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Abstract Mobile OFDM refers to OFDM systems with fast moving transceivers,
in contrast to traditional OFDM systems whose transceivers are stationary or have
a low velocity. In this paper, we use the basis expansion model (BEM) to model
time-varying OFDM channels. Using different BEM’s, we investigate various archi-
tectures to implement the least-squares (LS) channel estimation and its correspond-
ing zero-forcing (ZF) channel equalization. The experimental results show that our
implementation for mobile OFDM systems is capable of combatting the time varia-
tion of mobile OFDM channels, and more hardware resource utilization is necessary
compared with a traditional OFDM design which fails in a time-varying scenario.
For mobile OFDM systems, different BEM’s are available for the channel modeling.
We observe that the so-called Critically sampled Complex-Exponential BEM (CCE-
BEM) leads to the most efficient hardware architecture while still maintaining high
modeling accuracy.

Keywords OFDM · Time-varying channels · BEM

Y. Guan · T. Xu (B)
National University of Defense Technology, Changsha, 410073, China
e-mail: xutao_2001640@nudt.edu.cn

Y. Guan
e-mail: guanyongfeng@nudt.edu.cn

T. Xu · R. van Leuken
Delft University of Technology, Delft, 2628CD, The Netherlands

R. van Leuken
e-mail: t.g.r.m.vanleuken@tudelft.nl

M. Qian
Beijing Jiaotong University, Beijing, 100044, China
e-mail: myqian@bjtu.edu.cn

mailto:xutao_2001640@nudt.edu.cn
mailto:guanyongfeng@nudt.edu.cn
mailto:t.g.r.m.vanleuken@tudelft.nl
mailto:myqian@bjtu.edu.cn


840 Circuits Syst Signal Process (2014) 33:839–861

1 Introduction

Future communication systems are required to support a high data transfer rate be-
tween fast moving terminals, e.g., vehicular communications. Orthogonal frequency
division multiplexing (OFDM), as a bandwidth efficient multi-carrier transmission
technique, shows attractive features to wireless radio applications [1]. It is well known
that OFDM relies on the assumption that the channel stays constant within at least
one OFDM symbol period to maintain the orthogonality among OFDM subcarriers.
When temporal channel variation emerges due to the Doppler effect, this orthogo-
nality is corrupted and non-negligible inter-carrier interference (ICI) is induced [3],
severely deteriorating the system performance. In this case, channel equalization is
necessary, for which we need accurate models of narrowband time-varying channels.
It is common to describe the channel taps statistically by their Doppler spectrum
which may be bathtub-shaped [12]. Despite their accuracy, these models are gener-
ally cumbersome. Hence, many works resort to a parsimonious channel modeling
approach such as the basis expansion model (BEM) [8] to describe the channel dy-
namics. The optimal BEM in terms of the mean square error (MSE) is the discrete
Karhuen–Loève BEM (DKL-BEM) [25] which, however, requires the true channel
statistics and thus is not always practical. The discrete prolate spheroidal BEM (DPS-
BEM) [27] is derived based on the channel statistics approximated by a rectangular
spectrum. Avoiding the dependence on the channel statistics, the critically sampled
complex-exponential BEM (CCE-BEM) [8] is proposed using complex exponentials
as its basis functions. Due to its algebraic ease, the CCE-BEM is widely adopted,
e.g, in [6–8, 13–17]. Additionally, the polynomial BEM (POL-BEM), which models
each tap as a linear combination of a set of polynomials, has also gained attention for
low Doppler spreads, e.g., in [2, 24]. The detailed comparison of the aforementioned
BEMs can be found in [21, 27].

Research on OFDM systems from the aspect of the hardware implementations can
also been found, e.g., on FPGA platforms [4] or using a specific digital signal proces-
sor (DSP) [20]. A complication of these works is assuming a time-invariant channel
where the transceiver and significant scatterers are stationary or have a negligible ve-
locity. Hence, the adopted OFDM systems are free of inter-carrier interference (ICI),
and called “traditional OFDM” or time-invariant OFDM in this paper. To our knowl-
edge, little attention has been paid to an efficient hardware implementation of mo-
bile OFDM, which refers to the OFDM systems over rapidly time-varying channels.
In this paper, we shall investigate efficient architectures corresponding to different
BEM’s to implement the channel estimator and channel equalizer for mobile OFDM
in the narrowband regime. Moreover, we then identify a particular model, among
available BEM’s, which leads to the most efficient hardware architecture while still
maintaining high modeling accuracy.

2 OFDM System Model in Light of BEM

Let us consider an OFDM system with N subcarriers as illustrated by Fig. 1. An
OFDM symbol b = [b0, b1, . . . , bN−1]T is used to modulate N carriers as s = FH b,
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Fig. 1 Transceiver block
diagram

where F stands for the N point unitary discrete Fourier transform (DFT) matrix with

[F]m,k = 1√
N

e−j2π mk
N . Subsequently, s is concatenated by a cyclic prefix, sent over

the channel, stripped from the cyclic prefix, reshaped by a windowing filter and con-
verted into the frequency domain. When the cyclic prefix has a sufficient length to
eliminate the inter-symbol interference between successive OFDM symbols [26],
Fig. 1 illustrates the data flow of OFDM transmission by abstracting the cyclic prefix.
Specifically, the OFDM system can be characterized as

rF = FZHTFH b + FZwT

= FH̃TFH b + FZwT

= HFb + nF, (1)

where rF is the received sample vector in the frequency domain, Z = diag{z} with z =
[z0, z1, . . . , zN−1]T representing the time-domain windowing, while HT and H̃T =
ZHT represents the channel matrix in the time domain without and with windowing,
respectively. With h

(n)
l denoting the lth channel tap at the nth time instant for l =

{0,1, . . . ,L} with L finite (i.e., h
(n)
l = 0 for l < 0 or l > L), we can specify HT as a

“pseudo-circulant” matrix given by [HT]k,m = h
(m)
(k−m)mod/N

, or

HT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
(0)
0 h

(0)
L · · · h

(0)
1

...
. . .

