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ABSTRACT

A new approach has been proposed recently to describe doubly-
selective channels (i.e. time- and frequency-selective channels)
with a limited number of parameters referred to as the Basis Ex-
pansion Model (BEM). In the BEM, the true channel coefficients
are approximated with a high accuracy using a limited number of
complex exponentials. In this paper, we propose a new method in
order to identify the BEM coefficients of the transmission channel.
We consider a transmission scheme where several short training
sequences (i.e. their length is comparable to the channel order) are
inserted in the stream of data symbols. We propose an iterative
method that exploits all the received symbols that contain contri-
butions from the training sequences and blindly filters out the con-
tribution of the unknown surrounding data symbols. The proposed
method has a low computational complexity and outperforms ex-
isting methods proposed in a similar context.

1. INTRODUCTION

In order to increase data rates when transmitting data over wire-
less channels, it is often needed to use broadband communication
systems. The sampling period can than get smaller than the de-
lay spread of the channel, especially in multipath scenarios, which
gives rise to frequency-selective channels. High user mobility com-
bined with high carrier frequencies causes the transmission chan-
nel to change rapidly in time, which is referred to as time-selectivity
of the channel. Doubly-selective channels that are encountered in
high mobility broadband communications with high carrier fre-
quencies thus exhibit both time- and frequency-selectivity.

Many techniques have been proposed to model such channels
(e.g. piece-wise constant models, linear interpolation, polynomial
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interpolation, Bessel functions, etc...). In this paper, we focus on a
recently proposed technique for the modeling of doubly-selective
channels: the Basis Expansion Model (BEM) [1], [2] and [3]. This
new model has attracted a lot of attention recently for it allows an
accurate representation of doubly-selective channels with a lim-
ited number of parameters and allows cheap and efficient channel
equalization [4], [5] [2].

The problem of identifying the BEM parameters of the trans-
mission channel through training has already been discussed in [6]
and [7], where in [6] optimal training sequences are presented.
These optimal training sequences consist of 2Q + 1 equispaced
bursts of 2L + 1 pilot symbols with a single non-zero element
placed in the middle (2Q + 1 represents the number of complex
exponentials in the BEM and L+1 represents the channel length).
However, these methods assume that the period of the BEM is
equal to the interval over which we want to identify the channel,
which generally leads to a large modeling error at the edges of
the interval. Moreveor, these methods only exploit the channel
output samples that solely contain contributions from the training
symbols. In this paper, we develop a new channel estimation tech-
nique that also takes into account the channel output samples that
contain contributions from both the training symbols and the un-
known surrounding data symbols. The method is independent of
the period of the BEM. Moreover, it works for any structure and
composition of the available training sequences.

Notation: We use upper (lower) case bold face letters to denote
matrices (column vectors). IN is the identity matrix of size N×N
and 0M×N is the all-zero matrix of size M × N ; the subscripts
are omitted when the dimension of the matrices is clear from the
context. The operator (.)∗ denotes the complex conjugate, (.)T the
transpose of a matrix, (.)H its complex conjugate transpose, (.)1/2

represents its square root and tr(.) its trace. Finally, diag(v) is a
diagonal matrix with the elements of the vector v placed on its
main diagonal.

2. CHANNEL MODEL

2.1. Time-Varying Channels

We propose the following model to describe the transmission of
data symbols over a doubly selective channel: Let x[n] be the se-
quence of transmitted data symbols. Sampling the receive antenna
at the symbol rate, the sequence of received data symbols can with-
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out loss of generality be described by:

y[n] =
+∞X

ν=−∞

h[n; ν]x[n − ν] + w[n],

where h[n; ν] accounts for the effects of the transmission chan-
nel and the transmit and receive filters (h[n; ν] is thus the com-
plex multiplicative channel coefficient that accounts for the con-
tribution of the (n − ν)th transmitted data symbol into the nth

received sample), and w[n] is the additive noise, that we will con-
sider to be Gaussian distributed. The large number of independent
coefficients of this model (N(L + 1) independent coefficients for
a channel of order L) makes its use for channel identification or
equalization purposes quite unpractical.

