the
set of all finite-length (d;1)-constrained binary sequences. From now
on, when we refer to (d; k)-constrained systems, we shall also allow k

to be1. Note that the above definition allows finite-length (d; k)-con-
strained sequences to begin or end with a run of fewer than d zeros.
Binary sequences satisfying some (d; k) constraint are commonly

used to encode information in digital and optical recording systems
[1]. The parameter k is imposed to guarantee sufficient sign changes in
the recorded waveform which are required to prevent clock drift during
readback. The parameter d is needed to prevent intersymbol interfer-
ence.
It is possible to give a convenient graphical description of (d; k)-con-

strained systems as follows (cf. [1], [2, Chs. 2, 3]). We define a labeled
graph, G = (V; E ;L), to be a finite directed graph with vertex set V ,
edge set E � V �V , and edge labeling L : E ! �, where� is a finite
alphabet. A labeled graph can be used to generate sequences of symbols
from� by reading off the labels along paths in the graph. A constrained
system, S or S(G), is the set of all finite-length1 sequences obtained by
reading off the labels along paths in a labeled graph G. Any (d; k)-con-
strained system, S(d; k), can be generated from an appropriate labeled
graph: for finite k, S(d; k) is the constrained system generated by the
labeled graph Gd;k given in Fig. 1, while S(d;1) is generated by the
labeled graph Gd;1 shown in Fig. 2. Note that the edge labels for both
these graphs come from the binary alphabet f0; 1g.
Before proceeding further, we would like to make a remark con-

cerning the notation we shall use in this correspondence.While S(d; k)
will be primarily used to denote the (d; k)-constrained system of finite
sequences, we shall also occasionally use the same notation for the one-
sided shift of infinite (d; k)-constrained sequences, or the shift space
of bi-infinite (d; k)-constrained sequences. In such cases, it should be
clear from the context which constrained system we mean to consider.

1Sometimes, we shall also find it necessary to consider the constrained system
of infinite sequences s0s1s2 . . ., si 2 �, of edge labels, or the constrained
system of bi-infinite sequences . . . s

�2s�1s0s1s2 . . ., si 2 �. In the ter-
minology of symbolic dynamics (cf. [2]), a constrained system of bi-infinite
sequences is called a shift space, and a constrained system of infinite sequences
is called a one-sided shift.
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