
Digital Spiking Neuron Cells for Real-Time 
Reconfigurable Learning Networks 

Haipeng Lin, Amir Zjajo, Rene van Leuken 
Circuits and Systems Group 

Delft University of Technology 
Delft, The Netherlands 

Abstract—The high level of realism of spiking neuron 
networks and their complexity require a substantial 
computational resources limiting the size of the realized 
networks. Consequently, the main challenge in building complex 
and biologically-accurate spiking neuron network is largely set 
by the high computational and data transfer demands. In this 
paper, we implement several efficient models of the spiking 
neurons with characteristics such as axon conduction delays and 
spike timing-dependent plasticity. Experimental results indicate 
that the proposed real-time data-flow learning network 
architecture allows the capacity of over 2800 (depending on the 
model complexity) biophysically accurate neurons in a single 
FPGA device. 

Keywords—Digital spiking neuron cells, neuron network, 
learning network, real-time data-flow architecture. 

I. INTRODUCTION

The spiking neural networks SNNs (SNNs) [1]-[2] replicate 
the dynamic behaviors and information processing mechanisms 
of a biological neural system [3], and exhibit temporal pattern 
processing [4] and fault-tolerant capabilities [5]. Subsequently, 
the main challenge in designing complex and biologically-
accurate SNNs is primarily set by the high data transfer and 
computational demands. Nevertheless, it is only through large-
scale networks and/or real-time simulation that biological 
dynamics for specific experiments e.g. brain-machine 
interfaces, can suitably be modeled. Execution of such 
networks on CPUs with generic programming suites or neuro-
modeling-specific languages, however, require a excessive 
amount of time to complete. Eventhough slower than custom-
made ASICs, field-programmable gate arrays (FPGAs) are, 
due to the inherent high-parallelism, capable of providing 
sufficient performance for real-time and even hyperreal-time 
neuron network simulations. In addition, via (partial) 
reconfigurations of the hardware, various network topologies 
as well as numerous neuron models, (e.g. Izhikevich [6]-[7], 
integrate and fire (IaF) [8] model and its extensions such as the 
leaky IaF, IaF-or-Burst [9], quadratic IaF [10], or Hodgkin-
Huxley (HH) [11]-[12], simplified Hodgkin-Huxley [13], 
extended Hodgkin-Huxley [14]), can be simulated. This 
flexibility is substantially enhanced by the use of high-level 
synthesis tools, which speed up the development process. 

In this paper, we implement several models of the spiking 

neurons representing different trade-offs between the 
biophysical accuracy and computation complexity. The models 
with characteristics such as axon conduction delays, gap 
junctions [14], spike timing-dependent plasticity (STDP) [15]-
[16], electrochemical state descriptions [17], etc. are 
implemented in a real-time data-flow learning network. The 
input is localized for each neuron cell, i.e., multiple packets can 
be transmitted to the specific neuron cells at the same cycle. 
Concurrently, the parameters are also localized for each cell. 
Additionally, the implemented system offers configurable on- 
and off-chip communication latencies as well as neuron 
calculation latencies. 

II. SPIKING NEURON CELLS

A. Hodgking-Huxly Neuron Cell Model
The model based on experimental findings in [17] (Fig. 1)

implements a neuron with three distinct compartments: the 
axon, the soma, and the dendrite. Operationally, the neuron 
network needs to compute and communicate simulated neuron 
cell responses to their neighbors and the axon. We run both 
operation concurrently, and devise separate hardware 
architectures for computation (based on the multi-
compartmental extended HH [14]), and communication 
requirement. We refer to a neuron computation unit as a 
physical cell (PhC) 1 . Within a PhC, topology-independent 
Axon+Soma (in cycles) computation, and the topology-
dependent dendrite computation operate in parallel [18]. 

Fig. 1: Dataflow of an extended Hodgkin-Huxley model [18].  