. . .
...

h
(L)
L

. . .
. . . 0 h

(L−1)
L

. . .
. . .

. . .

0
. . .

. . .
. . .

h
(N−1)
L · · · h

(N−1)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Obviously, H̃T has the same structure as HT, but is composed by h̃
(n)
l = znh

(n)
l . Addi-

tionally, nF = FZwT is the windowed frequency-domain noise, and HF = FH̃TFH is
the effective frequency-domain channel matrix. We underscore that the time-domain
windowing is normally not included in traditional OFDM systems, i.e., Z = IN , how-
ever, it is required by mobile OFDM to suppress the ICI [17, 18]. Moreover, for tra-
ditional OFDM where the channel is time-invariant, H̃T = HT is a circulant matrix
since h

(n)
l ≡ h

(n′)
l for any n �= n′, and thus HF is diagonal, while for mobile OFDM

in the present of temporal channel changes, HF is a full matrix.
Stacking all the channel taps into a single vector h̃ = [h̃T

0 , . . . , h̃T
N−1]T with h̃n =

[h̃(n)
0 , h̃

(n)
1 , . . . , h̃

(n)
L ]T , we use the BEM to model the channel [8, 21], regardless of
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the modeling error, as

h̃ = (Q ⊗ IL+1)c, (2)

where c = [cT−Q, . . . , cT
Q]T with cq = [cq,0, cq,1, . . . , cq,L]T being the qth BEM co-

efficient vector corresponding to the qth basis expansion function qq , and Q =
[q−Q, . . . ,qQ] with (2Q + 1) being the BEM order. (2) indicates that after introduc-
ing the BEM, one can estimate the BEM coefficients to perform channel estimation.

To this end, we can describe OFDM systems in light of BEM by substituting (2)
into (1) as

rF = FH̃TFH b + nF

= F

(
Q∑

q=−Q

diag{qq}Cq

)
FH b + n̂F

=
Q∑

q=−Q

(
F diag{qq}FH

)(
FCqFH

)
b + n̂F

=
Q∑

q=−Q

Dq�qb + n̂F (3)

= ĤFb + n̂F, (4)

where

ĤF =
Q∑

q=−Q

Dq�q (5)

is the modeled channel matrix as the estimate of HF, n̂F combines nF and the BEM
modeling error, Cq is an N × N circulant matrix (assuming that N > L which is
usually the case) given by

Cq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cq,0 cq,L · · · cq,1
...

. . .
. . .

...

cq,L

. . .
. . . 0 cq,L

. . .
. . .

. . .

0
. . .

. . .
. . .

cq,L · · · cq,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

while

Dq = F diag{qq}FH (6)
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is a circulant matrix and �q = FCqFH . Due to the circulant structure of Cq , �q can
also be expressed as a diagonal matrix by

�q = diag
{
F(L)cq

}
(7)

with F(L) representing the first L + 1 columns of the Fourier matrix
√

NF.

3 Algorithm Background Overview

We underline that there has been extensive research on the channel estimation and
channel equalization for OFDM systems over narrowband linear time-varying (LTV)
channels, e.g., for channel estimation in [6, 21, 24] and for channel equalization in
[6, 7, 10, 16, 17, 23]. In this paper, we do not attempt to summarize these efforts,
but instead focus on the least-squares (LS) channel estimation and zero-forcing (ZF)
equalization for narrowband OFDM LTV channels. In the following, we first clarify
the arrangement of all OFDM subcarriers, and then describe the detailed descriptions
for channel estimation and equalization, respectively.

3.1 OFDM Carrier Arrangement

For time-varying OFDM systems, comb-type pilot subcarriers and guarded null
subcarriers are usually required [15, 21]. Specifically, we assume that the N sub-
carriers of the OFDM symbol include NP pilot subcarriers and (N − ND − NP )

null subcarriers, and thus, out of N carriers, only ND subcarriers carry informa-
tion which are called data subcarriers. Let us specify an OFDM symbol vector b =
[b0, b1, . . . , bN−1]T which includes a pilot symbol set b(p) = [b(p)

0 , . . . , b
(p)

NP −1]T ,

and a data symbol set b(d) = [b(d)
0 , . . . , b

(d)
ND−1]T as well as zeros at null subcarriers.

At the receiver, according to (4), the noiseless received sample vector is modeled
by rF = ĤFb, where ĤF is (approximately) a banded matrix with a bandwidth of
2Q + 1. Illustratively, as depicted in Fig. 2. between b and rF, the banded channel
matrix ĤF is placed whose bandwidth is 2Q + 1. Moreover, the gray part of ĤF in
Fig. 2 stands for significant non-zero entries, while its blank part represents the trivial
entries (which will be zeros if the CCE-BEM is used).

In order to combat a narrowband time-varying OFDM channel modeled by ĤF,
it is crucial to carefully allocate these subcarriers and their corresponding observa-
tions [15, 21]. We follow [21] to arrange OFDM subcarriers. These NP pilots are
distributed into the OFDM symbol, and every transmitted pilot is guarded by 2Q null
subcarriers to diminish mutual influences with adjacent data subcarriers in the present
of Doppler frequency shifts. The rest of null subcarriers are placed on edge positions,
and we require that the number of edge null subcarriers is sufficiently large (i.e., ≥ Q)
[6, 7, 16, 17], whose reason will be evident later on. In such a manner, the ND data
subcarriers are separated into several isolated clusters. If we assume that each data
cluster has the same length B for simplicity reasons, the mth isolated transmitted data
subcarrier cluster is denoted by a B × 1 vector b(d)

m = [b(d,m)
0 , . . . , b

(d,m)
B−1 ]T ⊂ b(d),

for m ∈ {0,1, . . . ,NB − 1} with

NB = ND/B.
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Fig. 2 OFDM subcarrier allocation illustration

