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Abstract—In a neuromorphic integrated circuit synaptic dy-
namics are of great importance to capture accurate neural
behaviors. In this paper, we propose a current-based synapse
design mediated with multiple receptor types, namely AMPA,
NMDA and GABAa, and a weight-dependent learning algorithm.
Due to various biological conducting mechanisms, the receptors
demonstrate different kinetics in response to stimulus. The
designed circuit offers distinctive features of receptors as well
as the joint synaptic function. An increased computation ability
is verified through synchrony detection in a two-layer recurrent
network of synapse clusters. The design implemented in TSMC
65 nm CMOS technology consumes 1.92, 3.36, 1.11 and 35.22 pJ
per spike event of energy for AMPA, NMDA, GABAa receptors
and the advanced learning circuit, respectively.

Index Terms—neuromorphic design, synapse, receptor, syn-
chrony detection, synaptic plasticity.

I. INTRODUCTION

Neuromorphic systems, a concept proposed by Carver Mead
[1], are artificial systems used to capture biological properties
of neurons in nervous system. Silicon implementation is one
of popular methods to achieve modelization of neural system
from biological experiments as it shares many analogous
features with biological nervous system [1]. Phenomenological
models, a compromise between high fidelity and computa-
tional feasibility, describe crucial properties from theoretical
results and applies them in analyses and simulations. These
models allow deeper understanding of working principles
underlying neuron networks.

Synapses, i.e. the connecting structures between neurons,
experience synaptic state modifications based on incoming
information and current activities in neural networks. Neurons
then convert resulting signals into spikes and pass them to
next layer of synapses. It should be noticed that the synaptic
state modification induced by a mechanism, commonly called
synaptic plasticity, is an abstraction of synaptic learning.
When stimulated by incoming presynaptic spikes, synapses
release vesicles, where neurotransmitters are stored, as a way
of signal transmission. The binding of released transmitters
and receptors at the dendrites of postsynaptic neurons activates
receptor channels and thus induces electrical activities in
postsynaptic neurons. Synaptic plasticity is influenced by the
quantity of transmitters emitted to receptors, and the efficiency

of the receptor’s response [2]. There are different types of
receptors: NMDA, AMPA, GABAa, each exhibiting differ-
ent temporal dynamics in their response to neurotransmitters
[3]. For example, the speed of NMDA receptor response
is considerably slower in comparison with AMPA, since
a more rigorous condition should be satisfied to open the
receptor channel. Additionally, the unbinding of glutamate
and receptors for NMDA is relatively slow [4]. A generic
synapse structure does not capture diverse temporal dynamics
of different types of receptors in biological synapses, which
are essential for realization of biophysically accurate neural
behaviours in spiking neural networks (SNN) [5].

In recent neural network studies [6], synapse circuit imple-
mentation varies from simple constant current sources, which
are activated by presynaptic spikes, to more complex real-
izations of synaptic current dynamics. However, the receptor
diversities have usually been ignored. Most research includes
single type of synapse in whole neural system [7]-[8], or in
some cases, they are partially mentioned but not described
comprehensively [6]-[9]. In [10], a conductance-based synapse
configuration which discusses various receptor types was
proposed. Even though robustness is highlighted, the switched-
capacitor based architecture occupies considerable silicon area,
and thus limits integration density. In [11], ion-based model
is employed to emulate receptor-supported synapse structure.
Detailed ion dynamics are captured at a cost of high energy
consumptions caused by extra active blocks.

In this paper, we propose a current-based phenomenolog-
ical synapse model, consisting of efficient weight-dependent
synaptic learning algorithms and multi-compartment synapses,
namely AMPA, NMDA and GABAa receptors. The designed
circuit obtains key functions of distinctive receptor dynamics
with a compact and power-efficient structure. A better compu-
tation ability is demonstrated through cross-correlation detec-
tion verification with a two-layer recurrent network of synapse
clusters. The analog multi-compartment synapse structure is
able to detect and amplify the temporal synchrony embedded
in the synaptic noise. The maximum amplification level is 2
times larger than that of single-receptor configuration. The
circuit implemented in TSMC 65 nm CMOS technology
consumes 1.92, 3.36, 1.11 and 35.22pJ per spike event of en-
ergy for AMPA, NMDA, GABAa receptors and the advanced978-1-5386-2844-7/17/$31.00 c© 2017 IEEE



learning circuit, respectively.

