A Scalable Distributed Asynchronous

2011 14th Euromicro Conference on Digital System Design

Control Network

for High Level Synthesis of Digital Circuits

Tom van Leeuwen, Rene van Leuken
Circuits and Systems Group

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Delft, The Netherlands
t.g.r.m.vanleuken @tudelft.nl

MULL MUL2 ALUL

HZ—input mux

E 2-input mux

Abstract—This paper presents a scalable asynchronous dis-
tributed control network. The control circuit allows for true
asynchronous operation of all digital resources and as a result
of its scalable distributed topology allows unlimited resource
sharing. We start with the description of a data flow graph,
and using traditional scheduling algorithms, generate an asyn-
chronous distributed control network and the asynchronous data
path. The distributed controllers are implemented such that they
can be created by connecting a small number of pre-designed
sub-controllers which are presented in this paper. Prototype IP-
blocks of these sub-controller circuits have been designed in a
90nm ASIC design process. To prove the effectiveness of our
method, we present some key performance parameters: area and
power under timing constraints.

Index Terms—Asynchronous circuits, Application Specific In-
tegrated Circuits, Design Automation, Logic Design, Controller
Network, De-synchronization

I. INTRODUCTION

OST digital circuits use a clock signal to synchronize
operations, called synchronous circuits. Although this
clock signal makes the design convenient, especially since
practically all commercial synthesis tools assume synchronous
designs, some advantages can be exploited when using asyn-
chronous circuits. Those advantages can include typical case
performance, low power consumption, less sensitive to vari-
ability, lower EMI admittance and protection against power
analysis attacks. Disadvantages of asynchronous circuits in-
clude the lack of synthesis tools, their sensitivity to hazards
and in some cases performance loss.
We present a controller network for asynchronous circuits
which can be created automatically, including the asynchro-
nous data-path, given a data flow description.

II. RELATED WORK

Behavioral synthesis is widely explored in the past, mostly
targeting synchronous circuits. Scheduling, the process of
allocating operations to time slots, is a well-known method for
behavioral synthesis. A large number of scheduling algorithms
are available, as well as control network topologies. For
behavioral synthesis of asynchronous circuits, a number of
methods for scheduling and resource allocation are published

978-0-7695-4494-6/11 $26.00 © 2011 IEEE
DOI 10.1109/DSD.2011.114

797

S2
ol | 50 || 52
b two operationg
| 52 2

oL
= ALUY

I Latch

I Flip-Flop

One operand,
two operationg

One operand, Two operands,
one operation two operations

(A) (B) ©)

One operand,
one operation

Two operands,
two operations

Fig. 1. FIR3 filter, a: Resource mapping, b: Data-path with flip-flops, c:
Data-path with latches

[1] [2]. However, these publications do not include the syn-
thesis of the control network. Behavioral synthesis methods
for asynchronous circuits including the control network syn-
thesis are also published. In [3], distributed controllers for
asynchronous scheduled data flow graphs are proposed, similar
to our method, but each distributed controller is specified in
a separate Signal Transition Graph (STG). STG’s are hard
to synthesize because they should operate hazard free. As
a consequence, this method fails already on medium size
circuits. In our method, only a few small STG’s have to be
synthesized, which can then be reused to create the larger
complex distributed controller.

III. BACKGROUND
A. Data Flow Graph

A Data Flow Graph (DFG) represent operations and their
data-dependencies. We use a DFG as input for our synthesis
method. Using existing scheduling and resource allocation
algorithms, the operations are assigned to time slots and
resources. In Figure 1a, the resource allocation of a FIR filter
(FIR3) is shown. Note that scheduling algorithms can assign
multiple cycles to an operation, approximating asynchronous
behavior where the delays of operations are independent from
each other [2].

Each resource is scheduled to execute a number of different
operations from the DFG. In synchronous circuits, this is
handled by a multiplexer (MUX) at the input of each resource.
A flip-flop with an enable signal on its output makes sure the
data is available as long as required by the scheduling result. If
two operations are scheduled to resource A, ax and ay, during
cycle 1 and 3, the results of operation ax is available during

IEEE
computer
® psouety

cycle 2 and 3, and the result of operation ay is available from
cycle 4 onwards.