Illustratively, such an arrangement of the OFDM subcarriers is depicted in Fig. 2,
with NP = 3. From there, it is clear that within the transmitted OFDM symbol b, the
guarded pilots b

(p)
k and null edge subcarriers separate the ND data subcarriers into

NP − 1 clusters.
At the receiver, corresponding to this mth transmitted data cluster b(d,m),

we build an observation window denoted by a (B + 2Q) × 1 vector r(d)
m =

[r(d,m)
−Q , . . . , r

(d,m)
0 , . . . , r

(d,m)
B−1 , . . . , r

(d,m)
B−1+Q]T ⊂ rF. Likewise, corresponding to the

kth transmitted pilot b
(p)
k , for k ∈ {0,1, . . . ,NP − 1}, its observation window is de-

noted as a (2Q + 1) × 1 vector r(p)
k = [r(p,k)

−Q , . . . , r
(p,k)

0 , . . . , r
(p,k)
Q ]T ⊂ rF. In Fig. 2,

the locations of these observation windows is also illustrated. We note that other op-
tions for the observation window are available [21], but the method adopted here is
the optimal choice for LS channel estimation [21].

3.2 LS Channel Estimation

Pilots and their observations at the receiver are used to estimate time-varying chan-
nels. We recall the NP × 1 vector b(p) = [b(p)

0 , . . . , b
(p)

NP −1]T which stacks all pilot

symbols, and let the (2Q + 1)NP × 1 vector r(p) = [r(p)T

0 , . . . , r(p)T

NP −1]T represent
all the received samples within the pilot observation windows embedded in rF. Then
from (3), we obtain

r(p) =
Q∑

q=−Q

D(p)
q �

(p)
q b(p) + n̂(p), (8)
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where D(p)
q is a submatrix obtained from Dq by only selecting the rows (columns)

corresponding to r(p) in rF (b(p) in b); �
(p)
q is obtained from �q by selecting the

rows of b(p) in b, while n̂(p) not only contains the noise obtained from n̂F in a similar
manner but also includes crosstalk components from different positions of the data
subcarriers (see [21] for details). We note that in this paper the statistics of n̂(p) is
irrelevant since we focus on an LS channel estimation.

In order to estimate the BEM coefficients in c, we now convert (8) (see Appendix
for the detailed derivations) into

r(p) = A(p)c + n̂(p), (9)

where the (2Q + 1)NP × (2Q + 1)(L + 1) matrix A(p) is specified as

A(p) = D(p)
(
I2Q+1 ⊗ (

diag
{
b(p)

}
F(L,p)

))
(10)

and

D(p) = [
D(p)

−Q, . . . ,D(p)
Q

]
,

while F(L,p) collects the rows of F(L) corresponding to the positions of b(p) in b.
It is noteworthy that A(p) is only related to the pilot symbols b(p), the BEM basis
functions qq ’s [cf. (6)] and the normalized Fourier matrix F, all of which are perfectly
known at the receiver. In other words, A(p) can be pre-computed when designing the
channel estimator (CE).

Based on the LS criterion, we obtain the estimate of the BEM coefficient vector
from (9) given by

ĉ = (
A(p)H A(p)

)−1A(p)H r(p), (11)

which has less entries than the channel gain vector h̃ [cf. (2)] when N > (2Q + 1) as
usually the case. It also explains the benefit of introducing the BEM since it allows
for reducing the number of the estimated parameters. If we rewrite

ĉ = [
ĉT−Q, . . . , ĉT

Q

]T

it is clear that ĉq estimates the qth BEM coefficient vector cq . Here it is noteworthy

that NP > L is assumed in this paper so that A(p)H A(p) is invertible (otherwise,
pilots from multiple OFDM symbols are needed to be jointly considered to perform
the channel estimation [22], which is not included in this thesis).

However, the final purpose of the estimator is not these BEM coefficients, but the
channel between the transmitted data subcarriers and their corresponding observa-
tions at the receiver [6, 7], e.g., H(d)

m in Fig. 2. It shall be equalized by the channel
equalizer (EQ) to recover the transmitted data symbols that carry information. As
illustrated in Fig. 2, the data subcarriers and their observation windows are divided
into isolated clusters. Instead of handling the whole OFDM symbol jointly, we can
parallelize the estimation for each cluster. Specifically, we explicitly write the mth
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observation vector r(d)
m that corresponds to b(d)

m for m ∈ {0,1, . . . ,NB − 1}, regard-
less of noise, as

r(d)
m =

Q∑
q=−Q

D(d)
q,m�(d)

q,mb(d)
m

=
Q∑

q=−Q

D(d)
q,m diag

(
F(L,d)

m cq

)
b(d)

m (12)

= H(d)
m b(d)

m , (13)

where D(d)
q,m is a (B + 2Q) × B submatrix obtained from Dq by selecting rows

(columns) corresponding to r(d)
m in rF (b(d)

m in b); F(L,d)
m is obtained from F(L) by

selecting the rows of b(d)
m in b, and �

(d)
q,m = diag(F(L,d)

m cq) is obtained from �q sim-
ilarly, while the (B + 2Q) × B sub-channel matrix

H(d)
m =

Q∑
q=−Q

D(d)
q,m diag

(
F(L,d)

m cq

)
. (14)

By replacing cq in (14) with ĉq from (11), we obtain

Ĥ(d)
m =

Q∑
q=−Q

D(d)
q,m diag

(
F(L,d)

m ĉq

)

=
Q∑

q=−Q

Ĥ(d)
q,m, (15)

where Ĥ(d)
q,m is the qth component of Ĥ(d)

m , which is specified as

Ĥ(d)
q,m = D(d)

q,m diag
(
F(L,d)

m ĉq

)
.