1 The computation units are called physical cells (PhCs) to recall that they 
are physically implemented in hardware.  

PhCDendrite 

Axon+Soma

PhCDendritePhCDendrite PhCParam 

DendNet

DendComb 

A+D Output Calc done 

FIFO 

BRAM 

Operations 
Control signal
Data 

Start Neigbour 
States 

Impulse

Legend 

Request 
ExpC 

Impulse 
HP-Port 

ExpC 
LP-Port 

Request 
Neighbour 
States

Calc Done 
PhC Output 

This research was supported in part by the European Union and the Dutch
government, as part of the CATRENE program under Heterogeneous 
INCEPTION project. 

978-1-5386-4034-0/17/$31.00 ©2017 IEEE 163



B. Integrate and Fire Neuron Cell Model 
In general, due to the efficient computation, the integrate 

and fire model is applicable for simulation of large amount of 
neural cells in the network if the biophysically meaningful 
features of the neuron cell are not an issue. A data flow of 
integrate and fire neuron cell model is shown in Fig. 2. The 
inputs are in the form of the current, consisting of the spikes 
from the neighbors, and the external stimuli. All the inputs are 
added together to derive a total current. This current is used in 
the potential function to calculate a new membrane potential 
Vmem together with parameters and current membrane potential, 
and one parameter is updated in the memory of parameter. 
Afterwards, this new Vmem(new) is compared with the threshold 
potential. If the Vmem exceeds the threshold, a new spike will be 
generated, and the Vmem and one parameter will be reset and 
stored in the local memory, respectively. Additionally, the Vmem 
will be written back to its local memory, waiting for the next 
cycle. Finally, the spike is transmitted to the neighbors 

C. Izhikevich Neuron Cell Model 
The Izhikevich model is usually used to examine the 

patterns of the spike trains. In the proposed system, the 
implementation of the Izhikevich model can be subdivided into 
three parts: axonal conduction delay, STDP, and spike 
generation.  

Axonal Conduction Delay: The axonal conduction delays 
can vary greatly (depending on the axonal velocity and 
distance, respectively), and can be as large as 44 ms and as 
small as 0.1 ms [19]. The implementation of axonal conduction 
delay includes three basic functions: fdelay (defines the exact 
delay time for each arriving spike), fcheck (checks whether 
spikes arrive within the predefined time step), and fcurrent 
(generates the current). The dataflow is shown in Fig. 3. At 
each step, firstly all inputs from neighbors are compared. The 
delay information is stored in a local memory, which records 
the delay time for each neighbor. If the spikes are accepted, the 
fdelay attach delay information to these spikes, and store them in 
a buffer. The spike generation and packets arrival occur at the 
same cycle. Accordingly, an additional delay is placed in the 
module to enable readout of the spikes at real-time.  

 
Fig. 2: Dataflow of an integrate and fire model. 

 

We assume that the spikes from neighboring neurons 
depend on the pre-synapse weights; consequently, the 
(delayed) spike buffer only need to record the real arriving time 
for each pre-synaptic neuron. 

STDP: The implementation of STDP [15] refers to several 
important variables, e.g. long-term potentiation (LTP) [20], 
long-term depression (LTD) [21], pre-synapse weight, pre-
synapse derivatives, post-synapse weight, and post-synapse 
derivatives. We add a global memory in the general structure 
of network to dynamically update STDP parameters. When a 
single (Izhikevich) neuron cell receives the spike from a 
specific pre-synaptic neighbor, the pre-synapse derivative will 
be depressed by the variable LTD. Next, the new parameter 
value of STDP is updated in the global memory, so that the 
corresponding pre-synaptic neuron is informed immediately of 
the change of its post-synapse derivative (the synaptic weight 
of the pre-neuron equals the synaptic weight of the post-
neuron). In case a spike is generated in the neuron itself, the 
variables LTD and LTP are reset. If no spikes occur, all 
variables will decay according to the STDP rule.  

Spike Generation: In this independent module, the new 
membrane potential is calculated based on the external current 
Iapp, pre-synaptic weight, and delays. If new membrane 
potential is lower than threshold, no spike is generated, and the 
parameters of STDP decay proportionally to the fdecay. 
Consequently, the membrane potential and parameters are reset 
to the predefined constant values, and the new data are fed 
back to the corresponding local memories. 