There are a number of required properties on the scheduling
result, to make the synchronous data-path possible:

o A result of an operation can only be used after it is
produced. An operation X that has a data-dependency
from operation Y in the DFG should be scheduled at
least one time slot later than operation Y.

o A result should be available until the last operation that
depends on it has consumed it. If the results from opera-
tion X have data-dependencies to Y, the resource which
executes operation X cannot execute a new operation in a
time slot earlier than the time slot in which Y is executed.
(unless a register is used, which acts as a new resource)

B. Signal Transition Graphs

Signal Transition Graphs (STG’s) are a subset of Petri nets
where all transitions are signal transitions [4]. STG’s are used
to model Speed-Independent controllers. Speed-Independent
circuits operate hazard-free under certain assumptions [5]. A
STG contains transitions, places and directed edges which can
connect a transition and a place in both directions. A directed
edge cannot connect two places or two transitions. Every place
can contain a token. A transition is enabled when all input
places (places with an edge to the transition) contain a token.
A transition can be an input transition which can be fired by
the environment when enabled, or a transition of an output or
internal signal (non-input transition) which will be fired by the
circuit when it is enabled. If a transition is fired, the tokens
from the input places are removed and a token is added to
each of its output places.

To simplify the drawings, a place can be made implicit when
it has exactly one incoming and one outgoing edge. The two
edges and the place are then replaced by one edge between
two transitions. This edge can now contain a token.

Marked Graphs (MG) are a subset of STG’s, where each
place has exactly one incoming and one outgoing edge. When
drawing a MG, all places are usually implicit.

Directed circuits are a closed cycle in a MG where the
direction of the arcs is respected.

A strongly connected MG is a MG which is strongly
connected when there is a path from each transition in the
graph to every other transition.

C. De-synchronization

De-synchronization is the process of replacing all flip-flops
for latches and the clock tree for latch controllers. This method
is proposed by Cortadella et all [6]. Replacing the flip-flops
for latches is a technique also used in synchronous designs.

We use Marked Graphs to model the operation of the
latches. Marked Graphs are also used by Cortadella to prove
that the de-synchronization method is valid. We use Marked
Graphs to prove the two properties, liveness and flow equiv-
alence, which together show that the circuit is a valid imple-
mentation for the synchronous scheduling results[6].

798

<A+ —p X+ o) B+
A- v\x- \ B-
Fig. 2. Fall decou-
pled latch controllers

(A and B are even, X
is odd)

Fig. 3. Marked Graph of Fall-decoupled
model extended with resource sharing

1) Liveness: Liveness indicates that the circuit cannot enter
a deadlock state, a state which it cannot leave. A strongly
connected Marked Graph is live if each directed circuit
contains at least one token.

2) Flow equivalence: An asynchronous circuit is flow-
equivalent to the synchronous counterpart, or in our case the
scheduling results, if the data in each latch of the asynchronous
circuit is equal to the data of the corresponding latch in the
synchronous counterpart.

IV. PROPOSED METHOD

A. Data-path

For the conversion of the synchronous scheduling results to
a latch-based design, the flip-flop is replaced by two latches.
Using re-timing, one latch can be placed between the MUX
and the input of the operation, as shown in Figure 1 b (flip-
flop) and c (latch). Since the second input to the multiplier is a
constant in the FIR filter, these are hard-coded in the multiplier
and not shown in the data-path.

Now the latches are located at the output of the MUX, the
MUX and latch can be combined using dynamic logic. In our
simulations, dynamic logic is used for the combination of the
input MUX and input latch.

B. Control Network

The starting point for behavioral synthesis is a behavioral
description of the circuit. Our method uses a State Sequencing
Graph (SSG), which is converted to a bundled-data asynchro-
nous circuit.

The controllers are based on the fall-decoupled model from
[6]. This model is live and flow-equivalent to synchronous
circuits. However, this model does not allow hardware reuse,
so a new model is created which allows hardware reuse, but
is still live and flow-equivalent to the synchronous scheduling
results.

1) Fall-decoupled model: In Figure 2, the fall-decoupled
model is shown. A and X indicate even- and odd latch control
signals. The A+ transition will make latch A transparent,
while A— will make latch A opaque. In this model, even and
odd latches alternate. In [6], it is proven that this model live
and flow-equivalent to a synchronous counterpart when each
flip-flop is replaced by two latches and latch controllers.

2) Resource sharing: To be able to implement the schedul-
ing results, the Fall-decoupled model has to be extended to
implement resource sharing. For each operand, a separate
handshake is introduced unless the data is an input from the
environment. The communication with the environment should
also implement handshaking to indicate that new input data is
available and that the output data is ready. The start and done
signal are introduced to represent the validity of inputs to and
outputs from the asynchronous circuit respectively. The start
signal indicates valid input data while the done signal indicates
valid output data.