3.3 ZF Channel Equalization

After obtaining each Ĥ(d)
m , a ZF equalization is carried out accordingly given by

b̂(d)
m = (

Ĥ(d)H

m Ĥ(d)
m

)−1Ĥ(d)H

m r(d)
m , (16)

where b̂(d)
m is a B × 1 vector as an estimate of b(d)

m . We perform (16) for m =
{0,1, . . . ,NB} and thus all the transmitted data symbols are recovered.

It is known that the inversion of a B × B matrix Ĥ(d)H

m Ĥ(d)
m is costly when it is

considered as a full matrix [9]. As mentioned before, ĤF is a banded matrix approxi-
mately (or exactly when the CCE-BEM is used) and the matrix bandwidth is (2Q+1)

that is usually much less than the matrix size. Therefore, we are allowed to reduce the
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computational complexity of inverting Ĥ(d)H

m Ĥ(d)
m , if the trivial entries (or zeros when

the CCE-BEM is used) outside the matrix bandwidth are removed from ĤF (equiv.
from Ĥ(d)

m ) [cf. Fig. 2]. Such operation is well motivated by the fact that the energy of
these trivial entries is reasonably negligible, thus allowing for a significant reduction
of the equalization complexity at the price of an acceptable performance loss [6, 7,
16–18]. We will discuss this in more detail in Sect. 4.2. Inspired by these works [6,
7, 16–18], we first introduce a (B + 2Q) × B selecting matrix which only has ones
within a 2Q + 1 bandwidth or zeros otherwise, as depicted by

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
...

. . .

1 1 1
. . .

...

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then, instead of Ĥ(d)
m defined in (15), we shall actually substitute into (16) its adapted

version after removing trivial entries. Specifically, we adapt (15), by introducing Θ ,
as

Ĥ(d)
m = Θ 


Q∑
q=−Q

D(d)
q,m diag

(
F(L,d)

m ĉq

)

=
Q∑

q=−Q

(
Θ 
 D(d)

q,m

)
diag

(
F(L,d)

m ĉq

)
(17)

=
Q∑

q=−Q

Ĥ(d)
q,m, (18)

where 
 stands for the Hadamard (element-wise) product, and

Ĥ(d)
q,m = Θ 
 D(d)

q,m diag
(
F(L,d)

m ĉq

)
.

Here, we note that we keep the same notations (i.e., Ĥ(d)
m and Ĥ(d)

q,m) as in (15) for
notation ease. To avoid any confusion, in the remainder of this paper, we will refer to
(18) as the definition of Ĥ(d)

m unless explicitly defined.

4 Parallel Implementation Architecture

After reviewing the background of LS channel estimation and ZF equalization for
narrowband OFDM time-varying channels, we shall in this section describe efficient
architectures for their implementation.
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4.1 Channel Estimator

As mentioned in Sect. 3.3, we understand that the channel estimator yields Ĥ(d)
m ’s

as defined in (18), for m ∈ {0,1, . . . ,NB − 1}, which shall be used by the channel
equalizer in practice.

General LS estimator To efficiently implement the LS estimator, we first com-
bine (11) and (17) to avoid the unnecessary computations on known matrices (i.e.,
A(p) and F(L,d)

m ’s).
Let us first introduce a (2Q + 1)B × (2Q + 1)NP matrix

Mm = (
I2Q+1 ⊗ F(L,d)

m

)(
A(p)H A(p)

)−1A(p)H ,

and then obtain a B × (2Q + 1)NP submatrix Mq,m that is embedded in Mm at the
rows corresponding to ĉq in ĉ [cf. (11)]. In this way, we can obtain an equation [cf.
(11)] given by

F(L,d)
m ĉq = Mq,mr(p).

Now, we rewrite (17), for m ∈ {0, . . . ,NB − 1}, as

Ĥ(d)
m =

Q∑
q=−Q

(
Θ 
 D(d)

q,m

)
diag

(
F(L,d)

m ĉq

)

=
Q∑

q=−Q

(
Θ 
 D(d)

q,m

)
diag

(
Mq,mr(p)

)
(19)

=
Q∑

q=−Q

Ĥ(d)
q,m, (20)

where we rewrite Ĥ(d)
q,m in (18) as Ĥ(d)

q,m = (Θ 
 D(d)
q,m)diag(Mq,mr(p)).

Next, we reduce memory utilization by exploiting special matrix structures. We
observe that Θ 
 D(d)

q,m is a banded Toeplitz matrix with a bandwidth of (2Q + 1),
which is obtained from the circulant matrix Dq [cf. (6)] corresponding to the position

of Ĥ(d)
m in ĤF. It indicates that we only need the first 2Q+1 entries in the first column

of this circulant matrix Dq to represent all Θ 
 D(d)
q,m’s for m ∈ {0, . . . ,NB − 1}.

We denote a vector dq to stack these 2Q + 1 entries. Moreover, Ĥ(d)
m is a banded

matrix with a bandwidth of (2Q+1) [cf. (19)], and hence a memory efficient storage,
called the DIA format [11], is adopted in this paper. Figure 3 illustrates how Ĥ(d)

m is

represented by its DIA format H̄(d)
m , where Q = 1 is used and h̄(d)T

q,m stands for the

(Q+q)th row in H̄(d)
m . Likewise, we denote H̄(d)

q,m as the DIA format of Ĥ(d)
q,m in (20).

Finally, we describe the steps to efficiently implement (19) as Algorithm 1, which
is suitable for any BEM model, and the only difference lies in the values of ROM
components (i.e., Mq,m’s and dq ’s) when different BEM models are selected. Hence



Circuits Syst Signal Process (2014) 33:839–861 849

Fig. 3 Efficient DIA storage for
band matrices

Algorithm 1 General LS estimator
0. Pre-compute each matrix Mq,m, for q ∈ {−Q, . . . ,Q} and m ∈ {0, . . . ,NB − 1},

and a single vector dq to present all Θ 
 D(d)
q,m’s, for q = {−Q, . . . ,Q}; Thus,

totally (NP ND + 1)(2Q + 1)2 complex elements are stored in ROM;
1. Perform (19) equivalently using dq and Mq,m, by

(a) First calculating the B × 1 vector tq,m = Mq,mr(p);
(b) Then scaling dq with each entry of tq,m to attain each column of the (2Q +

1) × B matrix H̄(d)
q,m;

(c) Finally summing these H̄(d)
q,m’s for q ∈ {−Q, . . . ,Q} to yield H̄(d)

m , the DIA

format of Ĥ(d)
m .