2.2. Physical Channel Model

In practical situations, the channel parameters introduced do not
vary randomly as they are linked to the physical properties of the
transmission channel. The proposed physical channel model al-
lows to parametrize the channel coefficients as a function of the
physical transmission channel. Consider a multipath propagation
channel where c clusters each consisting in r reflected or scattered
rays arrive at the receiver. Considering that the transmission inter-
val is short enough such that the number of rays and clusters does
not change during the transmission, and the time-variation of the
channel is negligible during the time-span of the receive filter, the
transmission channel can be described as:

h[n; ν] =
X

c

ψ(νTs − τc)
X

r

Gc,re
j2πfc,rnTs , (1)

where Ts is the symbol period and ψ(t) is the total impulse re-
sponse of the transmit and receive filters, τc is the delay of the cth

cluster, Gc,r and fc,r are respectively the complex gain and the
frequency offset of the rth ray of the cth cluster. The frequency
offset is caused by the relative motion between the receiver and
the scatterer and is the source of the time-variation of the channel
coefficients. The Jakes model [8], which is often proposed to sim-
ulate time-varying transmission channels, is a special case of the
presented physical channel model.

The Doppler spread fmax of the channel is the maximum of
all these frequency offsets. When NTs > 1/fmax, the chan-
nel coefficients undergo significant changes during the transmis-
sion of x[n] and the channel is labeled as time-varying, which is
the situation we will consider here. The physical channel model
presented here, though very handy for simulating realistic time-
varying transmission channels, still contains many parameters which
makes it impractical to use for channel estimation/equalization ap-
plications.

2.3. Basis Expansion Model (BEM)

The Basis Expansion Model (BEM), which has been proposed re-
cently, models time-varying channels with a limited number of pa-
rameters and allows low-complexity equalization of these chan-
nels. The BEM approximates the actual channel with a limited
number of complex exponentials. Assuming that the channel im-
pulse response length is constant and limited to L + 1, the true
channel h[n; ν] can be approximated over the interval n = 1 · · ·N
by its BEM model:

h[n; ν] =
LX

l=1

δ[ν − l]

QX
q=−Q

hq,le
j2πqn/Nmod (2)

Each channel tap is modeled as the sum of 2Q + 1 complex ex-
ponentials and the whole channel is described with a limited num-
ber of (2Q + 1)(L + 1) parameters, namely the hq,l coefficients.
The parameters Q and Nmod should be selected carefully in or-
der to allow an accurate approximation of the true channel. The
Doppler spread of the BEM channel model (which is its highest
frequency component) is equal to Q/(NmodTs). Q and Nmod

should be chosen such that the BEM Doppler spread is approxi-
mately equal to the Doppler spread of the true channel. Further-
more, the BEM is periodic with a period Nmod. Therefore, as
the true channel is not periodic, Nmod should at least be as large
as N ; the match of the BEM to the true channel gets tighter as
Nmod increases. However, increasing Nmod forces us to increase
Q in order to fulfill the Doppler spread requirement. A good em-
pirical rule for most practical cases is to choose Nmod = 3N
and then choose Q according to the Doppler spread rule: Q =
�fmaxNmodTs�, which yields a very tight match of the BEM with
a limited number of parameters. When the channel varies slowly
and 1/(3NTs) � fmax, the above procedure yields Q = 1 but
the Doppler Spread of the BEM will be significantly larger than
the true Doppler spread, yielding a poor match of the BEM. In this
case, increasing Nmod in order to make the true Doppler spread
equal to the BEM Doppler spread largely improves the accuracy
of the BEM: Nmod = �1/(Tsfmax)�.

Using the BEM, the input-output relationship of the transmis-
sion channel over the interval n = 1 · · ·N is written as:

y[n] =
LX

l=0

QX
q=−Q

hq,le
j2πqn/Nmodx[n − l] + w[n]. (3)

3. IDENTIFICATION OF THE BEM COEFFICIENTS

In this section, we analyze how a time-varying channel can be
identified at the receiver based on the knowledge of training sym-
bols inserted in the stream of transmitted data symbols. We con-
sider a transmission scheme where K equispaced short clusters of
training symbols of length nt are inserted in the stream of data
symbols, which is a natural placement of the training symbols to-
wards the identification of time-varying channels [6]. Note how-
ever that this hypothesis of equi-spaced training bursts of constant
length is not mandatory for the proposed method to work. We
adopt it only for the clarity of the presentation but it is straight-
forward to adapt the method to the more general situation where
the length of the training sequences and the spacing between them
varies. We aim at identifying the BEM coefficients that provide
the best match to the true channel taking into account all the chan-
nel output samples that contain contributions from the training
symbols, including those who contain contributions from both the
training symbols and the unknown surrounding data symbols.