II. SYNAPTIC RECEPTORS

The effect of transmitter and receptor pairs on the post-
synaptic neurons can be either excitatory or inhibitory, cor-
responding to positive and negative current flows to postsy-
naptic neurons, i.e. excitatory postsynaptic current (EPSC)
and inhibitory postsynaptic current (IPSC). Different types
of receptors display different temporal dynamics due to their
distinctive conducting mechanisms. In this paper, we limit the
scope to two main glutamate receptors, AMPA and NMDA,
and one GABAergic receptor, GABAa.

A. Biological Receptors

AMPA Receptor: The AMPA receptor is one of the most
common receptors in the nervous system. Mostly, the AMPA
receptor is permeable to sodium (Na+) via ion channels.
Upon binding of transmitters on AMPA receptors, positively
charged Na+ enters the AMPA ion channels and depolarize
the cell, thus inducing action potentials. AMPA receptor has
a high conduction speed due to a straightforward mechanism
of channel opening and closing, and are thus responsible for
fast signal transmission [12].

NMDA Receptor: The ion channels NMDA receptor is
voltage-dependent, which is distinctive compared with other
glutamatergic receptors. This dependency initially arises from
the non-selectivity of its ion channels. When ligand-binding
occurs, the non-selective ion channels are open to extracellular
magnesium (Mg2+) and zinc (Zn2+), which will bind to
specific sites on the receptor and block the channels for any
other ions. To eliminate this blockage, a certain level of
depolarization of the cell is necessary, usually through the
influx of Ca2+ [13]. Once cleared, the ion channels introduce
both Ca2+ and Na+ into the target cell. At the same time,
in response to the increased level of depolarization, more
AMPA receptors are inserted into the membrane, creating
higher possibility that ion influx occurs. Thus, the conductance
of NMDA receptor has a boost effect on the postsynaptic
current. To activate NMDA receptors, the presynaptic activities
introduce free transmitters to the dendrites, while the postsy-
naptic depolarization opens the receptor ion channels. This
kind of dual function of pre- and postsynapses implies the
role of NMDA receptor in synchrony detection and biological
emulation. On the temporal aspect, the NMDA receptors are
typically three to six times slower than AMPA [3], which
originates from a more complicated binding mechanism and
small unchanneling speed.

GABAa Receptor: The GABAa receptor is a primary in-
hibitory channel carrier in the nervous system. The GABAa
receptor is permeable to chloride (Cl−). When activated, the
GABAa receptor conducts Cl− through the ion channels, caus-
ing the hyperpolarization of the cell and a lower possibility of
neural firing. This inhibition function of the GABAa receptor
is reported to be a prerequisite for balancing excitation and
inhibition, thus stabilizing neural network [14]. The GABAa
receptors have a similar temporal dynamics as AMPA, i.e. both

TABLE I
BIOLOGICAL DYNAMICS FOR THREE RECEPTORS [3] [14]

Rise & Fall Times Conduction Remarks

AMPA (+) 0.4-0.8, 5 ms 1-step, fast EPSC

NMDA (+) 20, 100 ms 2-step, voltage dependency, slow EPSC

GABAa (-) 3.9, 20 ms 1-step, fast IPSC

the rise and the fall time of EPSCs are comparable. A brief
summary of the dynamic features of three receptors are listed
in Table I.

Learning Rule: Spike timing dependent plasticity (STDP), a
temporally symmetrical form of Hebbian’s theory, is a learn-
ing process that can adapt the synaptic weight according to
temporal correlations between pre- and postspikes of a target
synapse. These correlations should be within milliseconds
time range in accord with biological temporal features: if the
prespike precedes the postspike, a potentiation of the synaptic
weight occurs; in contrast, if a reversed sequence happens,
depression is induced. Two factors of concern in this learning
window are time constants (τ ) and amplitudes (A). The time
constant indicates the temporal range where the correlation
happens while the amplitude controls the adaptation level. The
STDP rule is expressed as below:

∆w+ = A+ · e−∆t/τ+ ∆t > 0 (1)

∆w− = −A− · e∆t/τ− ∆t < 0 (2)

where ∆t is the temporal difference between a single pair of
post- and pre-spikes. A+ and A− are the maximum amplitude
while τ+ and τ− are time constants of the potentiation and
the depression phase, respectively.