Table 1 Computation
complexity analysis for channel
estimator

Complex
operations

Estimator architecture

Simplified
(for CCE-BEM)

General

CMs (2Q + 1)NP B (2Q + 1)(NP + NB)B

CAs (2Q + 1)(NP − 1)B ((2Q + 1)(2Q + NP ) − 1)B

we call it “General LS estimator”. In this algorithm, we underscore that the mth chan-
nel estimator actually yields the DIA format H̄(d)

m instead of its original Ĥ(d)
m . The

computational complexity of the implementation for the mth estimator using Algo-
rithm 1 is specified in Table 1 which lists the number of required complex multipliers
(CMs) and complex adders (CAs) for the mth estimator, for m ∈ {0, . . . ,NB − 1}. Its
implementation schematic is depicted in Fig. 4. To maximize the processing concur-
rency, the parallelism for m ∈ {0, . . . ,NB − 1} can be adopted.

Simplified LS estimator using CCE-BEM Although we have investigated an ef-
ficient implementation above, it still has a fairly high complexity and thus one
may hope to further simplify it. Among various (windowed) BEM’s, we observe
that the basis functions of the CCE-BEM yield shifted identity matrices, i.e., Dq =
F diag{qq}FH = I(q) according to (6) since qq = [1, ej 2π

N
q, . . . , ej

2π(N−1)
N

q ]T for the
CCE-BEM; and I(q) only contains 1’s on the qth (sub- or super-) diagonal but 0’s
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Fig. 4 Schematic of the mth general LS estimator

Fig. 5 Special matrix structure
with CCE-BEM, where Q = 1
and NP = 8 for instance, and P
is a permutation matrix

otherwise, and I(0) = IN is an identity matrix. It also yields Θ 
 D(d)
q,m = D(d)

q,m in
(17).

If we exploit this property (i.e., Dq = I(q)) in (10), A(p) is then yielded with the
special sparse structure as shown in the left part of Fig. 5, where the blank area
stands for zero entries. Moreover, if we introduce a permutation matrix P which only
contains 1’s in the positions

{(
i + 1, �i/NP � + (2Q + 1)imod/NP

+ 1
)}NP −1

i=0

but 0’s elsewhere, then since

PD(p) = I(2Q+1)Np ,

we obtain [cf. (10)]

PA(p) = I2Q+1 ⊗ (
diag

(
b(p)

)
F(L,p)

)

is a block diagonal matrix as shown in the right part of Fig. 5 with every sub-block at
the diagonal of PA(p) being the same submatrix given by

Ā(p) = diag
(
b(p)

)
F(L,p).

Consequently, denoting r̄(p) = Pr(p) = [r̄(p)T

−Q , . . . , r̄(p)T

Q ]T , we can split (11) in
parallel for q ∈ {−Q, . . . ,Q} into

ĉq = (
Ā(p)H Ā(p)

)−1Ā(p)H r̄(p)
q . (21)
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Note that the permutation operation by P does not cost additional resources or pro-
cessing latency, since it only refers to different access addresses into the memories in
the hardware design.

Further observations based on Dq = I(q) suggest that the multiplication be-

tween Θ 
 D(d)
q,m = D(d)

q,m and diag(F(L,d)
m ĉq) in (17) only acts as placing the vec-

tor F(L,d)
m ĉq onto the (Q + q)th diagonal line of the Toeplitz-like matrix Ĥ(d)

m , for
q ∈ {−Q, . . . ,Q}. Let us use Fig. 3 for an illustration. When the CCE-BEM is used,
the entries within the framed diagonal line in Ĥ(d)

m in Fig. 3 is actually equal to
F(L,d)

m ĉq with q = −1. It is equivalent to say that in its DIA format H̄(d)
m , the cor-

responding row h̄(d)T

q,m is actually composed by F(L,d)
m ĉq , i.e., h̄(d)

q,m = F(L,d)
m ĉq . There-

fore, if we jointly consider the fact that the estimator will yield a DIA format H̄(d)
m

instead of Ĥ(d)
m , the operation in (17) acts equally as placing F(d)

L,mĥq ’s onto the cor-

responding rows in H̄(d)
m , for q = {−Q, . . . ,Q}, when the CCE-BEM is used.

Now, we are allowed to describe the LS estimation tailored to the CCE-BEM, for
q ∈ {−Q, . . . ,Q} and m ∈ {0, . . . ,NB − 1}, as

h̄(d)T

q,m = F(L,d)
m ĉq (22)

and then, by substituting (21) into (22), we obtain

h̄(d)T

q,m = M̄mr̄(p)
q , (23)

where the B × NP matrix M̄m is given by

M̄m = F(L,d)
m

(
Ā(p)H Ā(p)

)−1Ā(p)H

which is also perfectly known at the receiver.
Finally, the yielded DIA format of each Ĥ(d)

m is stacked as

H̄(d)
m = [

h̄(d)
−Q,m, . . . , h̄(d)

Q,m

]T
.

