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Synthetic Aperture 
Radio Telescopes

N
ext-generation radio telescopes will 
be much larger, more sensitive, 
have a much larger observation 
bandwidth, and will be capable 
of pointing multiple beams 

simultaneously. Obtaining the sensitivity, 
resolution, and dynamic range supported by 
the receivers requires the development of 
new signal processing techniques for array 
and atmospheric calibration as well as new 
imaging techniques that are both more accu-
rate and computationally efficient since data 
volumes will be much larger. This article pro-
vides an overview of existing image formation 
techniques and outlines some of the directions 
needed for information extraction from future radio 
telescopes. We describe the imaging process from mea-
surement equation until deconvolution, both as a Fourier 
inversion problem and as an array processing estimation 
problem. The latter formulation enables the development of 
more advanced techniques based on state-of-the-art array pro-
cessing. We also demonstrate the techniques on simulated and 
measured radio telescope data.

INTRODUCTION
The field of radio astronomy is a relatively young field of obser-
vational astronomy and dates back to pioneering research by 
Jansky in the 1930s [1]. Jansky demonstrated that radio waves 
are emitted from the Milky Way galaxy. Inspired by his work, 
Reber [2] made the first radio survey of the sky using a radio 
telescope that he built in his backyard. Figure 1 depicts some 
results of his radio survey, including the strong radio emissions 
of Cygnus A (Cyg A) and Cassiopeia A (Cas A). In 1946, Ryle and 

Vonberg [3] used the Michelson interferometer to observe radio 
emissions from the sun at a frequency of 175 MHz. Ryle contin-
ued to construct interferometers located on rails, which allowed 
him to create a synthetic aperture by moving the antennas. This 
is the origin of modern inverse  synthetic aperture radar and the 
active synthetic aperture radar imaging. Subsequently, the study 
of radio emissions from celestial sources has led to many great 
discoveries, such as cosmic microwave background radiation by 
Penzias and Wilson [4] and its anisotropy [5] and pulsars, which 
are rapidly rotating neutron stars, by Bell et al. [6]. Other 
 phenomena of great interest for radio astronomers include 
 gravitational lenses where the gravitational field of a massive 
object serves as a lens by bending the light wave (many of the 
gravitational lenses were discovered in radio frequencies, see 
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http://www.aoc.nrao.edu/smyers/class.html for more informa-
tion), active galactic nuclei such as in Virgo A (also known as 
M87), and supernova remnants such as Cassiopeia A. Virgo A is a 
giant galaxy in the Virgo cluster that has jets of particles moving 
at relativistic speeds and emitting very strong radio waves. It is 
believed that the center of the Virgo A galaxy is a very massive 
black hole. Radio astronomy also deals with spectral lines that 
appear at radio frequencies such as the hydrogen spectral line 
that was first detected in 1951 [7]. The spectral line at 21 cm is 
created by a change in the energy state of neutral hydrogen. 
This spectral line is expected to play an important role in 
understanding the reionization of the universe when the first 
galaxies were formed. In 1962, the principle of synthesis aper-
ture imaging using earth rotation was proposed by Ryle [9]. 
Ryle’s idea was simple and beautiful. Instead of moving the 
antennas as he has been doing for about 15 years, he used the 
fact that the Earth rotates to generate the synthetic aperture. 
This quickly became the main operating mode of radio interfer-
ometers. However, imaging using Earth rotation synthesis 
radio telescopes is an ill-posed problem due to the irregular 
sub-Nyquist sampling of the Fourier domain. This subsampling 
results in aliasing inside the image due to the high sidelobes of 
the array response. To solve this problem, we need to remove the 
effect of the instrumental response from the image (a process 
known as deconvolution) to compensate for inaccuracies in the 
array response (known as self-calibration, but it has many simi-
larities to blind deconvolution). It is important to understand 
that the improved imaging capability is a result of better equip-
ment in conjunction with new imaging techniques. Each gener-
ation of radio telescopes involved significant hardware 
development effort. However, exploiting the hardware 
 capabilities requires a constant improvement in imaging and 
self-calibration to match the receiver sensitivity. Figure 2 (from 

[8]) presents the outcome of imaging and self-calibration applied 
to an image of Cygnus A. It is the first discovery of the radio jets 
going from the center all the way to the external radio lobes. 
Even though Cygnus A has been observed for many years (since 
Reber’s time) it is the image formation and self calibration algo-
rithms that allowed the discovery of the radio jets. 

Over the last 40 years, many deconvolution techniques have 
been developed to solve this problem. The basic idea behind a 
deconvolution algorithm is to exploit a priori knowledge about 
the image. The first algorithm (and the most popular of these 
techniques) is the CLEAN method proposed by Högbom [10]. The 
maximum entropy method algorithm (MEM) with various entropy 
functions was proposed in [11]–[14] and the current implementa-
tion by Cornwell and Evans [15] is the most widely used. Beyond 
these two techniques there are several extensions in various direc-
tions: extensions of the CLEAN algorithm to support multiresolu-
tion and wavelets as well as noncoplanar arrays and multiple 
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[FIG1] Reber’s radio survey. We can see the Milky Way galaxy, Cygnus A, and Cassiopeia A. (Image courtesy of National Radio 
Astronomy Observatory (NRAO)/Associated Universities, Inc. (AUI).)

[FIG2] Cygnus A image. False color image of the radio jet and 
lobes in the hyperluminous radio galaxy Cygnus A. Red shows 
regions with the brightest radio emission, while blue shows 
regions of fainter emission. (Image courtesy of NRAO/AUI by 
Perley et al. [8].) 
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wavelengths (see the overview paper [16]). MEM techniques have 
been also extended to take into account source structure through 
the use of multiresolution and wavelet-based techniques [17]. 
Global nonnegative least squares (LS) was proposed by Briggs [18], 
matrix-based parametric imaging such as the LS minimum vari-
ance imaging (LS–MVI) and maximum likelihood-based tech-
niques in [19] and [20], and sparse L1 reconstruction in [21] and 
[22]. Source modeling is an important issue and various tech-
niques to improve modeling over simple point source models by 
using shapelets, wavelets, and Gaussians [23] have been imple-
mented. A more extensive overview of classical techniques and 
implementation issues is given in [24] and [25]. 

