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ABSTRACT

The joint linear precoder and decoder Minimum Mean Squared
Error (MMSE) design represents a low complexity yet powerful
solution for spatial multiplexing MIMO systems. Its performance,
however, critically depends on the availability of timely Chan-
nel State Information (CSI) at both transmitter and receiver. In
practice, the latter assumption can be severely challenged, due to
channel time variations that lead to outdated CSI at the transmit-
ter. State-of-the-art designs mistakenly use the outdated CSI to
design the linear precoder and rely on the receiver to reduce the
induced degradation. In this paper, we propose a robust Bayesian
joint linear precoder and decoder solution that takes into account
the uncertainty on the true channel given the outdated CSI at the
transmitter. We finally assess the robustness of our design to chan-
nel time variations through Monte-Carlo analysis of the system’s
MMSE and average Bit-Error Rate (BER) performance.

1. INTRODUCTION

To enable spatial multiplexing MIMO systems, the joint linear pre-
coder and decoder Minimum Mean Squared Error (MMSE) design
has been proposed [1, 2]. It is a low complexity yet powerful de-
sign for applications, where the channel is slowly varying, such
that the Channel State Information (CSI) can be made available at
both sides of the transmission link. In fact, the latter design ex-
ploits this CSI to optimally allocate power across the transmitted
data streams in order to reduce the system’s Bit-Error Rate (BER).
So far, however, most state-of-the-art contributions assume perfect
CSI.

Channel time variations can compromise the availability of
such perfect timely CSI at both transmitter and receiver. Such
channel variations occur due to the wireless terminal movement
or due to the movement of objects in the propagation environment.
At the receiver, channel estimation is carried out using the pream-
ble prepended to the data payload. If we omit channel estimation
errors and assume not too long bursts, one can reasonably assume
perfect timely receiver CSI as data and preamble undergo the same
channel. This is not case at the transmitter side. In fact, whether
the CSI is acquired through a feedback link from the receiver or
through direct estimation using training from the receiver, there
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will always be a delay between the moment a channel realization
is observed and the moment it is actually used by the transmitter.
Combined with channel time-variations, this delay inevitably leads
to outdated CSI at the transmitter. This outdated CSI is mistakenly
used in the linear precoder calculation and leads to a degradation
in the system’s BER performance.

There is scarce literature on the impact of channel time vari-
ations on joint precoder and decoder designs. One such contribu-
tion is [10] that proposes 2 zero-forcing receiver solutions to re-
duce the degradation induced by the outdated CSI at the transmit-
ter. The most relevant one estimates and equalizes for the equiv-
alent channel composed of the true channel and the outdated pre-
coder. This is possible because the pilots are also passed through
the outdated precoder. Such a solution merely tries to reduce the
degradation induced by the outdated CSI at the transmitter. In
this contribution, we propose a solution that takes into account
the uncertainty on the true channel due to time variations. Simi-
lar Bayesian approaches have been already proposed in other con-
texts such as beamforming for MISO systems [3, 4] and space-time
coded MIMO systems [5, 6]. Such solutions, however, do not ap-
ply for spatial multiplexing scenarios. A single contribution [7]
proposed a Bayesian approach in the context of joint precoder and
decoder design. The latter contribution, however, considers a situ-
ation where both transmitter and receiver have the same imperfect
CSI due to estimation errors. Hence, the proposed solution does
not apply in the context of time-varying channels, where transmit-
ter and receiver have different CSIs.

The rest of the paper is organized as follows: Section 2 intro-
duces the data and outdated CSI models. Based on that, we derive
our robust joint precoder and decoder MMSE design in Section 3.
In Section 4, the performance improvements enabled by the pro-
posed robust design are assessed. Finally, we draw some conclu-
sions in Section 5.

2. SYSTEM MODEL

2.1. Data model

The spatial multiplexing MIMO system, under consideration, con-
sists of a transmitter and a receiver, equipped with an MT and
MR-element antenna respectively. At the transmitter, the input
symbol stream s(n) is demultiplexed into p ≤ Min(MR, MT )
independent streams, leading to an equivalent p-dimensional spa-
tial symbol stream s(k). This spatial symbol stream s(k) is then
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passed through the linear precoder T before transmission through
the MT -element transmit antenna at rate 1/T . At the receiver,
the MR complex baseband outputs from the MR-element receive
antenna sampled at rate 1/T are filtered by the linear decoder R.
The resulting p output streams conveying the detected spatial sym-
bols ŝ(k) are then multiplexed and demodulated. For a flat-fading
MIMO channel, the system equation is then given by:

ŝ(k) = RHTs(k) + Rn(k) (1)

where n(k) is the MR-dimensional receive noise vector at time k
and H is the MR × MT flat-fading channel matrix whose entries
represent the complex channel gains from each transmit antenna
to each receive antenna. In all the following, the time index k is
dropped for clarity.