3.1. Data Model

Let tk = [tk[1], · · · , tk[nt]]
T , k = 1 · · ·K be the kth train-

ing sequence inserted into the stream of data symbols. Let sk =ˆ
sk[1], · · · , sk[ns]

T
˜T

be the block of data symbols placed after
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the kth training sequence. The transmitted burstcan then be writ-
ten as: x = [x[1], · · · , x[N ]]T = [tT

1 , sT
1 , · · · tT

K , sT
K ]T (note that

N = K(nt) + ns). Existing methods for training-based estima-
tion of doubly-selective channels [6], [7] only exploit the channel
output samples that solely contain contributions from the training
sequence tk and discard all the channel output samples that con-
tain contributions from the unknown data symbols sk. The method
we shall present here exploits all the channel output samples that
contain contributions from tk, including those who contain contri-
butions from both unknown data symbols and training symbols.

Let uk be the (nt+L×1) vector of the channel output samples
that contain contributions from tk: uk = [y[(k − 1)(ns + nt) +
1], · · · , y[(k − 1)(ns + nt) + nt + L]]T , the characterization of
which can be obtained using (3) if the channel can be described
accurately by the BEM (2).

Developing the BEM expression of the channel parameters
and re-arranging the resulting expression, we obtain the following
data model that is well-suited for the identification of the channel’s
BEM coefficients:

uk = T khBEM + εk. (4)

•The first term, T khBEM is a deterministic term where hBEM

is the (2Q + 1)(L + 1)-wide vector of the channel’s BEM coef-
ficients: hBEM = [h−Q,0, · · · , hQ,0, · · · , hQ,L]T and T k is an
(nt + L) × ((2Q + 1)(L + 1)) matrix accounting for the contri-
butions of the complex exponentials of the BEM and the training
sequences, which has the following structure:

T k =

2
666664

Tk,0

Tk,1
. . .

Tk,L

3
777775 ,

with Tk,l = diag(tk)Ck,l, where Ck,l accounts for the BEM’s
complex exponentials multiplying the hq,l coefficients: Ck,l[x, y] =

e
j2π(y−Q−1)

(k−1)(ns+nt)+l+x

Nmod .
• The second term, εk is stochastic and represents the contri-

butions of the unknown surrounding data symbols and the AWGN:

εk =
ˆ

HL
s,k HR

s,k

˜| {z }
Hs,k

s
′
k + wk, (5)

where wk is the AWGN vector, s′k = [sk−1[ns − L + 1],
· · · , [sk−1[ns], sk[1], · · · , sk[L]]T is the vector of the unknown
data symbols contributing to uk (assuming ns ≥ L). Hs,k is an
(nt + L)× 2L matrix gathering the channel coefficients that mul-
tiply these data symbols. It is the concatenation of two matrices:

H
L
s,k =

2
6664

h[nk,1; L] · · · h[nk,1; 1]
. . .

...
0 h[nk,L; L]

0(nt×L)

3
7775 ,

H
R
s,k =

2
6664

0(nt×L)

h[nk,nt ; 0] 0
...

. . .
h[nk,nt+L; L − 1] · · · h[nk,nt+L; 0]

3
7775 ,

where nk,l is a shorthand notation for the index of the lth element
of uk: nk,l = (k − 1)(ns + nt) + l.

3.2. Proposed Algorithms

Assuming that the noise and the data are white and zero-mean with
variance σ2 for the noise samples and λ2 for the data symbols (i.e.
E{sk} = 0 and E{wk} = 0, E

˘
sks

H
k

¯
= λ2I, E

˘
wkw

H
k

¯
=

σ2I, ∀k, E
˘
sks

H
l

¯
= 0 and E

˘
wkw

H
l

¯
= 0, ∀k, l; l �= k), it

is straightforward to derive the first- and second order statistics of
εk (assuming also ns ≥ 2L):

E {εk} = 0,

E
n

εkε
H
l

o
= δk,lQk, ∀k, l,

Qk = λ2
Hs,kH

H
s,k + σ2

I. (6)

LS Channel Estimate

Relying on the first-order statistics of εk, a simple Least Squares
(LS) approach provides us with an unbiased estimator of hBEM :

ĥLS =

 
KX

k=1

T
H
k T k

!−1 KX
k=1

T
H
k uk. (7)

Because of the presence of the complex exponentials, the inverse
of the sum will always exist as soon as K(nt + L) ≥ (2Q +
1)(L + 1).