B. Circuit Implementation

The top-level structure diagram is shown in Fig.1. The
synaptic weight, generated by STDP learning block is trans-
mitted through receptors, resulting in wide-range of temporal
dynamics of EPSCs or IPSCs. Those overlapping responses
are then integrated in the integrated and fire (I&F) neuron
[14], further generating firing spikes. The voltage-dependent
NMDA receptor receives the feedback membrane voltages
from the I&F neuron. The three receptors integrated with an
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Fig. 1. Top-level diagram of multi-receptor mediated synapse architecture.
The blue arrowed lines represent signal transmissions while red ones represent
feedback signals. The dashed block denotes the multi-compartment synapse.
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Fig. 2. The cluster structure including an advanced STDP learning circuit with three receptors. Different color dashed blocks denote different functional unit:
yellow - advanced STDP learning, red - AMPA receptor, blue - NMDA receptor, green - GABAa receptor. The synaptic weight value is transmitted through
node Vw between component circuits.

advanced STDP learning circuit [8] form a multi-compartment
cluster structure. The transistor level implementation is shown
in Fig.2.

A differential-pair integrator [6] structure is applied to emu-
late the fast rising and decaying dynamics of AMPA receptor.
The receptor generates biologically analogous synaptic cur-
rents, which are modeled as a time-dependent alpha function
with finite duration in rising phase [15]. The dual function
of an extra scaling Vthr and a leaky rate adjustment Vtau1
offers flexibility to amplitude and time constant control of
AMPA EPSCs. Additionally, linear filtering properties makes
it possible to sum multiple currents from identical synapses,
yielding significant area savings. Moreover, the circuit has
a low power consumption because the main circuit mostly
conducts only in presence of the presynaptic spikes, which
lasts for no more than 2 ms.

Unlike the single exponential dynamics used for AMPA
receptor, the charging phase of NMDA receptor can not be
ignored due to its relatively large portion in the whole temporal
range. Thus, a double exponential function should be displayed
in NMDA receptor design as well as its distinctive weight
dependence. The presynaptic spike enables a instantaneous
current influx into Cnmda1 in the rising phase, the amplitude
of which is mediated by Vw. The bias Vtau2 determines the
discharge speed of Cnmda1. During this controllable period of
time, the transistor M4 is always active, inducing the charge of
Cnmda2. After that, capacitor Csyn begins to discharge through
M32 biased by Vtau3, adjusting the falling time constant.
In this way, controllable double exponential dynamics are
generated. To incoporate the distinctive voltage dependence
of NMDA receptors, a differential pair is added to the circuit,
forming a comparison between the membrane voltage Vmem

and the threshold Vmth. When the postsynaptic neuron is
depolarized, Vmem surpasses Vmth, introducing valid current
flux into Csyn. On the contrary, if Vmth surpasses Vmem, no
or only small fraction of current is induced to generate EPSCs.

The GABAa receptor has analogous dynamics as AMPA
except for the polarity. However, since the inhibitory synapses

do not exhibit learning properties, i.e. the inhibitory level is
independent on the synaptic weight, it is not necessary to have
two control voltages over the inhibitory level (Vthr and Vw). A
log-domain integrator is chosen as the implementation of the
GABAa receptor for its simplicity as well as a linear dynamics.

The advanced STDP learning circuit [8] incorporates presy-
naptic and postsynaptic spike trains, and conducts weight
adaptation according to the STDP learning rule. The po-
tentiation and depression phases exhibit almost symmetrical
structures, inducing charge influx and efflux from the weight
capacitor Cw depending on the relative timing of pre- and post-
spike pairs. Note that the circuit in this paper follows a comple-
mentary design, i.e. larger Vw represents smaller weight value.
The time constants and amplitudes of the learning window are
tuned through Vbpot, Vbdep and Ibpot, Ibdep, respectively. A
weight dependence feature is added to the potentiation domain
via M1-M3 to match with experimental observations obtained
in [16]. When synaptic weight increases (corresponding to
a decrease in Vw), a larger current is subtracted from Ibpot
through M5, resulting in lower current influx to Cpot.