A better performance analysis of imaging and self-calibration 
techniques is one of the major challenges for the signal processing 
community. This is likely to become a more critical problem for 
the future generation of radio interferometers that will be built in 
the next two decades, such as the square kilometer array (SKA) 
(http://www.skatelescope.org/), the low frequency array (LOFAR) 
(http://www.lofar.org/p/astronomy.htm), the Allen telescope 
array (ATA), (see Figure 3 and http://ral.berkeley.edu/ata/), the 
long wavelength array (LWA) (http://lwa.unm.edu/), and the 
Atacama large millimeter array (ALMA) (http://www.almaobser-
vatory.org/index.php). These radio telescopes will be composed of 
many stations (each station will be made up of multiple antennas 
that are combined using adaptive beamforming) and will have sig-
nificantly increased sensitivity and bandwidth. Some of them will 
operate at much lower frequencies than existing radio telescopes. 
Improved sensitivity will therefore require a much better calibra-
tion, the capability to perform imaging with much higher dynamic 
range to reduce the effect of the residuals of powerful foreground 
sources inside and outside the field of view and better handling of 
noncoplanar arrays. 

THE IMAGING EQUATIONS
This section reviews the basic principles of radio astronomy fol-
lowing Taylor et al. [25]. In radio astronomy, we observe the radio 
waves emitted from space. Since the source is far away, the 
received electromagnetic field intensity distribution can be 
observed only in an angular direction (no information regarding 
the intensity distribution in the radial direction). Defining the 
celestial sphere as the maximal sphere that contains no radiating 

sources, the observed intensity is the projection of the source 
intensity on the celestial sphere. For simplicity, we will deal with a 
quasi-monochromatic wave at frequency n (the general case can 
be easily derived by a linear combination of quasi-monochromatic 
waves). The electric field at location r is given by 

 En 1r 2 5 3Pn 1q 2 e2pJn 0  q2r 0  /c0 q2 r 0  dS, (1) 

where Pn 1q 2  is the electric field at location q (on the celestial 
sphere), dS is surface area on the sphere and the integration is 
done over the entire sphere and c is the speed of light. For two 
antennas observing a distant source (receiving the electric 
field emitted by the source) there is a geometrical delay in one 
of the antennas relative to the other antenna derived from the 
source observation angle [see Figure 4(a)]; if the geometric 
delay is compensated by an electronic delay, the electric field 
received in one antenna should be highly correlated with the 
electric field received by the other antenna. The spatial coher-
ency of the electric field for two antennas located at r1 and r2 is 
given by 

 Vn 1r1, r2 2 5 8En 1r1 2  En* 1r2 2 9, (2) 

where 8 9 stands for the expectation value. Substituting (1) into 
(2) and taking into account the large distance of the source; i.e., 0 q2 r 0 < 0 q 0  and that the electric field is spatially incoherent 
(i.e., 8Pn 1q1 2Pn* 1q2 2 95 0  4q1 2 q2 ) we get 

 Vn 1r1, r2 2 5 3In 1s 2e22pJns1r12r22 /cdV, (3)

where In 1s 2 ; 8Pn 1s 2 29 is the source intensity at direction s 
on the sphere (s ; q/|q|), and dV5 dS/|q|2. Representing (3) 
in the 1u, v, w 2  coordinate system, for many astronomical 
observations (e.g., planar arrays, or small field of view imag-
ing) we obtain 

 Vn 1u, v 2 5 33In 1 l, m 2e22pJ1ul1vm2dldm.   (4) 

The visibility is the Fourier transform of the source inten-
sity; therefore the inverse relation holds 

 In 1 l, m 2 5 33Vn 1u, v 2e2pJ1ul1vm2dudv. (5) 

When the coplanar approximation does not hold, (4) takes 
the more complicated form 

  Vn1u, v, w2533 1
n

In 1l, m2e22pJ 3ul1vm1w1n2124dldm,  (6)

where 

  n ;"12 ,22m2. (7) 

For a source with visibility measurements covering the 
entire 1u, v 2  domain, the source image is perfectly computed 
by the Fourier inversion of the visibility. In practice, only a 
small part of the 1u, v 2  domain is measured by sampling the 

[FIG3] The Allen telescope array. (Image courtesy of Seth 
Shostak and the SETI Institute.)
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existing antenna pair baselines as they 
change with the Earth’s rotation relative 
to the 1u, v 2  coordinates (at time tk two 
antennas p and q measure a single visi-
bility point in the 1u, v 2  domain at 1u pq

k , v pq
k 2 ) [see Figure 4(b)]. This set of 

samples is known as the 1u, v 2  coverage 
of the radio telescope. This coverage is 
determined by many factors such as the 
configuration in which the individual 
receptors (telescopes or dipole) are 
placed on the ground, the minimal and 
maximal distance between antenna pairs, 
the time difference between consecutive 
measurements, and the total measure-
ment time and bandwidth. An example of 
the 1u, v 2  coverage for a simulated radio 
telescope (east-west array with 14 anten-
nas logarithmically spaced from l to 
200l, observation time of 12 hours) is 
shown in Figure 5. The sampled points 
in the 1u, v 2  plane are a collection of 
ellipses. The sampling effect on the 
resulting image is shown in Figure 6(a) 
and (c). Figure 6(a) depicts an image of 
visibility data measured over a dense and 
uniform grid in the 1u, v 2  plane (all grid 
points in the 1u, v 2  plane were sampled). Figure 6(c) presents 
the same data with a more realistic 1u, v 2  sampling. The image 
with the partial (and more realistic) measurement set is 
blurred, distorted and noisy. Let S 1u, v 2  be the sampling func-
tion (S 1u, v 2 5 1 for each measured 1u, v 2  pair and S 1u, v 2 5 0 
otherwise). We obtain that the inverse direct Fourier trans-
form of the measured visibility, known as the dirty image ID, is 
given by 

 ID,n 1 l, m 2 5 33Vn 1u, v 2S 1u, v 2e2pJ 1ul1vm2dudv. (8) 

The instrument point spread function (also known as the 
dirty beam) is defined by 

 B 1 l, m 2 ; 33S 1u, v 2e2p J1ul1vm2dudv. (9) 

By the convolution theorem, the dirty image is the convo-
lution of the true source intensity (5) and the dirty beam (9) 

 ID,n 5 In * B. (10) 