D. The System Overview 
In the implemented architecture (Fig. 4) [22], the neuron 

cells are connected with decreasing probability the further they 
are apart [1]. The cells placed near to each other in the network 
are connected within the (neighbor) cluster. Each cluster 
consists of several individual computation units, i.e. physical 
cells, which are positioned around a shared memory for storing 
all the communication data needed by the PhCs. In the clusters, 
configurable routing tables define how PhCs are arranged 
within the neuron network. 

 
Fig. 3: Dataflow of an Izhikevich model 

 

Spike/Reset 

Inputs 

Vmem(new) Parameters 

Vmem 

>Vthreshold no 

spikes 

 

yes 

Run_delay 

Inputs 

fcheck

fcurrent

Spikedelayed 

Time_stop 

Iapp STDPparameters LTD 

Vdendrite 

Run_V

Delayinfo 

LTP 

fdecay If generate 
spike 

fres_p yes no 

spikes 

164



 
Fig. 4: The system overview. The computing elements (the PhCs) are grouped inside a cluster to make communication between neighboring cells fast. These 

clusters are connected in a tree topology NoC. The router fan-out in this case is 2, and can be changed according to the requirements of the implementation. The 
same holds true for the number of PhCs in any cluster [22]. 
 

By attaching each cluster to a binary tree network, 
responses between PhCs are shared. Furthermore, through the 
top node of the tree network a current impulse can be applied 
to all PhCs, and all output results of the neuron network 
streamed. 

Input and Output: The interface connecting to external 
environment only focus on the value of signal and data format; 
the corresponding digital signal is assigned with identification 
number and transmitted to destination. In order to handle 
multiple external stimuli simultaneously, the interface is 
capable of localizing input for each neuron cell. In each 
simulated time cycle, the interface can deal with multiple 
external sources and send these packets one by one to 
destinations. Routers in the network utilize the look-up routing 
tables to forward the receiving packets. The cluster containing 
destination of neuron cell accept the packet and store it in 
shared memory; the corresponding neuron cell can read it 
before calculation.  

Parameters: Sets of parameters are locally stored in the 
memory of each (independent) neuron module. Consequently, 
the system can be efficiently set to specific configuration 
without rewriting configuration file each time. Additionally, 
since neuron cell read or update parameters on each cycle, 
localization of storing parameters significantly reduce latency, 
in particular a communication latency. For each neuron cell, 
the parameters are set individually (a set of parameters 
represents various states of neuron cell and different neuron 
cells have different values of the parameters). The parameters 
are initialized with random function to generate unique values 
of parameters within each neuron cell. The individual value of 
parameters generated by functions is in a specific range, whose 
max and min values are pre-defined in configuration file. 

Network Scalability: Several FIFO buffers are designed in 
the router to handle congestion. Each input or output port has a 
corresponding write- or read-buffer. Once write buffers are 
full, the following packets will be stored in the delayed buffer 
first. As soon as the write buffer is empty, the packets in the 
delayed buffer will be picked up and forwarded to destinations 
via write buffer. In order to simplify the design, all packets are 
defined with same size and the same priority in the system. 
Hence, there is no need to split packets to several flits. The 
number of the neuron cells, the clusters and number of time-
shared cells in one PhC are pre-defined in configuration file. 
Once system starts, it firstly initializes the structure of network 
based on parameters of the system. A recursive function is 
designed to generate new branch from root node, until the 
number of leaf nodes is equal or larger than the pre-defined 
parameter.  

Synchronization Between Clusters: Communications within 
a cluster is designed to be much faster than communications 
among clusters. Hence, a cluster with inter-cluster 
communications completes a calculation slower. We 
synchronize the clusters with a special packet routed to the root 
of the tree, where it is counted, i.e. when done packets have 
arrived at the root.  

Adjustments to the Network to Scale over Multiple FPGAs: 
As the hardware resources are limited on any FPGA, the 
maximum number of neuron cells in the network is always 
limited. To overcome this constraint, the proposed architecture 
is designed in such a way that the network can be ported over 
multiple FPGAs with ease. Since the communication frequency 
decreases closer to the root of the network tree, multiple 
FPGAs can be connected at the highest level without 
significant impact on performance.  