III. EXPERIMENTAL RESULTS

A. Synaptic Receptors

Single Receptor: The EPSC amplitude is determined by the
width of prespike signal and the synaptic weight value. In our
experiments, pulse width of spike trains is set to 100 µs. The
time constants of receptors are regulated by transistor control
voltages Vtau1-Vtau4 to cover wide temporal range. For AMPA
receptors, the possible time constant ranges from several to
tens of milliseconds. Similarly, the time constants for NMDA
receptor in both rising and falling phases are adjustable via
two separate transistors M28 and M32.

The weight dependence of NMDA receptor is demonstrated
through a comparison of V mem and a reference voltage
V mth. A sequence of presynaptic spikes are introduced to
synapse. The V mem is a step signal from 0 to 500mV (larger
than V mth) onset time at 40ms (In reality, the membrane
voltages are in spike forms, here the setting is made to examine
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Fig. 3. (a) Weight dependence of NMDA receptors. (b) NMDA receptor mediated potentiation function on membrane voltage. AMPA currents are induced
at a onset time of 5ms while the time for NMDA receptors varies (labeled with red vertical lines). ∆t represents the interval between NMDA and AMPA
activations, ranging from -1 to 8ms. (c) The role of GABAa receptor in synaptic integration. Due to a complementary design, larger inhibitory weight voltage
means a smaller function of GABAa receptors. (d) The membrane voltage dynamics with different receptor configurations. From top to bottom, the strips
represent: three receptors, without AMPA, without NMDA and without GABAa, respectively. (e) Weight dependence of the advanced STDP circuit. In this
example, the presynaptic and postsynaptic signals are of 50 Hz frequency with 1 ms delay. Vr determines the weight dependence level. (f) Sample synaptic
weight evolvement and the membrane voltage distribution in the advanced STDP circuit. From top to bottom, the strips represent: synaptic weight, membrane
voltage, presynaptic spikes and postsynaptic spikes.

the specific function of NMDA receptor). It can be observed in
Fig.3(a) that a growing current output appears from the onset
of V mem. A linear increase of EPSC amplitudes can be found
at each stimuli. When stimulus are densely distributed, single
NMDA EPSC fails to return to resting line before the next
stimuli comes due to large decaying time constants, resulting
in a summation behavior of previous activities.

In Fig.3(b), AMPA currents are introduced at the onset time
of 5 ms, and NMDA currents are injected at different times.
Two cases needs to be discussed individually. In the first case
where AMPA stimuli precedes NMDA, the excitatory function
of NMDA receptors can be demonstrated by the increase of
Vmem (∆t= 2, 5, 8 ms). As NMDA stimuli approaches AMPA
stimuli, larger Vmem is detected by NMDA synapse, which
gives a greater voltage amplification. However, if delivered in
reversed sequence (∆t= -1 ms), no modification is observed.
This can be principally explained by the cooperation mech-
anism of those two receptors, i.e. AMPA receptors usually
act as preliminary depolarization of post neurons by inducing
small amount of ions (Na+) into cells. When depolarization
threshold is surpassed, NMDA receptors are activated, which
allows substantial incursion of ions (both Na+ and Ca2+)
and bigger electrical stimuli are produced. Thus, it is implied

that NMDA receptors are not self-initiated. However once
activated, the NMDA receptor acts as a major contribution
to electrical signal transmission in neuron system.

In Fig.3(c), the contribution of inhibitory synapses to
synapse integration is identified. Various levels of inhibition
are applied to the system while the setting of excitatory
synapses are maintained. When inhibition behavior is larger
than certain level (V inh ≤ 0.65V ), neuron system operates
normally. Conversely, if the inhibition level decreases, excita-
tion prevails, driving membrane state to the upper boundary,
and consequently information may be lost during this process.
This result suggests that inhibitory synapses are of great
importance in balancing membrane activities, especially in
the case of NMDA receptors where long-term summation of
multiple receptors may exist.