This is the reason why image reconstruction algorithms in radio 
astronomy are often referred to as deconvolution algorithms, 
since direct synthesis produces ID,n, but we want to obtain In by 
deconvolution with respect to B. The dirty image can be calcu-
lated from the measured visibility data according to (8), or by 
using a fast Fourier transform (FFT) to reduce the calculation 
time and memory resources. To use the FFT, the visibility data 

must lie on a rectangular equally spaced grid. This procedure of 
resampling the measured visibilities on a regular grid is called 
gridding. The weighting is done by convolving the visibilities 
with a smooth kernel (this procedure is also called convolution-
al gridding). Choice of the gridding kernel is important and fol-
lows from standard interpolation theory. An illustration of the 
gridding effect for a rectangular kernel is shown in Figure 6(a) 
and (b). Both images were generated using simulated visibility 
data with complete 1u, v 2  coverage. In Figure 6(a), the visibility 

[FIG4] Measurement setting. (a) The visibility is the measurement of spatial correlation 
between the electric field of antenna pairs. The geometric delay of the wave that 
propagates from the source to the two antennas is compensated for by an electronic 
delay. (b) A distant source is observed by an antenna pair. The baseline connecting the 
two antennas is the origin of the 1u, v, w 2 coordinate system. The w axis points from 
the baseline toward the source reference point. 1u, v 2 are perpendicular to w and 
selected according to the Earth’s orientation. 1 l, m, n 2 is a unit vector in the 1u, v, w 2  
system pointing toward a specific location in the source (at the source reference point 
So, l5 0, m5 0 ) and n5"12 1 l21m2 2 .
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[FIG5] The 1u, v 2 coverage of a simulated east-west radio 
telescope with 14 antennas logarithmically spaced with 
baselines up to 200l. Observations are made every six minutes 
for a duration of 12 hours. From each antenna pair we get an 
ellipse in the 1u, v 2 domain. Note: u and v are in l units.
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data were taken on a perfect grid (all visibility measurements 
were located on the center of a grid cell). In Figure 6(b), the 
location of the visibility measurements was chosen randomly 
within the cells in the 1u, v 2  plane. This results in a blurred and 
distorted image. For more details on gridding and tapering, the 
reader is referred to [24] and [25]. 

THE PARAMETRIC MATRIX FORMULATION 
OF THE IMAGE FORMATION PROBLEM 
We now describe an alternative formulation of the image forma-
tion problem. In this formulation imaging is viewed as a parame-
ter estimation problem, where the locations and powers (and 
possibly polarization parameters and frequency dependence of 
power) are the unknown parameters. This formalism was first pro-
posed in [26] and [19] to allow for the introduction of interference 
mitigation techniques in the imaging process. It was extended to 
noncoplanar array and polarimetric imaging in [20]. This formula-
tion also allows the easy inclusion of space-dependent calibration 
parameters [27]. Assume that the observed image is a collection of 
D point sources, i.e., 

 In 1 l, m 2 5 a
D

d51
In 1 l, m 2d 1 l2 ld 2d 1m2md 2 . (11) 

Since 1u, v 2  are the baseline coordinates (i.e., u ; u ij
k 5 

u i
k2 u j

k and v ; v ij
k 5 v i

k2 v j
k ), the visibility (4) can be 

re written as 

 Vn 1u ij
k, v ij

k 2 5 a
D

d51
In 1 ld, md 2e22pJ 1uij

kld1vij
kmd2, (12) 

where k denotes the measurement time tk. Selecting a (time vary-
ing) reference point at one of the antennas 1u 0

k, v 0
k 2  and manipu-

lating (12) yields 

 

Vn 1u ij
k, v ij

k 2 5 a
D

d51
e22pJ 1ui,

k
  0 ld1vk

i,0 md2 In 1 ld, md 2 .
e2pJ 1uj,0

k ld1vj,0
k md2  (13) 

We define the kth measurement correlation matrix Rk by 

   1Rk 2 ij ; Vn 1u ij
k, v ij

k 2 . (14) 

The correlation matrix is illustrated in Figure 7 for a single 
frequency bin. Cell R ij

k of the correlation matrix is the visibility 
measurement at time tk from antenna pair 1 i, j 2 . The size of 
the correlation matrix Rk is p 3 p where p is the number of 
antennas in the array. The autocorrelation of each antenna is 
also used (the diagonal of the correlation matrix). When an 
observation uses more than a single frequency bin, each corre-
lation matrix is computed using a single bin, as illustrated 
in Figure 8. 

Let the Fourier component vector at time tk be 

 ak 1 l, m 2 ; ae22pJ1u1,
k
0

 

l1v1,0
k

 m2
e22pJ1u1,

k
0

 

l1v1,0
k

 m2b, (15) 

and let the Fourier component matrix at time tk be 

[FIG6] Illustration of sampling and gridding effects. (a) 
Fourier transform of visibility data on a perfect grid (visibility 
measurements location are on the center of the grid cells) 
with complete (u, v) coverage. (b) Fourier transform of 
visibility data with off-grid points (the visibility 
measurements location were chosen randomly) and complete 
(u, v) coverage, demonstrates gridding effect. Features in the 
image are blurred and distorted. (c) Fourier transform of 
visibility data with perfect grid and incomplete (u, v) 
coverage (of the radio telescope described in Figure 5), 
demonstrates the sampling effect. 
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Ak ; 3ak 1 l1, m1 2 , c, ak 1 ld, md 2 4. (16) 

Define the point source intensity  matrix 
by 

B ; £ I 1 l1, m1 2 0
f

0 I 1 lD, mD 2 § . (17) 

Using (15)–(17), (13) can be rewritten as 

 R k5 A k BA k
H. (18) 

Matrix (18) is the parametric form of 
the classical (4). It will allow us to consid-
er the problem as an estimation problem, 
where we observe a set of measured cova-
riance matrices which depend smoothly 
on the unknown source and instrument 
calibration parameters, as well as receiver 
noise. Using this formulation we can easily 
use well-known techniques from estima-
tion theory (such as maximum a poste-
riori, ML, MVDR, and robust techniques) 
to solve the image formation problem. It also enables a simple 
extension to the noncoplanar array case as well as polarimet-
ric imaging and multifrequency synthesis, where sources have 
frequency dependent (parametrically known) characteristics. 
The classical dirty image (8) can be rewritten as 

 ID 1 l, m 2 5 1
Kak a k

H 1 l, m 2  R k a k 1 l, m 2 . (19) 

Note that this is identical to the mean power output of a 
classical beamformer oriented towards direction 1 l, m 2 . More 

realistically, the antenna response varies slightly between differ-
ent antennas and there is an additional noise per antenna. The 
antenna response can be measured prior to the observation and 
taken into account in the model. Since the noise in two anten-
nas is independent, the noise correlation matrix is diagonal. 
Denoting by gi, k the unknown complex gain of antenna i at 
observation time tk and by s2 the noise variance, the correla-
tion matrix now becomes 

 Rk5Gk   Ak BA k
H Gk

H1s2I, (20) 
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where 

 Gk ; £g1, k 0
f

0 gp, k

§ . 