 

I2C/SPI 

2 
2 

2 2 
CB Control Bus  

Interface 
Iteration 

Controller

ADC DAC 

Packetizer 

Converter 

Packets 

ADC DAC ADC ADC DAC DAC 

CB 

2×80 

2 

2 

2×80 
2 

2×80 

Buffer Router Controller 

Routing Table 

Routing Table Routing Table 

CB 

2 

CB 

2×80 

2 

2 

2×80 2×80 

Buffer Router Controller 

Routing Table 

Routing Table Routing Table 

Routing Table 

Routing Table Routing Table 

Memory 

CB 

Cluster 
PhC PhC PhC PhC 

Memory 

CB 

Cluster
PhC PhC PhC PhC 

Memory 

CB 

Cluster
PhC PhC PhC PhC 

Memory 

CB 

Cluster 
PhC PhC PhC PhC 

RouterController Buffer 

165



However, while applying the tree topology on multi-FPGA 
systems and only adding another tree layer would offer easy 
extendibility, the limited connection options of each FPGA 
(and need for an additional FPGA for routing between the 
FPGAs containing the clusters), severely restrict their 
capabilities. Consequently, since neighboring FPGAs 
communicate the most, the FPGAs are connected in a ring 
topology, which is less complex in terms of topology 
generation and administration of the routing tables [22].  

III. MODEL CONFIGURATION 
To find an optimal design, first the limit is given on the 

total number of implementable physical cells TotalPhC in 
FPGA, based on the available critical resources (1). The 
maximal number of clusters  in the system depends on 
required accuracy. After dividing TotalPhC by , the amount of 
physical cells per cluster (PPC) can be determined as  

PhCResourse
ResourseCriticalTotalPhC   ,#
 #<    (1) 

5    where],1[# ≤×= ϕ
ϕPhCTotalPPC   (2) 

The latency of physical cells cannot exceed the real-time 
constraint2. For each neuron, the latency cycle Cneuron consists 
of two parts: calculation cycle Ccal, and communication cycle 
Ccom  

comcalneuron CCC +=     (3) 

The calculation cycle designates the time that neuron cell 
needs to generate the response, performs the calculations with 
the parameters, and update the results in the memory. The 
sending of the results to corresponding neighbors via the 
network is calculated in the communication cycles. The latency 
of the physical cell CPhC is 

comcalPhC CCTSFC +×=     (4) 

where TSF is the time sharing factor for each physical cell. 
To improve the efficiency of system the CPhC aims to be close 
to the real-time constraint, and consequently, larger number of 
the neuron cells can compute the responses within a given 
system period Tsystem (6). From (4), an upper bound of the time-
share-factor can be calculated by considering the latency of 
PhC, the number of calculation cycles, and the communication 
cycles 

period

system
system CLK

T
C =     (5) 

sCwhereCCC timerealsystemtimerealPhC μ50    , =≤≤ −−
 (6) 

−
≤

cal

comPhC

C
CC

TSF     (7) 

As a result, the total number or neurons implemented in the 
system is derived by 

TSFPCCTotalneurons ××=ϕ    (8) 

                                                           
2 The ‘real-time’ constraint is the maximum number of cell states that can 

be computed within the model (with a step time of 50 s given by [14]). 

The buffer depth is defined based on the layer where the 
corresponding router is placed in the tree network. Taking into 
considerations the number of physical cells per cluster and 
time-share factor, the maximal amount of packets in each 
cluster is  

TSFPPCNNum clusterPhC ××=,
   (9) 

where N is the maximal number of the connections to the 
neighbors. By adding the number of clusters in the design, the 
low bound on the buffer depth is given as 

other
i

ithdownstream NumTSFPPCNDepth +×××≥ 2,  (10) 

TSFPPCNDepth i
ithupstream ×××≥ +1
, 2   (11) 

IV. EXPERIMENTAL RESULTS 
All simulations are completed with cycle-accurate 

SystemC, including all computation and communication 
latencies, both on- or off-chip. To simulate the system behavior 
three different connection schemes are utilized; all-to-all 
connections (all cells are connected to all other cells), normal-
distributed distance-based connections (probability based 
connections weighted by the distance between cells), and 
neighbor based connections (connects every cell to every 
neighboring cells, thus, resulting in 8 connections per cell). 