We call this implementation method as the “Simplified LS Estimator”, which is
particularly tailored for the CCE-BEM. Its detailed implementation is described as
Algorithm 2. Its computational complexity is listed in Table 1 for comparison with
the previous method. It is clear that this simplified LS estimator is more economic
and memory efficient than the previous general LS estimator. The schematic of the

Algorithm 2 Simplified LS estimator (for CCE-BEM)

0. Pre-compute the matrix all M̄m’s for m = {0, . . . ,NB − 1}; Totally NDNP ele-
ments are stored for ROM;

1. Carefully collect r̄(p)
q ’s and perform (23) to attain h̄(d)

q,m for q = {−Q, . . . ,Q},
which is stacked into a (2Q + 1) × B matrix H̄(d)

m , the DIA format of Ĥ(d)
m .
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Fig. 6 Schematic of the mth
simplified LS estimator

simplified LS estimator is depicted in Fig. 6. To maximize the concurrency, the pro-
cessing parallelism for both q ∈ {−Q, . . . ,Q} and m ∈ {0, . . . ,NB − 1} can be ex-
ploited. It is noteworthy that, when Q = 0, (23) degrades to the channel estimation
for the traditional OFDM systems which operate in the time-invariant channels. In
other words, our simplified estimator tailored for the CCE-BEM can be considered
as an extension of the channel estimator design for the time-invariant OFDM sys-
tems. One may argue that the CCE-BEM is inferior to other BEM models [21, 27] in
terms of the modeling accuracy. We shall show that the CCE-BEM still yields a good
performance of channel estimation in the presence of a realistic mobility velocity.

4.2 Channel Equalizer

To recover the mth data cluster denoted by a B × 1 vector b(d)
m , a ZF equalization is

introduced in (16), where a matrix inversion is required. For a traditional OFDM over
a time-invariant channel, Q = 0 is efficient and thus Ĥ(d)

m is a diagonal matrix. In this
case, the equalization (16) has only a computational complexity linear to the vector
size B . However, when the channel is time varying, Ĥ(d)

m is in principle a full matrix,
and thus the equalization complexity using its direct matrix inversion is too high (i.e.,
O(B3) [9]) to be practical. An important feature is that each Ĥ(d)

m is a banded ma-

trix with a bandwidth of 2Q + 1 [cf. (18)], and thus Ĥ(d)H

m Ĥ(d)
m is a banded positive

definite Hermitian matrix. Based on this property, we can adapt the LDLH factoriza-
tion [9] to realize the inversion more efficiently, yielding a low-complexity equaliza-
tion as specified in Algorithm 3. This equalization has a computational complexity
O(Q2B), which is usually much less than O(B3) because Q is typically small (e.g.,
Q = 1) [16]. Note that the above algorithm requires a strictly banded matrix Ĥ(d)

m

[16], which also explains Θ in (17). We also need to note that the above process is
correct, for m = {0, . . . ,NB −1}, only if the number of null subcarriers at either edge
is larger than the half bandwidth of Ĥ(d)

m , i.e., ≥ Q [cf. Fig. 2]. Such a condition is
widely considered in the literature in, e.g., [6, 7, 16, 17], and it can be satisfied in
many existing OFDM standards, e.g., a multiple-band UWB standard. Table 2 spec-
ifies the complexity of the equalizer for the mth data cluster in complex operations,
i.e. CAs, CMs, and complex dividers (CDs). In the same table, we also quote the
complexity of our channel estimator tailored for the CCE-BEM from Table 1.

To implement the channel equalizer efficiently, we first recall that the DIA format
H̄(d)

m is obtained by the channel estimator as described in the previous section, instead
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Algorithm 3 Low-complexity equalization algorithm

1. Compute the matrix Wm = Ĥ(d)H

m Ĥ(d)
m and also p = Ĥ(d)H

m r(d)
m ;

2. Perform the banded-LDLH factorization as Wm = LDLH , where D is a diagonal
matrix, and L is a lower triangular matrix whose diagonal are ones and whose
lower bandwidth is 2Q; Such LDLH factorization can be implemented in pseudo-
code as:

D[0,0] = Wm[0,0];
for(i = 1; i < B; i = i + 1)

u = max(0, i − 2Q);
for(j = u; j < i; j = j + 1)

L[i, j ] = 1
D[j,j ] (Wm[i, j ] − ∑j−1

k=u L∗[j, k]L[i, k]D[k, k]);
end

D[i, i] = Wm[i, i] − ∑i−1
k=u |L[i, k]|2D[k, k];

end

3. Solve Wmb̂(d)
m = p by solving firstly the triangular system Lf = p and the diagonal

system Dg = f, and then another triangular system LH b̂(d)
m = g to recover b̂(d)

m .
This step can be specified in pseudo-code as

for(i = 0; i < B; i = i + 1)

u = max(0, i − 2Q);
f[i] = p[i] − ∑i−1

k=u L[i, k]f[k]; g[i] = f[i]/D[i, i];
end
for(i = B − 1; i ≥ 0; i = i − 1)

v = min(B − 1, i + 2Q);
b̂(d)

m [i] = g[i] − ∑v
k=i+1 L∗[k, i]b̂(d)

m [k];
end

Table 2 Complexity analysis for the estimator and equalizer

Complex
operations

Mobile OFDM TI OFDM

Simplified CE EQ CE EQ

CMs (2Q + 1)NP B (4Q2 + 12Q + 2)B NP B 0

CAs (2Q + 1)(NP − 1)B (4Q2 + 8Q + 3)B (NP − 1)B 0

CDs 0 (2Q + 1)B 0 B

of its original matrix Ĥ(d)
m . Here, prior to the equalizer implementation, we describe

how to efficiently store the matrices used in Algorithm 3 (i.e., Wm = Ĥ(d)H

m Ĥ(d)
m ,

while L and D are obtained from Wm = LDLH ). Due to the special structures of
these matrices, the DIA format is adapted herein. We plot Fig. 7 to illustrate the
storage of these matrices, where W̄m is the adapted DIA format to store Wm, while
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Fig. 7 Efficient storage format of matrices for the equalizer