WLS Channel Estimate

Since εk is not white, the LS approach is not optimal. A Weighted
Least Squares (WLS) approach taking into account the color of εk

would yield an improved estimate of the channel parameters. As-
suming that all the Qk’s are known (see also next paragraph), the
WLS estimate of hBEM can be computed as:

ĥWLS =

 
KX

k=1

T
H
k Q

−1
k T k

!−1 KX
k=1

T
H
k Q

−1
k uk. (8)

The presence of the AWGN term in Qk ensures the existence of its
inverse and the inverse of the sum exists under the same conditions
as for the LS estimate.

Iterative WLS Channel Estimate

Unfortunately, Qk is not known at the receiver for it depends on
the sought channel. The WLS approach can thus not be straight-
forwardly adopted. We propose below an iterative approach that
allows to cope with the dependence of Qk on the channel.

Assume a channel estimate ĥ
(i)
BEM is available at the receiver

(ith iteration). Exploiting (2) and the definition of Hs,k , it is pos-
sible to construct its estimate Ĥ

(i)
s,k from ĥ

(i)
BEM . Relying on the

parametric definition of Qk and assuming that σ2 is known, we
construct the estimate Q̂

(i)
k of the color of εk. This estimate is

used to produce a refined estimate ĥ
(i+1)
BEM of the channel model

with a WLS approach:

ĥ
(i+1)
BEM =

 
KX

k=1

T
H
k Q̂

(i)−1
k T k

!−1 KX
k=1

T
H
k Q̂

(i)−1
k uk.
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Fig. 1. NMSE vs.SNR for increasing channel orders L when train-
ing sequences of length 4 are inserted in the transmitted data

The iterative procedure is stopped when there is no significant dif-
ference between two consecutive channel estimates. If the starting
point is sufficiently accurate, this iterative procedure converges to
a solution which is close to the true WLS estimate. It is possible
to show that the convergence point of this iterative procedure is
the gaussian ML channel estimate (i.e. the ML channel estimate
when the surrounding data symbols are assumed to be Gaussian
distributed).

The iterative procedure can be initialized with the LS channel
estimate of (7): ĥ

(0)
BEM = ĥLS , which is equivalent to choosing

Q̂
(0)
k = I, ∀k. Experimental results show that this choice yields

good convergence properties of the iterative procedure.

4. EXPERIMENTAL RESULTS

We compare the proposed method with the method proposed in [6]
and [7] (note that we generalize these methods to handle arbitrary
BEM periods). The channels that are used for the simulations are
obtained using a physical channel model with 10 clusters of 100
rays each.

When identifying the BEM of a physical channel, there are
two sources of mismatch between the resulting channel model and
the actual channel. The first source of error is the BEM-induced
modelling error: if all the channel coefficients h[n; ν] were known,
the best possible BEM (with fixed parameters Q and Nmod) would
not match exactly the physical channel. Moreover, there is a dif-
ference between the best possible BEM and the estimated BEM
obtained through the proposed identification procedure. This re-
sults in an identification error, which is the second source of error.

The performance of the proposed identification method could
thus be assessed either by the identification error (the difference
between the obtained BEM and the best possible BEM) or by the
total error (the difference between the obtained BEM and the ac-
tual channel). We adopt here the second possibility as it assesses
the total performance of the system. The performance metric is
thus the normalized mean square error (NMSE) between the ob-
tained channel BEM and the true channel. The results are aver-

aged over 100 different channels, performing 100 runs for each
channel. A run consists in the transmission of 64 blocks, each
containing 4 training symbols and 16 data symbols. The Doppler
spread and the noise power are assumed to be known at the re-
ceiver. The training sequences are constant-modulus symbols with
a uniform phase distribution. Given the chosen Doppler spread and
burst length (N = 1024), the parameters of the BEM obtained us-
ing the procedure described in this paper are the following: Q = 2
and Nmod = 3072. We perform the simulations using the same
setup for different channel orders, namely L = 2, 3, 4 and 5. The
results are presented in Fig.1. The proposed method clearly out-
performs the existing one. Note that the existing method is unable
to cope with long channels (L = 4, 5, · · · ), whilst the proposed
method keeps generating accurate channel estimates.

5. CONCLUSIONS

In this paper, we have introduced a new training-based method
that allows to identify the BEM model of doubly-selective chan-
nels. The method is able to cope with training sequences of various
lengths and compositions. Taking into account the channel output
samples that contain contributions from both the training symbols
and the unknown surrounding data symbols allows the proposed
method to clearly outperform existing methods.
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