Joint Function: Input spikes at a rate of 100Hz, with
prespikes precede postspikes for 1 ms, are introduced to
synaptic learning circuit, inducing consecutive depression to
synaptic weight. In presence of three receptors, ten membrane
spikes are generated as shown in Fig.3(d). A gradually sparser
distribution of the spikes is observed along with the decline of
synaptic weight. When synaptic weight reaches lower bound,
the network fails to produce any spike trains. In absence
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Fig. 4. Normalized cross-correlogram results from the two-layer recurrent testing network. (a)(b)(c) and (d)(e)(f) are the parallel and hierarchical cross-
correlation plots of multi-receptor, AMPA-receptor and NMDA-receptor configurations, respectively. The annotation above each figure tells ”receptor
configuration-correlation source type” For example, ”Multi-parallel” means the parallel correlation of multi-receptor settings.

of AMPA receptor, no postspike trains are observed. This
result is analogous to biological experiments observed in hip-
pocampal region [4]. Synapse with only NMDA receptors, also
called silent synapse, will only transmit information when
the postsynaptic neuron is depolarized, caused by synchrony
pairing of other synapses with AMPA receptors. Otherwise,
a minimal current will be produced by this silent synapse.
When NMDA receptor is inhibited, the temporal intervals to
generate equal number of spikes are larger, while the amount
of spike clusters is lower due to a lack of long-term dynamics.
NMDA receptor acts as a supplement to synaptic excitation.
In the last case where GABAa receptor is inhibited, a burst
of postspikes are produced even though the spike dynamics
should decline with a decreasing synaptic weight. The network
fails to transmit learning information carried by synapses.
Hence, GABAa receptor is essential to create stable signal
transmission in SNNs.

B. Advanced STDP Learning Circuit
Fig.3(e) demonstrates the functionality of the weight de-

pendence block in the advanced STDP circuit. The input
signal pairs induce a stable increment of the synaptic weight
value. As the weight adjustment level decreases (Vr increases),
this increment becomes less effective designating a unimodal
weight distribution [5]. An example weight evolvement and
the corresponding membrane voltage distribution with Poisson
distributed presynaptic and postsynaptic input signals of 200
Hz are displayed in Fig.3(f).

C. Synchrony Detection

A two-layer recurrent network consisting of the cluster
structures is utilized to explore the parallel and hierarchical
synchrony detection and amplification function of the multi-
compartment synapses. The system detects the spike-timing
synchrony between spike trains embedded in a noisy environ-
ment and amplify this correlation from layers.

A correlated Poisson distributed spike trains are offered to
synapse inputs. More correlated spike trains are more likely
to coincide in the defined learning window of STDP learning,
which will cause more valid weight update events. The cross-
correlogram is used to demonstrate the temporal synchrony
level between two output spike patterns within the same or
between different layers of neurons.

The histograms in Fig.4(a)(d) evaluate the cross-correlations
between parallel and hierarchical clusters. In both cases, a
large level of correlation is observed at close to zero time
point. This indicates a strong synchrony between both parallel
and hierarchical spike trains after synaptic learning process
with multi-receptor settings. In Fig.4(b)(d), the synchrony level
is decreased almost by half. Similarly, the background noise is
observed as well as several sub-peaks occurring near the origin
in the hierarchical relations, which implies a relatively poorer
stability performance. Along with the amplitude decay, a peak
shift occurs. The delay between the inputs to the clusters is
passed through layers while that of the multi-receptor synapses
is mitigated. Finally, Fig.4(c)(f) characterize the synchrony



TABLE II
PERFORMANCE COMPARISON BETWEEN CURRENT WORKS

[10] [11] [17] This work
Model Type conductance-based current-based current-based current-based

Receptors Included AMPA, NMDA, GABA AMPA, NMDA, GABA AMPA, NMDA, GABA AMPA, NMDA, GABAa
Technology 180 nm 1.5 µm 0.35 µm 65 nm

Supply Voltage 1.8V 5V - 1V

Power Consumption 45 µW for 1 neuron and 1 receptor 10-100 nW per receptor - 111-336 pW per receptor

Remarks switched-capacitor structure,
large area

ion-based,
biologically realistic

phenomenological,
dendritic dynamics

phenomenological,
achieving key features

detection function of NMDA-receptor network. Both parallel
and hierarchical pairs have similar correlation plots as multi-
receptor network but with reduced amplitudes (approximately
60-70% as that of multi-receptor).

The circuit shows efficient learning ability that the con-
secutive neural clusters generate almost synchronized output
spike patterns in the presence of delay in inputs signals, i.e. it
takes shorter time for system with multiple-receptor to achieve
synchrony. Analysis indicate that this ability originates from
the NMDA receptor as NMDA receptor displays similar corre-
lations except for a decrement in the amplitude of correlation
level. AMPA and NMDA receptors have a collaborate relation
in inducing efficient synchrony detection and amplification for
synapse structures. A comparison between current works is
present in Table II.