Fig. 8 Index mapping between matrices and their DIA format

Fig. 9 The schematic for the
equalizer

L̄D represents two matrices L and D jointly since the diagonal of L always equals
1 and D is diagonal with the same size of L. The index mapping from these DIA
formats to the original matrices are given in Fig. 8, where we deliberately consider
the DIA format only accessed in one-dimension addresses to represent the physical
memories. Using the index mapping, each matrix computation in Algorithm 3 can
thus be identically carried out using their DIA formats, and the only difference lies in
exploiting different indices for each non-zero value. It is noteworthy that such index
mapping does not introduce additional operations since it only refers to different
memory addresses. Figure 9 depicts the schematic of the equalizer for the mth data
cluster b(d)

m , for m ∈ {0, . . . ,NB − 1}.
From the above, we know that the mth channel estimator yields a DIA format

H̄(d)
m of Ĥ(d)

m , which are used directly by the mth equalizer as an input. It indicates



Circuits Syst Signal Process (2014) 33:839–861 855

Fig. 10 Testbench of mobile OFDM baseband receiver

Table 3 Testing setups for OFDM system

Setup Q N NP NB B ND Edge Guarda

O 0 256 8 7 35 245 1 2

I 1 256 8 7 30 210 3 3

II 2 256 8 7 25 175 4 5

III 3 256 8 7 20 140 6 6

aReferring to the edge null subcarriers. The number of the null subcarrier at either edge must be larger
than Q. For simplicity reasons, we never place separated data subcarriers but only place them as NB

clusters, and thus abundant edge null subcarriers may exist

that the aforementioned channel estimator shares the same interfaces to communi-
cate with our channel equalizer herein. Figure 10 describes the parallel connection
between each pair of channel estimator (CE) and equalizer (EQ), and also illustrates
the testbench environment used in this paper.

5 Experiments

For the OFDM setup, we consider the cases listed in Table 3. It is known that using a
larger Q, a higher system performance with regards to the symbol detection accuracy
can be obtained [6, 7, 16, 17, 21]. But its paid price is a higher hardware cost for
implementation, which is evident later. Each pilot is guarded by 2Q null subcarriers
on its either side. In addition to these guarded null subcarriers, the number of the null
edge subcarriers placed at either edge is needed to be larger than Q. For all the cases,
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Fig. 11 Channel estimation accuracy

QPSK symbols are modulated on the data and pilot subcarriers; To represent the time-
varying channels, the Jakes’ model [12] with a maximal normalized Doppler factor
(i.e., the Doppler shift divided by the OFDM subcarrier interval) of 0.02 is adopted.
Physically, if we consider that the OFDM baseband bandwidth is W = 20 MHz and
the central radio frequency is fc = 10 GHz, this maximal normalized Doppler factor
corresponds to the highest velocity of v = 84.38 km/h (computed by fc×2v/c

W/N
= 0.02,

where c = 1.08 × 109 km/h). Moreover, the delay tap number of the channel is taken
less than NP , which means a delay spread of 0.4ms if the baseband bandwidth of
W = 20 MHz, such that NP > L is satisfied [cf. (11)]. The time-varying channel is
windowed by a time-domain windowing from [17]. According to the testbench envi-
ronment as illustrated in Fig. 10, we randomly generate the received OFDM symbols
for our LS channel estimator and ZF equalizer, and then examine the performances
of the channel estimation and equalization.

Let us currently focus on the Setup O and Setup I for the OFDM system. Fig-
ure 11 illustrates the mean-square-error (MSE) performances of the LS channel esti-
mator using various BEM’s for the Setup I, with different signal-to-noise ratio (SNR)
conditions. The traditional LS estimator for the time-invariant (TI) OFDM channels
is realized using our simplified LS estimator corresponding to Q = 0 as previously
mentioned. The MSE is defined as

MSE = 1

NB

NB−1∑
m=0

∥∥H(d)
F,m − Ĥ(d)

m

∥∥2
/
∥∥H(d)

F,m

∥∥2
, (24)

where H(d)
F,m is carved from HF in (1) at the same positions corresponding to Ĥ(d)

m in

ĤF. From Fig. 11, it is clear that the traditional estimator designed for TI channels
cannot combat a time-varying channel, while the performances of our LS estimators
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Table 4 Synthesis results of
channel estimator

a90 nm ASIC technology with
100 MHz clock and 20 (40) bits
are adopted for a real (complex)
number; Here Q = 1

Method ASIC Core Areaa

(103 µm2)
ROM Areaa

(103 µm2)
Latencya

(cycle)

Simplified CE 487.46 25.24 159

General CE 1129.84 213.36 353

without a time windowing are still not good. With a proper windowing design, our
LS estimators all perform well for time-varying channels, no matter which BEM
is adopted. It is noteworthy that although the estimation accuracy of a simplified LS
estimator using the CCE-BEM is indeed inferior to other BEM models, the drop of the
estimation accuracy is slight especially in presence of the time-domain windowing.
Additionally, it is certain that the estimation accuracies obtained by using different
implementation methods (i.e., general LS estimator or simplified LS estimator) are
identical when the CCE-BEM is adopted to model the channel. In addition to BEM’s,
a Gauss–Markov process [5] can also be adopted to model time-varying channels.
However, the Gauss–Markov process is mainly adopted for time-domain sequential
processing [21], while in this paper we shall focus on the BEM which is often more
convenient for block transmission schemes such as OFDM.

At the same time, we compare the hardware resource utilizations of the afore-
mentioned two approaches of implementing the channel estimation (i.e., general LS
estimator and simplified LS estimator). Setup I is tested. Specifically, using a similar
methodology as [19], we first realize an LS estimator for one data cluster (e.g., the
mth data cluster), and then duplicate it to generate other pairs with Q = 1, resulting
a concurrency for m = {0, . . . ,NB − 1}. Table 4 lists the values of their synthesis re-
sults in a 90 nm technology. It shows that our simplified LS estimator brings a roughly
57 % cut for the ASIC core area (excluding the ROM), a 88 % savage for the ROM
size and a 55 % reduction of the processing latency compared to the general LS es-
timator. Jointly considering their estimation performances shown in Fig. 11 and their
hardware costs herein, it suggests that the it is more appealing to design time-varying
OFDM systems using the CCE-BEM than using other BEM options.