2.2. Outdated CSI model

As aforementioned, at time t, the true channel realization Ht is
known at the receiver but not at the transmitter. Instead, the trans-
mitter possesses an outdated channel information, Ht−dT , corre-
sponding to the channel state dT seconds ago. Under the assump-
tion of dense scattering in the vicinity of both transmitter and re-
ceiver, we model the MIMO channel matrix H as a complex matrix
whose entries are i.i.d zero-mean complex Gaussian variables with
common variance σ2

h; H ∼ N (0MR×MT , σ2
hIMRMT ). Ht and

Ht−dT are basically correlated realizations of the latter channel
distribution. Thus, given the outdated CSI Ht−dT , we can char-
acterize the unknown current CSI Ht using the conditional CSI
model introduced in [3, 4], as follows:

Ht ∼ N (ρHt−dT , σ2
h(1 − |ρ|2)IMRMT ) (2)

where ρ is the common time-correlation of the i.i.d
time-varying MIMO channel coefficients, defined as
ρ = E{[Ht]i,j [Ht−dT ]Hi,j}/σ2

h = R(dT ), with R(dT )
depending on the channel time-variation model.

3. A ROBUST JOINT LINEAR PRECODER AND
DECODER MMSE SOLUTION

3.1. The state-of-the-art approach

The state-of-the-art approach [10] mistakenly assumes that the CSI
available at the transmitter, Ht−dT , is perfect. It designs the pre-
coder T presuming that the receiver has the same CSI and imple-
ments the corresponding MMSE decoder R according to [1, 2].
More specifically, the transmitter designs the linear precoder T,
assuming that T and R are jointly designed to minimize the sum
mean squared error subject to fixed average total transmit power
PT constraint as stated in:⎧⎨

⎩
MinR,T Es,n

{‖ s − (RHt−dT Ts + Rn) ‖2
2

}
subject to: Es · trace(TTH) = PT

(3)

We assume uncorrelated data symbols of average symbol energy
Es and zero-mean temporally and spatially-white complex Gaus-
sian noise samples with common variance σ2

n. In reality, the re-
ceiver has the timely CSI, Ht, and can form the matched MMSE
receiver given by:

R =

(
THHH

t HtT +
σ2

n

Es
Ip

)−1

THHH
t (4)

Clearly, this approach is suboptimal. This is why, capitalizing on
the previously introduced outdated CSI model, we next propose
an improved joint precoder and decoder MMSE solution that takes
into account the uncertainty about the CSI due to channel time
variations.

3.2. Our proposed approach

We assume that the transmitter knows the conditional distribution
of the true channel Ht and the structure of the receiver R given by
(4). Consequently, instead of the ideal 1 design criterion of (3), the
linear precoder T should be designed to minimize the conditional 2

sum mean squared error given the outdated CSI, subject to a fixed
average total transmit power constraint:⎧⎨
⎩

MinT EHt|Ht−dT

{
Es,n

{‖ s − (RHtTs + Rn) ‖2
2

}}
subject to: Es · trace(TTH) = PT

For tractability, we approach the actual MMSE receiver of (4) by a
zero-forcing receiver R =

(
THHH

t HtT
)−1

THHH
t while design-

ing T. Consequently, the general MMSE optimization problem can
be reduced to:⎧⎨

⎩
MinT EHt|Ht−dT

{
En

{
trace(Rn(Rn)H)

}}
subject to: Es · trace(TTH) = PT

(6)

Resorting to the Lagrange multiplier techniques to solve the above
optimization problem, the cost function can be written as:

C = trace
(
EHt|Ht−dT

{
σ2

n(THHH
t HtT)−1

}
+ λEsTTH

)
(7)

We have previously stated that, given the outdated CSI, the true
channel follows the complex normal distribution of (2). Thus,
based on [11], we can identify THHH

t HtT as a non-central
Wishart distribution. To the best of our knowledge, the calcula-
tion of the expectation of its inverse, as required in (7), is still an
open problem. The only solutions available are for the simple case
where Ht−dT T is of rank 1, which does not apply here. Conse-
quently, in the following, we investigate an approximate solution.
To do so, using the channel distribution of (2), we first instantiate
the true channel Ht as Ht = Ĥeq +∆, where Ĥeq = ρHt−dT and
∆ is the N (