Estimation of the gi, k is discussed in an article by Wijnholds et al. 
[28]. Typically, gi, k varies slowly so it can be assumed to be con-
stant over multiple times. Similarly, the noncoplanar array case is 
given by replacing ak and B by 

ak 1 l, m 2 ; 3e22pJ 1u1,
k

 
0

 

l1v 
k
1, 0 m1w 

k
1, 0 n2,c, e22pJ 1u 

k
p, 0 l1v 

k
p, 0 m1w k1, 0

 n2 4T
 

 (21) 

and 

 B ; E I 1 l1, m1 2"12 ,1
22m1

2
0

f

0
I 1 lD, mD 2"12 ,D

2 2mD
2

U. (22) 

The radio imaging problem can now be reformulated as follows: 
Given a set of measured covariance matrices R̂1, c, R̂K esti-
mate the parameters s1, c, sD, I 1s1 2 , c, I 1sD 2  and the cali-
bration matrices Gk: k5 1, c, K. Note that (20) can be easily 
generalized to deal with direction dependent calibration param-
eters, polarized sources, as well as multifrequency synthesis. All 
that we need to change is the source and the  calibration 
 parametric model by simple adaptation of (20). The parametric 
approaches described in this article can be applied uniformly to 
all these problems. However, for simplicity we will focus on the 
calibrated array case. 

CLASSICAL AND PARAMETRIC APPROACHES 
BASED ON SEQUENTIAL SOURCE REMOVAL
Many algorithms in radio astronomy are based on sequential 
source removal. The most commonly used is the CLEAN algo-
rithm originally proposed by Högbom [10]. These iterative algo-
rithms assume that the observed field is a collection of sources 
with simple structure. CLEAN assumes that the sources are 

point sources. During each iteration, a single point source is 
estimated and removed from the data. The reconstructed image 
is the collection of all point sources with their estimated power 
convolved with an ideal reconstruction beam (usually an ellipti-
cal Gaussian fitted to the central lobe of the dirty beam). The 
general structure common to all the sequential source removal 
algorithms is described in Table 1. The algorithms differ from 
each other by the exact definition of the dirty image used, the 
way the point source is removed from the image (either in the 
image domain after gridding or in the visibility domain), the 
intensity estimation method of the point sources and the exact 
modeling of the sources (such as point source, Gaussian, wavelet 
coefficients, and shapelets). Some versions, like the Cotton-
Schwab technique, estimate multiple sources based on the same 
dirty image. This significantly accelerates the algorithm, since 
the number of Fourier transforms of the image is reduced. 

We describe two sequential source removal algorithms. The 
first is the CLEAN algorithm, and the second is a parametric 
estimation-based algorithm known as LS-MVI. 

THE CLEAN ALGORITHM
The CLEAN algorithm assumes that the observed field of view is 
composed of point sources. Since the image of a point source is 
given by the convolution of the point source and the dirty beam 
(10), CLEAN iteratively removes the brightest point source from 
the image until the residual image is noise-like. There are several 
variants of CLEAN [10], [29]–[31]. The CLEAN algorithm is imple-
mented either in the image or in the visibility domain. In each 
iteration, the brightest point in the dirty image (8) is found (posi-
tion and strength) and added to a point source list. A fraction of it 
(g, 0 , g , 1) is removed from the dirty image. The g parameter 
is called the loop gain and is usually taken to be 0.1–0.2. The itera-
tions continue until the residual image is noise like. The subtrac-
tion can be done either in the image domain or in the visibility 
domain. The visibility domain CLEAN is more accurate since we 
are not limited to pixel resolution. The algorithm flow for ungrid-
ded visibility domain CLEAN is summarized in Table 2. 

An illustration of the CLEAN algorithm on a simulated 
image is shown in Figure 9. The simulated radio telescope is 
the same as in Figure 5. The loop gain used is 0.2. In every 

[TABLE 1] GENERIC SOURCE REMOVAL ALGORITHM FLOW.

INITIALIZATION:

• CALCULATE THE DIRTY IMAGE ID  ACCORDING TO MEASURED VISIBILITIES.
• CALCULATE THE RECONSTRUCTION BEAM Brec FOR LATER USE.

WHILE STOPPING CRITERIA NOT MET:

• FIND THE BRIGHTEST LOCATION IN THE DIRTY IMAGE (li , mi).
THIS IS THE LOCATION OF A NEW POINT SOURCE.
• ESTIMATE THE NEW POINT SOURCE INTENSITY li.
• ADD THE NEW POINT SOURCE TO THE SOURCE LIST.
(WITH THE ESTIMATED INTENSITY).
• REMOVE THE NEW SOURCE RESPONSE FROM THE DATA
(BOTH THE DIRTY IMAGE AND THE VISIBILITY MEASUREMENTS).

FINALIZE:

• CALCULATE THE RECONSTRUCTED IMAGE Irec

BY CONVOLVING THE SOURCE LIST WITH THE RECONSTRUCTION BEAM.

[TABLE 2] VISIBILITY DOMAIN CLEAN ALGORITHM FLOW.

INITIALIZATION: 

• CALCULATE ID (EQ. 8). 
• i 5 0. 
• Brec = Gaussian. 

WHILE ID IS NOT NOISE-LIKE: 

• (li, mi) = argmax ID (l, m). 
• li5  ID (li , mi).
• FOR ALL p, q, k: 

 V 1up,q
k , v  p,q

k 2 5 V 1u p,q
k , v p,q

k 2 2gli 
e22pj 3up, q

kli1vp, q
kmi4. 

• UPDATE ID (EQ. 8). 
• i5 i1 1. 