Combining the Fall-decouple model with resource sharing
results in the controller model shown in Figure 3. In this
marked graph, each transition is a latch control signal except
Start and Done. The letter A, B and C indicate the input latch
control signals for three different resources, while X represents
the output latch control signal for the resource with input
latch A. The numbers associated with the latch control signal
represent the time slot in which the operation is scheduled. If a
resource has no operation scheduled for a certain time slot, the
numbers will not be subsequent, but the numbers are always
strictly increasing, e.g. no two operations can be scheduled on
one resource at the same time and the order in time is honored
by the marked graph. In the rest of this section, we focus on
the implementation of the Control Network.

C. Liveness and flow equivalence

In the proposed control network model, initially there is
only a token at the start signal. Considering valid scheduling
results as stated in section III-A it can be proven that any
directed circuit includes the start signal. Thus, the proposed
control network is always live. Similarly, it can be proven that
our method is flow-equivalent to the scheduling results.

D. Handshaking

To implement the proposed controllers in a circuit, hand-
shaking is used to communicate between latch controllers.
Each operand is coupled with one set of handshake signals.
Inside each resource, the even latch controller and odd latch
controller also communicate with one set of handshake signals.
If output data for a certain operation is used more than once,
the handshake is forked to all succeeding operations.

A delay element is required for each latch, which results
in two delay elements per resource. The required delay for
the operation can be added to one of those delays. To save
area and improve delay matching, the handshake signals for
all operations scheduled on a particular resource should share
the same delay element.

E. Handshake blocks

To create an automated design flow which can implement
the proposed handshaking, a number of IP-blocks have been
designed. In this section, the topology of the IP-blocks is
explained. There are three main blocks (inputselect, odd latch
controller and outputselect) and a few support blocks (fake
request, fake acknowledge, fork). The topology of those blocks
can be found in Figure 4.

799

1) Inputselect: The inputselect block controls the even
latch and input MUX. The active inputselect block which has
control over the resource, indicated by the start signal, will
send a request out to the odd latch controller and make the
even latch transparent when a request in is received. After
the delay, the inputselect block will receive an acknowledge
out from the latch controller and the even latch will be made
opaque again. When the odd latch is also opaque (indicated
by a low acknowledge out), a finish signal is send, to hand
over control to the next inputselect block.

2) Odd latch controller: The odd latch controller makes
the odd latch transparent when a request in is received and
the old data is latched by all succeeding resources, indicated
by a low output acknowledge. When the latch is transparent, a
request out is send and after the delay, an acknowledged out is
received, indicating that the data has propagated through the
odd latch, so it can be made opaque again. Also, when the
request in is high, an acknowledge in is send immediately to
indicate that the data has propagated through the even latch.
The acknowledge in can only go low when the odd latch is
transparent.

3) Outputselect: The outputselect block does not control
any latch or MUX, but is used to unfold the subsequent
requests from the odd latch controller. The odd latch controller
has only one output request signal, but the resource is shared
so output data should be coupled with different handshake
signals, which is taken care of by the outputselect block.
When a request arrives at the active outputselect block, an
acknowledge is send to indicate that the odd latch can go
opaque again, and an output request is send. The acknowledge
is made low when data is latched by the subsequent resource,
indicated by a high acknowledge out signal. When the request
in is low again, the next outputselect block is activated.

4) Fake request: When an operand is provided by the
environment, there is no handshake associated with the data
and the data is valid during the entire operation of the circuit.
For these cases, a fake request block is designed, which
replaces the inputselect block.

5) Fake acknowledge: When a result is not an operand
for any operation, e.g. when it is merely an output to the
environment, there is no handshake associated with the result.
For these cases, a fake acknowledge block is designed, which
replaces the outputselect block.

6) Fork: When a result is an operand for multiple opera-
tions, the handshake should be forked. A fork is created for
this purpose, which forks the request out to all destinations
and uses a muller-C element to join all acknowledge signals.

7) Join: When a resource has more than one operand,
each operation is assigned two inputselects block and delay
elements. The data-path includes an extra MUX and even latch
for the second operand. The odd latch controller is modified
to include an extra handshake input.

V. RESULTS

To test the asynchronous control flow, a number of DFG’s
were used. The implemented circuits include a 5th order
LWDF low-pass filter, an 11th order WDF filter and an 18-
point IMDCT (Figure 6).