The configuration file contains all the relevant parameters 
of the system and can be easily modified allowing exploration 
of different fan-out values, different cell communication 
schemes, etc. After the design is configured with the chosen 
accuracy (32/64-bit), it is synthesized through the Vivado HLS 
tool to generate VHDL code, and test bench files. To assess the 
proposed design, the synthesizable VHDL code is compiled 
with ModelSim, and the simulated axon voltages are compared 
to the reference C model [23]. Since the number of 
computational cycles is fixed (within a physical cell cluster) for 
a given topology, the hardware designs closest to real-time 
timing constraint are scaled-up by increasing the number of 
physical cell clusters in the tree network [18]. However, 
without routing tables in the tree network, all resulting 
potentials are sent in an all-2-all type fashion. 

The neuron spiking properties are governed by the specific 
parameter sets: these properties have well-defined role in 
defining explicit brain functions, e.g. the cortical neurons with 
tonic bursting contribute to the gamma-frequency oscillations 
in the brain [24]. Fig. 5 and Fig. 6 illustrate several types of the 
neuron behavior in the simulated system. Similar patterns are 
found with biological test [25]. Most neurons are quiescent but 
can fire spikes when stimulated. Fig. 5a shows the typical 
firing of the integrate and fire model. When the pulses of the 
current are injected at the input, the neuron fire a train of 
spikes, the process called tonic spiking [26] (Fig. 5b). If such 
neurons fire continuously, it indicates that persistent input is 
offered to the neurons. A specific neuron could fire only a 
single spike at the onset of the input, and could subsequently 
stay quiescent, i.e. a response called phasic spiking illustrated 
in Fig. 5c. Specific neurons fire periodic bursts of spikes when 
stimulated, as shown in Fig 6a. 

 

166



 
 
Fig. 5: SystemC simulation of the neuro-computational properties of spiking neurons: a) integrate and fire model, b) tonic spiking in the Izhikevich model,         

c) phasic spiking in the Izhikevich model. 

 
 
Fig. 6: SystemC simulation of the neuro-computational properties of spiking neurons in the Izhikevich model: a) tonic bursting, b) phasic bursting,                     

c) mixed-type of spiking activity.  

Model Cluster PhC TSF BRAM % DSP % FF % LUT % Neurons 
Hodgkin-Huxley [23]  NA 8 12 78 57 27 83 96 
Hodgkin-Huxley [18] 18 2 33 23.6 35 27.5 90 1188 
Izhikevich 5 8 70 38 22 25 89 2800 
Integrate and fire 5 8 75 23 20 16 54 3000 

 
Table I - Hardware utilization of the most important components of the system on a Xilinx Virtex 7 XC7VX550 FPGA board.  
Routers sizes are generated by synthesizing a SystemC model of a router using Vivado HLS 2013.4. 

 

Similar to the phasic spiking, the neurons can show phasic 
bursting behavior, as in Fig. 6b, which is needed to transmit 
saliency of the input, to overcome the synaptic transmission 
failure and reduce neuronal noise [27], or can be used for 
selective communication between neurons [28]. Intrinsically 
bursting excitatory neurons [29] depicted in Fig. 6c can exhibit 
a mixed type of spiking activity. 

Table I lists hardware utilization of different spiking neuron 
models in the system. The system is implemented on the Virtex 
7- XC7VX55 FPGA device. The hardware utilization is sub-
divided into four different resource types, including look-up 
tables (LUT), flip-flops (FF), digital signal processors (DSP), 
and block memories (BRAM); smaller components, like the 
synchronization circuits, are omitted for clarity. FPGA 
resources can accommodate 1188 Hodgkin-Huxley type 
neuron cells, and approximately 2800 and 3000 Izhikevich, and 
integrate and fire type neural cells, respectively. The minimum 
simulation interval to achieve a realistic representation of the 
neuron-cell behavior is determined as in [14]. Consequently, 
since each neuron cell can be re-used multiple times within the 
real-time boundary (and to benefit from the high level of 
parallelism and performance of the FPGA), the neuron cells are 
time-multiplexed.  