FINALIZE: 

• Irec5 ID1 a i gli Brec 1 l2 li, m2mi 2 . 
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iteration, the strongest point source is 
found, added to the reconstructed 
image, and subtracted from the dirty 
image. The loop gain serves three pur-
poses. First, it prevents (or at least 
reduces) the effects of over-estimation 
of the power due to sidelobes from 
other sources. Second, it allows for 
interpolation of sources that are located 
off the grid. Third, it improves perfor-
mance with extended sources. However, 
this limits the dynamic range of the 
image. The effect of pixelization and 
choice of grid on the dynamic range of 
the imaging process is further discussed 
in [32] and [33]. Improved versions of 
CLEAN allow for estimation of location 
off the grid by using interpolation, and 
subtraction of the effect from the visi-
bility rather than the dirty image. This 
has the positive effect of eliminating 
gridding accuracy effects. Acceleration 
of the CLEAN algorithm can be achieved 
by estimating multiple point sources 
based on a single dirty image (major 
cycle) as well as defining windows for 
the search procedure. Practically, defin-
ing windows reduces the size of the 
search space. 

CLARK CLEAN ALGORITHM 
One of the important variants of CLEAN 
was proposed by Clark in 1980 [30]. The 
main advantage of Clark’s algorithm is 
the reduction of computational load. 
The algorithm is performed in two 
cycles: a major cycle and a minor cycle. 
A major cycle is constructed by select-
ing intensity limit value (according to a 
histogram of the dirty image values) 
and approximating a dirty beam (central 
patch of the true dirty beam) to be used 
during the subsequent minor cycles. A 
minor cycle consists of finding the brightest pixel in the 
image (i.e., a new point source) and removing a fraction of 
the point source response from the dirty image. In principle, 
the minor cycle is the same as described in the “While” loop 
in Table 2, when the dirty beam used is only the central 
patch of the full dirty beam (hence computational complexity 
is significantly reduced). The inaccuracies caused by working 
with an approximated dirty beam are corrected during the 
major cycle. The Clark algorithm is performed in the visibili-
ty domain instead of the image domain, yielding a multipli-
cation instead of a convolution for calculating the point 
source response. 

COTTON-SCHWAB ALGORITHM
Cotton and Schwab [31] developed a variant of the Clark 
CLEAN. Like the Clark CLEAN, in the Cotton-Schwab CLEAN, 
the procedure involves major and minor cycles. The main 
improvements over the Clark algorithm are that the Cotton-
Schwab algorithm calculation is done over the ungridded visi-
bility data, thus avoiding gridding errors, and multisource 
removal is done independently in each minor cycle (from differ-
ent fields). The CLEAN components from all fields are removed 
in the major cycle. Working with the ungridded visibility 
 measurement is done using a measurement list as described in 
Table 2. An element V 1up, q

k , vp, q
k 2  of the measurement list is the 
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[FIG9] CLEAN steps for a simulated image. (a) The original image and (b) the initial dirty 
image. The reconstructed image after 50 and 25,000 CLEAN iterations is shown in (c) and 
(e), respectively. The residual dirty images after 50 and 25,000 iterations are shown in 
(d) and (f), respectively. In general, the sources are nicely reconstructed except from the 
square ring extended source. All images share the same color map. All images were 
up-sampled by four using MATLAB basic interpolation.
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 measured visibility by an antenna pair 1  p, q 2 , corresponding to 
a baseline 1up, q, vp, q 2  measured at time k. 

THE W-PROJECTION ALGORITHM
One of the main limitations of the previous technique is the 
case of noncoplanar arrays and large field of view. To overcome 
problems related to noncoplanar arrays, the W-projection algo-
rithm has been proposed by Cornwell et al. [34]. 

The W-projection algorithm deals with noncoplanar arrays 
i.e., when the planar approximation is violated and the imaging 
equation is given by (6). Originally, Frater and Docherty [35] 
showed that a projection of visibility measurements from a con-
stant w plane to w5 0 plane can be done. This corresponds to a 
radio telescope with antennas arranged in a plane with a single 
antenna outside the plane. In this case, the measured visibilities 
are projected onto w5 0 plane (real and imaginary part sepa-
rately), a deconvolution is performed (such as CLEAN), and the 
resulting cleaned images are combined taking the constant w 
value into account. 

In the general case (projection of any w values), the relation 
between V 1u, v, w 2  and V 1u, v, w5 0 2  is given by 

 V 1u, v, w 2 5G| 1u, v, w 2*V 1u, v, w5 0 2 , (23) 

where 
 G 1 l, m, w 2 ; e22pJ 3w1"12l22m22124  

 < epJ3w1l21m224 
 G| 1u, v, w 2 5J

w
e2pJ cu21v2

w
d  (24)

and G 1 l, m, w 2  is the Fourier transform of G| 1v, u, w 2  called the 
W-projection function. Given a model of the sky brightness, the 
visibility on the w5 0 plane can be calculated using the two- 
dimensional (2-D) Fourier transform. The visibility measure-
ment outside the w5 0 plane may then be calculated using the 
convolution function G| 1u, v, w 2 . Note that representing the vis-
ibility as a convolution and using the FFT algorithm to com-
pute the convolution is similar to the one-dimensional chirp 
z-transform algorithm. Calculating the image for a given set of 
visibility measurements is done using iterative algorithms since 
there is no inverse transform. The W-projection is a minor-ma-
jor cycle algorithm that receives three-dimensional visibility 
measurements V 1u, v, w 2  and projects the w coordinate “out” 
(projection on w5 0 plane). The 2-D visibilities V 1u, v, w5 0 2  
are used to calculate the reconstructed image in the 1 l, m 2  
domain by a 2-D Fourier transform. Then a deconvolution is 
performed (such as CLEAN) on the resulting image. The 
W-projection algorithm has both high-performance and high-
computational speed. 

THE LS-MVI ALGORITHM
We now describe a recent approach that enables the use of mod-
ern array processing algorithms in the framework of image 
deconvolution. The method will be demonstrated on simulated 
and measured data. However, in contrast to the CLEAN algorithm 
it is in initial research stages and further development of the tech-

nique is an interesting research problem. The LS-MVI algorithm is 
a novel matrix-based sequential source removal algorithm origi-
nally proposed in [19] and further improved in [20]. It is based on 
the matrix-based approach to direction-of-arrival (DOA) estima-
tion techniques. We would like to replace the vectors ak 1s 2  in (19) 
by a set of beamforming vectors wk 1s 2 , k5 1, c, K. The main 
goal of the LS-MVI is to eliminate interference from other points 
in the image when estimating the location and power of a given 
source. To that end, filterbank techniques such as the MVDR and 
its extensions have proven very effective. Minimizing the interfer-
ence from sidelobes of the dirty beam while observing a point 
source in direction s5 1 l, m 2  can be formulated as a constrained 
beamforming problem (For simplicity we denote wk 1s 2  by wk and 
assume that w5 3w1, c, wK 4T ). 