- OutputSelect 0

Done

Odd Lateh
control

Fig. 4. Handshake blocks implementing a distributed controller

TABLE I
POWER CONSUMPTION AND GATE AREA

Circuit Synchronous Asynchronous

Power | Gate area | Power Gate area

(mW) | (um?) (mW) | (um?)
Sth order LWDF filter 1.46 37687 1.72 93049
11th order WDF filter || 3.37 332590 2.70 493602
18-point IMDCT core 13.72 86973 11.43 138622

The circuits were scheduled using the List scheduling
algorithm. It is assumed that an ALU with two latches and
a MUX has 70% of the delay of an MUL with two latches
and a MUX, so during scheduling the ALU was assigned 7
cycles and the MUL was assigned 10 cycles. During synthesis,
the delay constraints for the ALU was set to 3.5 ns and the
delay for the MUL was set to 5 ns.

The circuits were implemented in UMC90 with a gate
library produced by the Faraday corporation. The netlist of the
IP-blocks was created using the Technology Mapping function
in Petrify and the layout of the IP-blocks is designed using
Cadence Encounter. The data-path is compiled by Synopsys
Design Compiler. The power consumption and gate area of
the three example circuits can be found in Table 1.

The longest path of the LWDF circuit at different multiplier
latencies is shown in Figure 5. Again, the delay of the ALU is
set at 70% of the multiplier delay. The absolute value of the
controller overhead increases when the delay of operations
decrease. This is a result of controller paths which are not
delayed by the delay element that will become part of the
critical path, while they would normally be shorter than a
different path delayed by the delay element with the same
endpoint. The slope of the synchronous circuit is equal to
the number of cycles times the multiplier delay, since the
multiplier delay fixes the clock period. The latency of the
asynchronous circuit is the controller overhead plus the data-
path latency.

From Figure 5, it can be concluded that the control overhead
is a significant part of the critical path. To outperform a
synchronous design when using multiplier latencies of 5Sns,
the control overhead should be reduced to 30% of its current
value.

VI. CONCLUSION

An asynchronous distributed control network based on a
number of pre-designed IP-blocks has been presented. A
VHDL code generator has been implemented in our scheduling
toolbox and a number of circuits are shown to prove the
effectiveness of the implementation. Compared to synchronous
designs, a significant reduction (upto 20%) in power consump-
tion can be achieved for larger circuits, while maintaining a

800

10E+4
90E+3
80E+3
__T0E+3

2
<3
g zz:z — Asynchronous
g --- Synchronous
= B Control Overhead
S 30E+3

20E+3

10E+3

00E-1 7"

bOE-1 20E+2 40E+2 60E+2 80E+2

MUL latency (ps)

10E+3 12E+3

Fig. 5. Latency of asynchronous and synchronous LWDF filter with different
multiplier latencies

k
<

I
<

731 um

3 731 um 3
Fig. 6. The asynchronous design of a IMDCT (left) and the synchronous

version at the right side

reasonable additional area size cost. At the same time the
latency of the asynchronous circuits is kept the same as of
the synchronous circuits. More importantly, the design of the
asynchronous digital circuits has become a lot easier, since
our scheduling toolbox automatically generates asynchronous
circuit implementations of a given set of data flow graphs.
More realistic delay matching could improve the perfor-
mance of the resulting asynchronous circuits. Also, different
completion detection methods can be implemented.

REFERENCES

[1] B. Bachman, H. Zheng, and C. Myers, “Architectural synthesis of
timed asynchronous systems,” in Computer Design, 1999. (ICCD ’99)
International Conference on, 1999, pp. 354 -363.

H. Saito, N. Hamada, N. Jindapetch, T. Yoneda, C. Myers, and
T. Nanya, “Scheduling methods for asynchronous circuits with
bundled-data implementations based on the approximation of start
times,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
vol. E90-A, pp. 2790-2799, December 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1521680.1521697

J. Cortadella and R. Badia, “An asynchronous architecture model for
behavioral synthesis,” in Design Automation, 1992. Proceedings., [3rd]
European Conference on, march 1992, pp. 307-311.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: A tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,” 1996.

J. Sparsgand S. Furber, Principles of Asynchronous Circuit Design.
Kluwer Academic publishers, 2001.

I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and
C. Sotiriou, “Handshake protocols for de-synchronization,” in Asyn-
chronous Circuits and Systems, 2004. Proceedings. 10th International
Symposium on, april 2004, pp. 149 — 158.

(2]