IV. CONCLUSION

In this paper, we propose a current-based neuromorphic
synapse architecture for SNN, which incorporates the struc-
tures of the weight-dependent learning rule and multiple
receptors, namely AMPA, NMDA and GABAa, and thus pro-
vides distinctive temporal dynamics of each type of receptors
in one synapse design. Improved synchrony detection and
amplification ability is demonstrated through cross-correlation
study. The synaptic design implemented in TSMC 65 nm
CMOS technology consumes 1.92, 3.36, 1.11 and 35.22 pJ
per synaptic event for AMPA, NMDA, GABAa receptors and
the advanced STDP learning circuit, respectively.

REFERENCES

[1] C. Mead and M. Ismail, Analog VLSI implementation of neural systems.
Springer Science & Business Media, 2012, vol. 80.

[2] J.-L. Gaiarsa, O. Caillard, and Y. Ben-Ari, “Long-term plasticity at
gabaergic and glycinergic synapses: mechanisms and functional signifi-
cance,” Trends in Neurosciences, vol. 25, no. 11, pp. 564–570, 2002.

[3] A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, “Kinetic models of
synaptic transmission,” Methods in Neuronal Modeling, vol. 2, pp. 1–
25, 1998.

[4] D. Liao, N. A. Hessler, and R. Malinow, “Activation of postsynaptically
silent synapses during pairing-induced ltp in ca1 region of hippocampal
slice,” Nature, vol. 375, no. 6530, p. 400, 1995.

[5] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological models
of synaptic plasticity based on spike timing,” Biological Cybernetics,
vol. 98, no. 6, pp. 459–478, 2008.

[6] C. Bartolozzi and G. Indiveri, “Synaptic dynamics in analog vlsi,”
Neural Computation, vol. 19, no. 10, pp. 2581–2603, 2007.

[7] G. Indiveri, E. Chicca, and R. Douglas, “A vlsi array of low-power
spiking neurons and bistable synapses with spike-timing dependent
plasticity,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp.
211–221, 2006.

[8] A. Bofill-i Petit and A. F. Murray, “Synchrony detection and amplifi-
cation by silicon neurons with stdp synapses,” IEEE Transactions on
Neural Networks, vol. 15, no. 5, pp. 1296–1304, 2004.

[9] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sum-
islawska, and G. Indiveri, “A reconfigurable on-line learning spiking
neuromorphic processor comprising 256 neurons and 128k synapses,”
Frontiers in Neuroscience, vol. 9, p. 141, 2015.

[10] M. Noack, M. Krause, C. Mayr, J. Partzsch, and R. Schuffny, “Vlsi
implementation of a conductance-based multi-synapse using switched-
capacitor circuits,” in Circuits and Systems (ISCAS), 2014 IEEE Inter-
national Symposium on. IEEE, 2014, pp. 850–853.

[11] G. Rachmuth and C.-S. Poon, “Transistor analogs of emergent iono-
neuronal dynamics,” HFSP journal, vol. 2, no. 3, pp. 156–166, 2008.

[12] S. R. Platt, “The role of glutamate in central nervous system health and
disease–a review,” The Veterinary Journal, vol. 173, no. 2, pp. 278–286,
2007.

[13] A. M. VanDongen, Biology of the NMDA Receptor. CRC Press, 2008.
[14] S. H. Wu, C. L. Ma, and J. B. Kelly, “Contribution of ampa, nmda,

and gabaa receptors to temporal pattern of postsynaptic responses in the
inferior colliculus of the rat,” Journal of Neuroscience, vol. 24, no. 19,
pp. 4625–4634, 2004.

[15] C. Vreeswijk, L. Abbott, and G. Bard Ermentrout, “When inhibition
not excitation synchronizes neural firing,” Journal of Computational
Neuroscience, vol. 1, no. 4, pp. 313–321, 1994.

[16] G.-q. Bi and M.-m. Poo, “Synaptic modifications in cultured hip-
pocampal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type,” Journal of Neuroscience, vol. 18, no. 24, pp.
10 464–10 472, 1998.

[17] Y. Wang and S.-C. Liu, “A two-dimensional configurable active silicon
dendritic neuron array,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 58, no. 9, pp. 2159–2171, 2011.