 

ŵ 1s 2  5  argmin w a
K

k51
w k

H
 R̂k  

wk

  subject  to  

a
K

k51
w k

Hak 1s 2 5 1.

 (25)

The solution is given by 

 ŵk 1s 2 5 b 1s 2R̂k
21ak 1s 2 ,   (26)

where b 1s 2 5 1 @aK

k51
a k

H 1s 2  R̂k
21ak 1s 2 , ak 1s 2  is given in (15) 

and R̂k is the covariance matrix measured at time tk. The vectors 
ŵ 1s 2  have different magnitudes for different values of s. This is 
undesirable since it generates noise related spatial features. 
Therefore, the adapted angular response (AAR) solution normal-
izes the norm of w to 1. The resulting solution is given by 

 I D
AAR 1 l, m 2 ;

a
K

k51
ak 1 l, m 2HR̂k

21ak 1 l, m 2
a

k
ak 1 l, m 2HR̂k

22ak 1 l, m 2 . (27) 

This modified dirty image replaces the classical dirty image 
in the LS-MVI deconvolution process (a simple 1-D example 
of the AAR robustness is shown in “Example of AAR Algorithm 
Robustness”).

The intensity estimation used by the LS-MVI algorithm is a 
LS estimation of a point source at location 1 l, m 2  and given by 
the following equation: 

EXAMPLE OF AAR ALGORITHM ROBUSTNESS
For simplicity, a 1-D simulated example demonstrates AAR 
robustness. The simulated sparse array response is dis-
played in Figure 10(a). There are three simulated sources 
[see Figure 10(b)], two relatively bright extended sources, 
and a faint source. The brightests source intensity is 106 

times the RMSE of the noise after integration and the 
faint source power is only ten times the noise RMSE. The 
faint source is well below the sidelobes level in the classic 
dirty image [see Figure 11(a)].
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 a5 arg minaa
k

||R̂k2aak 1 l, m 2ak
H 1 l, m 2 ||F2

 subject to a $ 0. (28) 

This estimate of the source power has been independently 
used in ASP-CLEAN [36]. The closed form solution of (28) is 
given by 

 a5max e h 
Hr

h 
Hh

, 0 f , (29) 

where 

 h ; 3vec 1a1 1 l, m 2a 1
H 1 l, m 2 2T, c, vec 1aK 1 l, m 2a K

H 1 l, m 2 2T 4T 

and r ; 3vec 1R̂1 2T, c, vec 1R̂K 2T 4T are obtained by stacking 
the array response and the measured covariance matrices 
respectively. 

The intensity estimation can be improved by adding the 
semidefinite constraint 

 R̂k2s
2I2aak 1 l, m 2ak

H 1 l, m 2 f 0. (30) 

The intensity estimation is bounded between the solution 
(29) and 0. Hence, a better intensity estimation can be achieved 
using a simple bisection. A summary of the LS-MVI algorithm is 
given in Table 3. Another improvement that has low computa-
tional complexity is to use a joint LS estimate of all previously 
estimated sources. Assuming that we have collected L compo-
nents the estimator is given by 

 
a5 argminaa

K

k51
|| rk2 a

L

i51
ai q ki||

2

s.t.ai $ 0  for  all i ,
 (31) 

where a5 3a1, c, aL 4, rk5 vec 1Rk 2  and qki5 vec 1ak 1 li, mi 2  

a k
H 1 li, mi 2 2 . Similarly to the CLEAN algorithm this improve-

ment can be implemented only at major cycles, after several 
sources have been estimated. 

There are two main differences between LS-MVI and CLEAN. 
First, the LS-MVI uses a different type of dirty image and 

[TABLE 3] LS-MVI ALGORITHM FLOW.

INITIALIZATION: 

• R k
05 Rk, 4k5 1, c, K

• CALCULATE I D
AAR USING EQ. (27)

• i5 0 
• Brec5Gaussian

WHILE ID IS NOT NOISE-LIKE: 

• 1 li, mi 2 5 argmax I D
AAR 1 l, m 2

• ESTIMATE ai ACCORDING TO EQ.(29)
• OPTIONALLY IMPROVE ai ESTIMATION ACCORDING TO EQ. (30)
• R k

i115 R k
i 2gai ak 1 li, mi 2  ak

H 1 li, mi 2 , 4k5 1 cK
• CALCULATE I D

AAR USING R k
i11 USING EQ. (27) 

• i5 i1 1 

FINALIZE: 

• Irec5 a
i
gai Brec 1 l2 li, m2mi 2

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 50 100

Source-Integrated Power Profile

Dirty Beam of the Instrument

(b)

(a)

N
o
rm

a
liz

e
d
 R

e
s
p
o
n
s
e

P
o
w

e
r 
σ n

o
is

e

θ °

θ °

150 200

107

106

105

104

103

102

101

100

0 50 100 150 200

[FIG10] Simulated case: (a) the sparse array response and 
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 second, the LS-MVI performs a more sophisticated intensity 
estimation than CLEAN. The dirty image used by the LS-MVI is 
I D

AAR given in (27). The main advantage of the AAR dirty image 
over simple MVDR is the isotropic noise response that prevents 
the formation of spatially varying noise related artifacts. In [20], 
further extensions for enforcing semidefinite constraints in a 
Cotton-Schwab type of iteration are also presented. It should 
also be noted that there is no need to compute the complete 
dirty image to find the maximum and optimization techniques 
can do this much faster, especially if the user can provide win-
dows similar to CLEAN windows currently used by radio astron-
omers. Like CLEAN, the LS-MVI should be implemented in the 
visibility domain to eliminate gridding effects. 

GLOBAL OPTIMIZATION-BASED TECHNIQUES
We now turn to a second family of solutions to the image for-
mation problem. These solutions are based on optimizing a 
global property of the image subject to goodness of fit to the 
data. They vary from LS-based techniques to maximum entro-
py and ,1-based reconstruction. 