All results reported are for real-time simulations with 
double floating point precision for the most biologically 
accurate representation of a neuron cell behavior.  

V. CONCLUSIONS 
A real-time reconfigurable learning neuron networks are 

not only limited by run-time configurability, the re-synthesis of 
the system, and the interconnect between the neurons, but 
mainly with amount of neurons which can be placed on the 
chip. In this paper, we implement several models of the spiking 
neurons with axon conduction delays and spike timing-
dependent plasticity (STDP) in a real-time data-flow learning 
network. The system implemented on the Virtex 7 - XC7VX55 
device can accommodate 1188 Hodgkin-Huxley type neuron 
cells, and approximately 2800 and 3000 Izhikevich, and 
integrate and fire type cells, respectively. A tree-based 
communication bus is utilized since it offer run-time 
configurability, e.g. the user-enabled configuration of the 
connectivity between cell, the calculation parameters 
adaptability, etc. Consequently, the system does not need to be 
re-synthesized just to experiment with a different connectivity 
between cells. The cells are grouped around a shared memory 
in clusters to allow instantaneous communication. 

a) b) c) 

a) b) c) 

167



REFERENCES 
[1] W. Gerstner, W.M. Kistler, Spiking neuron models: single neurons, 

populations, plasticity, Cambridge University Press, 2002. 
[2] W. Maass, “Noisy spiking neurons with temporal coding have more 

computational power than sigmoidal neurons”, in M. Mozer, et al. (ed.), 
Neural Information Processing Systems, MIT press, pp. 211-217, 1997. 

[3] S. Ghosh-Dastidar, H. Adeli, “Spiking neural networks,” International 
Journal of Neural Systems, vol. 19, no. 4, pp. 295-308, 2009. 

[4] Q. Yu, R. Yan, H. Tang, K.C. Tan, H. Li, “A spiking neural network 
system for robust sequence recognition,” IEEE Transactions on Neural 
Networks and Learning Systems, vol. 27, no. 3, pp. 621-635, 2016. 

[5] H. Shayani, P. Bentley, M. Tyrrell, “A cellular structure for online 
routing of FPGAs,” in Evolvable Systems: From Biology to Hardware, 
Springer Berlin-Heidelbarg, pp. 273-284, 2008. 

[6] E.M. Izhikevich, “Which model to use for cortical spiking neurons?”, 
IEEE Transactions on Neural Networks, vol. 15, no. 5, pp. 1063-1070, 
2004. 

[7] K. Cheung, S.R. Schultz, W. Luk, “A large-scale spiking neural network 
accelerator for FPGA systems”, International Conference on Artificial 
Neural Networks and Machine Learning, pp. 113-120, 2012. 

[8] H. Shayani, P.J. Bentley, A.M. Tyrrell. “Hardware implementation of a 
bio-plausible neuron model for evolution and growth of spiking neural 
networks on FPGA”, NASA/ESA Conference on Adaptive Hardware and 
Syst., pp. 236-243, 2008. 

[9] G. Smith, C. Cox, S. Sherman, J. Rinzel, “Fourier analysis of 
sinusoidally driven thalamocortical relay neurons and a minimal 
integrate-and-fire-or-burst Model,” Neurophysiology, vol. 83, pp. 588-
610, 2000. 

[10] G.B. Ermentrout, “Type I membranes, phase resetting curves, and 
synchrony,” Neural Computation, vol. 83, pp. 979-1001, 1996. 

[11] A.L. Hodgkin, A.F.Huxley, “A quantitative description of membrane 
current and its application to conduction and excitation in nerve”, 
Journal of Physiology, vol. 117, no. 4, pp. 500-544, 1952. 

[12] Y. Zhang, et al., “Biophysically accurate floating point neuroprocessors 
for reconfigurable logic”, IEEE Transactions on  Computers, vol. 62, 
no. 3, pp. 599-608, 2013. 