Now, we select the simplified LS estimator tailored to the CCE-BEM and then
combine it with the ZF channel equalizer. Figure 12 compares the bit-error ratio
(BER) performance of our design using OFDM Setup I, II and III (i.e., with Q = 1,
2 and 3) for a narrowband time-varying channel. Additionally, we also build a TI
OFDM receiver corresponds to OFDM Setup O using Q = 0 and without any time-
domain windowing. We note that these BER performances are obtained without any
channel coding. It is clear that since the TI OFDM receiver fails to combat the time
variation of the channel, it hardly recover the transmitted data information correctly.
However, the receiver using our estimator and equalizer significantly improves the
BER performance especially at a higher SNR. In addition, the use of a larger Q

parameter indeed brings a performance improvement with regards to the symbol de-
tection accuracy, as noticed by [6, 7, 16, 17].

To investigate the hardware resource utilization of our designs, we implement the
designs with these setups (i.e., with Q = 0, 1, 2 and 3). Similar for the channel esti-
mator, we first realize a ZF equalizer in combination with a simplified LS estimator,
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Fig. 12 BER performance

and then duplicate their combination for m = {0, . . . ,NB − 1}. Their synthesis re-
sults on a Xilinx 6VLX240TFF1156 device are listed in Table 5, where the process-
ing latency is counted by the clock cycles and the FPGA resource utilization report
is quoted. It is no surprise that a time-varying OFDM receiver (or a mobile OFDM
receiver) based on the BEM requires more hardware efforts to support high-mobility
users since we remarkably extend a TI OFDM system. In other words, the BER im-
provement of time-varying OFDM systems is earned at the price of more complicated
hardware design, compared to a TI OFDM receiver. Moreover, we observe that for
the time-varying OFDM system from Q = 1 to Q = 3, the hardware resource utiliza-
tion (e.g., by considering “acc. Inst.” as an overall utilization of hardware resource),
as well as the processing latency, increases roughly linearly along Q. Jointly con-
sidering the BER performance as illustrated in Fig. 12, an excessively large Q (e.g.,
Q = 3) is not desirable since a remarkable increased hardware cost only brings a
slight improvement of the BER performance. For instance, a roughly 0.1dB BER
improvement from Q = 2 to Q = 3 is obtained, but at a price of 1.32 times resource
utilization. It indicates that a small Q is sufficient (e.g., Q = 2) to provide an accurate
symbol detection without introducing too high hardware utilization.

6 Summary

The narrowband OFDM system model in light of BEM was introduced. Two effi-
cient implementations for the least-squares estimator of OFDM time-varying chan-
nels were discussed. The first one is the general estimator which supports estima-
tion methods using various BEM models. The second one, the simplified estimator
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Table 5 Comparison of FPGA implementations

Mobile OFDM TI OFDM

Q = 3 Q = 2 Q = 1 Q = 0

Latency (cycle) 2759 2451 1758 706

Resourcea acc. Inst. 128720 96966 69808 20163

LUTs 40.02 % 35.69 % 27.14 % 6.88 %

CLBs 40.05 % 35.71 % 27.18 % 6.94 %

DFFs 3.70 % 3.22 % 2.32 % 0.98 %

DSP48Es 28.52 % 25.43 % 18.24 % 4.16 %

RAMS 65.77 % 58.73 % 42.25 % 8.94 %

a20 (40) bits for a real (complex) number on Xilinx 6VLX240TFF1156 Device with a 100MHz clock; The
RAMS stands for the block RAM components, which are mainly used to store matrices during the channel
estimation and equalization

particularly tailored for the CCE-BEM, leads to a more efficient hardware architec-
ture, while still maintains a high estimation accuracy. Hence, the CCE-BEM is more
appealing to time-varying OFDM systems than other BEM’s. The efficient imple-
mentation of the parallel equalizer was presented afterwards. Our design for OFDM
receivers with a small BEM order is capable of combatting the narrowband time-
varying OFDM channel. For comparison, a traditional time-invariant OFDM receiver
design which only works for time-invariant channels fails in a time-varying channel.

Acknowledgements This work was supported in part by NSFC (project 61302140).

Appendix: Detailed Derivation of (9)

Let us start from the noiseless version of (8) as

r(p) =
Q∑

q=−Q

D(p)
q �

(p)
q b(p),

where D(p)
q is a submatrix obtained from Dq by only selecting rows (columns) cor-

responding to r(p) in rF (b(p) in b), and �
(p)
q is obtained from �q by selecting the

rows of b(p) in b.
We first notice that �q = diag(F(L)cq) as specified in (7), and thus we can specify

�
(p)
q as

�
(p)
q = diag

(
F(L,p)cq

)
,

where F(L,p) collects the rows of F(L) corresponding to the positions of b(p) in b.
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To this end, it is clear that

�
(p)
q b(p) = diag

(
F(L,p)cq

)
b(p)

= diag
(
b(p)

)
F(L,p)cq . (25)

Substituting (25) into r(p), we obtain

r(p) =
Q∑

q=−Q

D(p)
q

(
diag

(
b(p)

)
F(L,p)

)
cq

= [
D(p)

−Q, . . . ,D(p)
Q

]

× I2Q+1 ⊗ (
diag

(
b(p)

)
F(L,p)

)

× [
cT−Q, . . . , cT

Q

]T

= D(p)
(
I2Q+1 ⊗ (

diag
(
b(p)

)
F(L,p)

))
c, (26)

where ⊗ stands for the Kronecker product, D(p) = [D(p)
−Q, . . . ,D(p)

Q ] and c =
[cT−Q, . . . , cT

Q]T .

Consequently, if we denote

A(p) = D(p)
(
I2Q+1 ⊗ (

diag
(
b(p)

)
F(L,p)

))

as defined in (10), we obtain

r(p) = A(p)c

which is the noiseless version of (9).
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