LINEAR DECONVOLUTION
Computationally, the simplest way to solve the image formation 
problem is through linear inversion. There are two main 
approaches in this area: The well-known LS technique and lin-
ear minimum mean square error (LMMSE). Such techniques 
can work well when the 1u, v 2  coverage is good and the inver-
sion is well conditioned. Furthermore, linear inversion can 
work independently of the complexity of the source structure. 
However, linear techniques can result in significant noise 
enhancement in ill-posed problems. For a fully sampled visibili-
ty domain, these techniques can provide a first approximation to 
the image. To overcome this problem, one can use a constrained 
LS, also known as nonnegative LS (NNLS), first proposed for 
radio synthesis imaging by Briggs [18]. The idea is that the 
image is positive. Putting these constraints into the deconvolu-
tion yields a computationally expensive, though feasible, algo-
rithm. An excellent overview of the implementation of the 
NNLS can be found in [18]. 

MAXIMUM ENTROPY IMAGE RECONSTRUCTION
The maximum entropy image formation technique is one of the 
two most popular deconvolution techniques in radio astronomy 
(together with CLEAN). The maximum entropy principle was 
first proposed by Jaynes [37]. A good overview of the philosophy 
behind the idea can be found in [38]. Since then, it has been 
used in a wide spectrum of imaging problems. The basic idea 
behind MEM is that out of all the images that are consistent 
with the measured data where the noise distribution does not 
satisfy the positivity demand, i.e., the sky brightness is a positive 
function, consider only those that satisfy the positivity demand. 
From these select the one that is most likely to have been creat-
ed randomly. This idea was also proposed by [11] for optical 
images and applied to radio astronomical imaging in [12]. Other 
approaches based on differential entropy have also been sug-

gested [13], [14]. An extensive collection of papers discussing 
these different methods and aspects of maximum entropy can be 
found in a number of papers in [39]. An overview of various 
maximum entropy techniques and the use of the various options 
for choosing the entropy measure is provided by [40]. 
Interestingly, in that paper, a closed-form solution is given for 
the noiseless case, but not for the general case. 

The approach in [12] begins with a prior image and iterates 
between maximizing the entropy function and updating the x2 
fit to the data. The computation of the image based on a prior 
image is done analytically, but at each step the model visibili-
ties are updated, through a 2-D Fourier transform. This type of 
algorithm is known as a fixed-point algorithm, since it is based 
on iterating a function until it converges to a fixed point. 

The maximum entropy solution is given by solving the fol-
lowing Lagrangian optimization problem [12]: 

 I 
MEM5 arg maxI2 a

l, m
I 1 l, m 2 log 

I 1 l, m 2
F 1 l, m 2 2 l2x2 1V 2 ,  (32) 

where 

 x2 1V 2 5 a1u, v2[A
 

1
s2
0 V̂ 1u, v 2 2 V 1u, v 2 0 2,  (33)

V 1u, v 2  are the model-based visibilities, l is a Lagrange multi-
plier for the constraint that V 1u, v 2  should match the measured 
visibilities V̂ 1u, v 2 , A is the 1u, v 2  coverage of the radio tele-
scope, and F 1 l, m 2  is a reference image. Taking the derivative 
with respect to I 1 l, m 2  we obtain that the solution is given by 

 I 1 l, m 2 5 exp 1 2 11 log F 1 l, m 2 1lD 1 l, m 2 2 , (34) 

where 

 D 1 l, m 2 5 a1u, v2[A

1
s2 Rea 1 V̂ 1u, v 2 2 V 1u, v 2 2e 

J 2p1ul1vm2
N b. 

The basic MEM now proceeds by choosing an initial image 
model (typically a flat image or a low-resolution image) comput-
ing the model-based visibilities V 1u, v 2  on a grid A. Using these 
visibilities a new model image is computed by (34). New visibili-
ties are computed from the new model and the process is iterat-
ed until convergence. 

While it is known that for the maximum entropy, this 
approach usually converges, the convergence can be slow [40]. 
Improved methods based on the Newton method and the conju-
gate gradient technique were put forward by [15], [41], and [42]. 
These methods perform direct optimization of the entropy func-
tion subject to the x2 constraint. Generalization of the maxi-
mum entropy using wavelets and multiresolution techniques 
have also been proposed (see e.g., [17] and [43]). 

COMPRESSED SENSING AND SPARSE 
RECONSTRUCTION TECHNIQUES
Recently there has been growing interest in using ,1-based cost 
functions for deconvolution (see [21], [22], and the unpublished 
notes by Ludwig Schwardt, which can be found at https://safe.nrao.
edu/wiki/pub/Software/Callm09Program/calim2009_ludwig.pdf).  
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This renewed interest in ,1 comes from recent results related 
to compressed sampling using Fourier bases. It is worth noting 
that as early as 1987, Marsh and Richardson [44] proved that the 
CLEAN algorithm can be regarded as an ,1 minimization for a 
single-point source image. However, ,1 is not the only criterion. 
Recovery of noisy and blurred images using total variation (TV) 
optimization for smooth images was discussed by Dobson and 
Santosa [45]. Chen et al. [46] dealt with ,1 minimization of an 
image basis to achieve image sparseness using linear program-
ming. Feuer and Nemirovski [47] and Elad and Bruckstein [48] 
established sufficient and necessary conditions for replacing ,0 
optimization (computing the sparsest solution with high com-
putational complexity) by linear programming when searching 
for the unique sparse representation. Rudelson and Vershynim 
[49] proved the best known guarantees for exact reconstruction 
of a sparse signal from its Fourier measurements. 