[13] M. Beuler, et al., “Real-time simulations of synchronization in a 
conductance-based neuronal network with a digital FPGA hardware-
core”, International Conference on Artificial Neural Networks and 
Machine Learning, pp. 97-104, 2012.  

[14] M. van Eijk, C. Galuzzi, A. Zjajo, G. Smaragdos, C. Strydis, R. van 
Leuken, “ESL design of customizable real-time neuron networks”, IEEE 
International Biomedical Circuits and Systems Conference, pp. 671-674, 
2014. 

[15] W. Gerstner, R. Kempter, J.L. van Hemmen, H. Wagner, “A neuronal 
learning rule for sub-milisecond temporal coding”, Nature, vol. 383, no. 
6595, pp. 76-81, 1996.  

[16] S.J. Thorpe, “Spike-based imagge processing: can we reproduce 
biological vision in hardware”, in A. Fusiello, et al. (ed.), Computer 
Vision, Springer Berlin-Heidelbarg, pp. 516-521, 2012. 

[17] J.R. de Gruijl, et al., “Climbing fiber burst size and olivary subthreshold 
oscillations in a network setting”, PLoS Computational Biology, vol. 8, 
no. 12, pp. 1-10, 2012. 

[18] G.J. Christiaanse, A. Zjajo, C. Galuzzi, R. van Leuken, “A real-time 
hybrid neuron network for highly parallel cognitive systems”, 
International Conference of the IEEE Engineering in Medicine and 
Biology Society, pp. 792-795, 2016. 

[19] E.M. Izhikevich, “Polychronization: computation with spikes,” Neural 
Computation, vol. 18, pp. 245-282, 2006 

[20] E. Pastalkova, P. Serran, D. Pinkhasova, E. Wallace, A. Fenton, T. 
Sacktor, “Storage of spatial information by the maintance mechanism of 
LTP,” Science, vol. 31, no. 5790, pp. 1141-1144, 2006. 

[21] P.V Massey, Z.I. Bashir, “Long-term depression: multiple forms and 
implications for brain function,” Trends in Neuroscience, vol. 30, no. 4, 
pp. 176-184, 2007. 

[22] J. Hofmann, A. Zjajo, C. Galuzzi, R. van Leuken, “Multi-chip dataflow 
architecture for massive scale biophysically accurate neuron 
simulation”, International Conference of the IEEE Engineering in 
Medicine and Biology Society, pp. 5829-5832, 2016. 

[23] G. Smaragdos, S. Isaza, M. F. van Eijk et al., “Fpga-based 
biophysically-meaningful modeling of olivocerebellar neurons,” IEEE 
International Symposium on Field-programmable Gate Arrays, pp. 89-
98, 2014. 

[24] C.M. Gray, D.A. McCormick, ‘‘Chattering cells: Superficial pyramidal 
neurons contributing to the generation of synchronous oscillations in the 
visual cortex,’’ Science, vol. 274, no. 5284, pp. 109-113, 1996. 

[25] N. Schweighofer, et al., “Electrophysiological properties of inferior 
olive neurons: a compartmental model”, Journal of Neurophysiology, 
vol. 82, no. 2, pp. 804-817, 1999. 

[26] J.R. Gibson, M. Belerlein, B.W. Connors, “Two networks of electrically 
coupled inhibitory neurons in neocortex,” Nature, vol. 402, pp. 75-79, 
1999. 

[27] J. Lisman, “Bursts as a unit of neural information: Making unreliable 
synapses reliable,” Trends in Neuroscience, vol. 20, pp. 38-43, 1997. 

[28] E.M. Izhikevich, N.S. Desai, E.C. Walcott, F.C. Hoppensteadt, “Bursts 
as a unit of neural information: Selective communication via 
resonance,” Trends in Neuroscience, vol. 26, pp. 161-167, 2003. 

[29] B.W. Connors, M.J. Gutnick, “Intrinsic firing patterns of diverse 
neocortical neurons,” Trends in Neuroscience, vol. 13, pp. 99-104, 1990. 

 

168



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