0MR×MT , σ2
h(1 − |ρ|2)IMRMT

)
-distributed uncer-

tainty on the true channel given the outdated CSI. The conditional
mean in (7) can then be developed into:

EHt|Ht−dT

{
(THHH

t HtT)−1
}

= EHt|Ht−dT

⎧⎪⎨
⎪⎩

⎡
⎢⎣THĤ

H
eqĤeqT︸ ︷︷ ︸
A

+ TH(Ĥ
H

eq∆ + ∆HĤeq + ∆H∆)T︸ ︷︷ ︸
C

⎤
⎥⎦

−1⎫⎪⎬
⎪⎭ (8)

Iteratively using the matrix inversion lemma, the inner inverse can
be expressed as:

(A + C)−1 = A−1 − A−1CA−1 + A−1CA−1CA−1

− A−1CA−1CA−1CA−1 + · · · (9)

1corresponding to the ideal case where both sides of the link have the
same perfect timely CSI.

2on the true channel.
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Evaluating the conditional expectation of the above expression
leads to:

EHt|Ht−dT

{
(A + C)−1} = A−1 − A−1EHt|Ht−dT

{C}A−1

+ A−1EHt|Ht−dT

{
CA−1C

}
A−1 − · · · (10)

In the latter expression, we shall only keep the terms correspond-
ing to contributions up to the 2nd order statistics of the uncertainty
∆. The latter contributions are contained in the 3 first terms. Con-
sequently, we now explicit these 3 first terms in order to extract
the relevant contributions. The first term solely depends on the
equivalent channel Ĥeq :

A−1 = (THĤ
H

eqĤeqT)−1 (11)

Using the fact that the equivalent channel Ĥeq and the uncertainty
∆ are uncorrelated as well as the distribution of the uncertainty ∆,
the second term in (10) can be reduced to:

A−1EHt|Ht−dT
{C}A−1 = σ2

h(1 − |ρ|2)MRA−1THTA−1

(12)
The relevant part of the third term of (10), that contains only up to
2nd order statistics of the uncertainty ∆, is given by:

A−1EHt|Ht−dT

{
CA−1C

}
A−1 ≈ A−1EHt|Ht−dT

{
TH(Ĥ

H

eq∆

+∆HĤeq)TA−1TH(Ĥ
H
eq∆ + ∆HĤeq)T

}
A−1 (13)

The previous expression can be further simplified based on the ob-
servation that only the cross-products are non-zero:

A−1EHt|Ht−dT

{
CA−1C

}
A−1 ≈ A−1EHt|Ht−dT

{
TH

(Ĥ
H
eq∆TA−1TH∆HĤeq + ∆HĤeqTA−1THĤ

H
eq∆)T

}
A−1

(14)

Given an MT × MT matrix M, it is straightforward to establish
that:{

EHt|Ht−dT

{
∆M∆H

}
= σ2

h(1 − |ρ|2)trace(M)IMR

EHt|Ht−dT

{
∆HM∆

}
= σ2

h(1 − |ρ|2)trace(M)IMT

(15)
The previous observation can be applied to simplify (14) as fol-
lows:

A−1EHt|Ht−dT

{
CA−1C

}
A−1 ≈

σ2
h(1 − |ρ|2)

(
trace(TA−1TH)A−1THĤ

H

eqĤeqTA−1

+trace(ĤeqTA−1THĤ
H
eq)A

−1THTA−1
)

(16)

Recalling (11) and the fact that trace(YZ) = trace(ZY), the
third term of (10) can finally be reduced to:

A−1EHt|Ht−dT

{
CA−1C

}
A−1 ≈

σ2
h(1 − |ρ|2)

(
trace(TA−1TH)A−1 + pA−1THTA−1

)

Based on the above calculations, (10) can be expressed as:

EHt|Ht−dT

{
(A + C)−1

} ≈ A−1+

σ2
h(1 − |ρ|2)

[
(p − MR)A−1THTA−1 + trace(TA−1TH)A−1

]
(17)

Let T = UT ΣT VH
T be the singular value decomposition of the

precoder T. On the one hand, it is clear that VT does not alter
the cost function of (7) so it can be simply set to identity. On the
other hand, state-of-the-art literature shows that, given the equiva-
lent channel Ĥeq = Ut−dT Σ̂eqVH

t−dT , the optimal transmit strat-
egy is to beamform into the eigenmodes of the mean channel i.e
UT = Vt−dT . The remaining unknown is the optimal power
allocation policy, given by ΣT , that we subsequently determine
through minimizing the cost function of (7). To do so, we replace

T = Vt−dT ΣT and A−1 = (Σ̂
2

eqΣ
2
T )−1 in (17). This allows us to

explicit the cost-function of (7) in ΣT :

C ≈ σ2
ntrace

[
σ2

h(1 − |ρ|2)(p − MR)Σ̂
−4

eq Σ−2
T

+
(
1 + σ2

h(1 − |ρ|2)trace(Σ̂
−2

eq )
)

Σ̂
−2

eq Σ−2
T +

λEs

σ2
n

Σ2
T

]
(18)

We then differentiate the previous cost-function with respect to
ΣT , what results into:

dC
dΣT

≈ σ2
n

[
−σ2

h(1 − |ρ|2)(p − MR)Σ̂
−4

eq Σ−3
T

−
(
1 + σ2

h(1 − |ρ|2)trace(Σ̂
−2

eq )
)

Σ̂
−2

eq Σ−3
T +

λEs

σ2
n

ΣT

]
(19)

Finally, setting to zero the previous differential, enables us to iden-
tify the optimal ΣT , solution to the optimization problem formu-
lated in (6), as follows:

ΣT =

(
σ2

n

λEs

[
σ2

h(1 − |ρ|2)(p − MR)Σ̂
−4

eq

+
(
1 + σ2

h(1 − |ρ|2)trace(Σ̂
−2

eq )
)

Σ̂
−2

eq

]+
)1/4

(20)

where λ is the Lagrange multiplier to be calculated to satisfy the
power constraint.

4. PERFORMANCE RESULTS

In this section, we illustrate the improvements, in terms of average
MMSE and BER, that our robust joint linear precoder and decoder
MMSE design offers over state-of-the-art designs that simply ig-
nore the fact that the CSI at the transmitter is outdated. In order
to do that, we use the well-known Jakes model [8] to instantiate a
realistic outdated CSI model based on (2). Under the assumption
of isotropic scattering and moving terminal, this model describes
the time-correlation function as R(dT ) = J0(2πfDdT ), where
J0 is the zero-th order Bessel function of the first kind and fD is
the Doppler frequency. In our simulations, we use the parame-
ters which have been standardized for this model in the context of
indoor WLANs [9] as it is a potential application for joint linear
precoder and decoder designs. In particular, we consider a Doppler
frequency of 50 Hz. Finally, as aforementioned, the receiver pos-
sesses and uses perfect timely CSI to form the MMSE receiver of
(4). We further consider the case of a (4, 4) MIMO set-up with
2 QPSK-modulated data streams. Figures 1 and 2 respectively
plot this set-up’s average MMSE and BER performances, for a
normalized delay fDdT = 2 corresponding to a time-correlation
ρ = 0.15. Clearly, our robust joint linear precoder and decoder
MMSE design exhibits a lower average MMSE and consequently
a lower average BER performance, when compared to the state-of-
the-art design. More specifically, Figure 2 shows that our robust
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Fig. 1. Average MMSE comparison for a (4,4) MIMO set-up with
2 streams at spectral efficiency of 4 bits/s/Hz and ρ = 0.15
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Fig. 2. Average uncoded BER comparison for a (4,4) MIMO set-up
with 2 streams at spectral efficiency of 4 bits/s/Hz and ρ = 0.15

design offers a 1.5 dB SNR gain over the state-of-the-art design at
average BER = 10−3. Figure 3 further compares the MMSE per-
formance of our robust design to that of the state-of-art design over
a large range of delays at a fixed average receive Eb/No = 20 dB.
For delays up to 10−1 corresponding to time correlations larger
than 0.9, both designs exhibit the same average MMSE. However,
as the delay increases and the time correlation gets low, our de-
sign clearly outperforms the state-of-the-art design. This is due to
the fact that our robust design takes into account the uncertainty
around the true channel, due to channel time variations, in the de-
sign of the precoder T. To do so, our robust design requires only
the additional estimation of the time correlation ρ.

5. CONCLUSIONS

In this paper, we have proposed a robust linear precoder and de-
coder MMSE design that exploits the knowledge of the conditional
channel distribution, given the available outdated CSI. We have
also shown that our robust approach outperforms the state-of-the
art approach in terms of MMSE and BER in slowly time-varying
scenarios.
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Fig. 3. Average MMSE versus time for a (4,4) MIMO set-up with
2 streams at spectral efficiency of 4 bits/s/Hz and Eb/No = 20 dB
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