Radio astronomical image reconstruction is done based on 
the visibility measurement in the 1u, v 2  domain. Reconstruction 
of the source image I 1 l, m 2  is equivalent to estimating the miss-
ing visibility points. The missing V 1u, v 2  measurements togeth-
er with the image itself are estimated by minimizing a cost 
function ||I 1 l, m 2 ||,1

 in the 1 l, m 2  domain using the constraints 
of image positivity and the measured visibility data. Note that 
since I 1 l, m 2  is a positive quantity we have 

 ||I 1 l, m 2 ||,1
5 a

N

l51
 a

N

 
m51

I 1 l, m 2  (35)

that allows us to use linear programming. To solve the 
 reconstruction problem fast, we represent the problem as a 
linear programming problem with real variables. To that end 
let 8 # , # 9  be a one-to-one pairing function mapping 50, c, N2 16 3 50, c, N2 16 onto 50, c, N 22 16. Let 
F be an N 

2 3 N 
2 matrix whose elements satisfy 

 F8l,m9, 8u,v95 e
22pJ

N
1ul1vm2

. (36) 

Let j = vec(V) and let t = vec(I). We have 

 j 5 Ft. (37) 

Note that t is a real vector since the visibility measurements 
satisfy V 1u, v 2 5 V 12u, 2 v 2 . To make the problem real, we 
define FR5 Re 1F 2 , FI5 Im 1F 2  and variables jR5 Re 1j 2 , 
 jI5 Im 1j 2 . (37) now becomes 
 jR5 FR  

t 

(38) jI5 FI t.  

For the measured locations 1ui, vi 2  we have 

 jR 1 8ui, vi9 2 5 Re 1 V̂ 1ui, vi 2 2    i5 1, c, M

 jI 1 8ui, vi9 2 5 Im 1 V̂ 1ui, vi 2 2   i5 1, c, M, (39) 

where M is the number of given measurements in the 1u, v 2  
domain. The linear programming problem is described in Table 4 
(for more details the reader is referred to [21]). 

In [22], a joint ,1 and ,2 is also discussed. This makes it pos-
sible to include prior knowledge on the noise power. Using the 
total variation is also a possibility that leads to ,1 optimization. 

Note that using total variation and maximum entropy are relat-
ed since both functionals impose smoothness on the image. 

SELF-CALIBRATION AND ROBUST MVDR 
FOR SYNTHETIC APERTURE ARRAYS
We now turn to the case where the array response is not com-
pletely known, but we have some statistical knowledge of the 
error, e.g., we know the covariance matrix of the array response 
error at each epoch (measurement time). Typically this covari-
ance will be time invariant or will have slow temporal variation. 
In this case, we extend the robust dirty image as described in 
[50] to the synthetic aperture array case. This generalization fol-
lows the analysis in [20]. Since the positive definite constraint 
on the residual covariance matrices is important in our applica-
tion, we extended the robust Capon estimator of [51]. To that 
end, assume that at each epoch we have an uncertainty ellipsoid 
describing the uncertainty of the array response (as well as 
unknown atmospheric attenuation). This is described by 

 1ak 1s 2 2 ak 1s 2 2HCk 1ak 1s 2 2 ak 1s 2 2 # 1,  (40)

where ak 1s 2  is the nominal value of the array response towards 
the point s and Ck are the covariance matrices of the uncertainty 
in the calibration parameters at time k. Generalizing the 
LS-MVI we would like to solve the following problem: 

 3r̂, â1, c, âk 45 arg maxr, a1, c, ak r

 subject to

 R̂k2s
2I2rak a k

H f 0                            k5 1, c, K

 1ak 1s 2 2 ak 1s 2 2HCk 1ak 1s 2 2 ak 1s 2 2 # 1   k5 1, c, K. (41)

Let t 5 1/r. The problem (41) is equivalent to the following 
problem 3t̂, â1, c, âk 45 arg mint, a1, c, ak

t

subject to

 c R̂k2s
2I ak

ak
H t

d f 0 k5 1, c, K

c Ck 1ak 1s 2 2 ak 1s 2 21ak 1s 2 2 ak 1s 2 2H 1
d f 0 k5 1, c, K.

 (42)

This problem is once again a semidefinite programming 
problem that can be solved efficiently via interior point tech-
niques [52]. We can now replace the MVDR estimator by this 
robust version. Interestingly, we obtain estimates of the correct-
ed array response â 1sk 2 . Using the model we obtain for each k 

[TABLE 4] <1 OPTIMIZATION USING LINEAR PROGRAMMING.

minta
N 

2

i51
ti 

SUBJECT TO
jR 1 8ui, vi9 2 5 Re 1 V̂ 1ui, vi 2 2
jI 1 8ui, vi9 2 5 Im 1 V̂ 1ui, vi 2 2
0 # t
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 ak 1s 2 5Gk ak 1s 2 .  (43)

Hence, the self-calibration coefficients can be estimated 
using LS fitting 

 Ĝk5 arg min g1, c, gpa
L

,51
||a ^  

k 1s, 2 2Gk  ak 1s, 2 ||2, (44)

where Gk5 diag5gk, 1, c, gk, p6. Of course, when the self-cali-
bration parameters vary slowly we can combine the estimation 
over multiple epochs. This might prove instrumental in cali-
bration of LOFAR type arrays, where the calibration coeffi-
cients vary across the sky. Since the computational complexity 
of the self-calibration semidefinite programming is higher 
than that of the MVDR dirty image, it is too complicated to 
solve this problem for each source in the image. Hence, it 
should be used in a way similar to the external self-calibration 
cycle [53] where this problem is solved using a nominal source 
locations model. The advantage over ordinary self-calibration 
is that beyond the reevaluation of the calibration parameters, 
we obtain better estimates of the source powers, without 
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[FIG12] Original extended source image.
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[FIG13] Reconstructed images of the CLEAN and LS-MVI algorithms: (a) CLEAN reconstructed image after 100 iterations, (b) CLEAN 
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image after 300 iterations.
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 significant increase in the complexity. Another interesting 
alternative is to use the doubly constrained robust Capon 
beamformer that combines a norm constraint as in the AAR 
dirty image with robust Capon beamforming [54]. 

EXAMPLES AND COMPARISONS
In this section, we describe three examples of the various algo-
rithms, including a simulated example of an extended source, 
an example from the LOFAR test station, and an example of 
Abell 2256 observed by the VLA (initial calibration was conduct-
ed by Tracy Clarke).   

SIMULATED EXTENDED SOURCE
An extended source (Figure 12) was simulated using an east-
west array containing ten antennas logarithmically spaced up 
to 1,000 l. CLEAN deconvloution results are depicted in Figure 
13(a) and (b). After 100 CLEAN iterations, the center of the 
source is partially reconstructed with distortion. After addition-
al 20 iterations an artifact is generated (below the strong point 
on the right). This divergence can often occur in CLEAN when 
applying it to extended sources. The LS-MVI results are pre-
sented in Figure 13(c) and (d). After 100 iterations, the center 
of the source is reconstructed and after 200 additional itera-

tions, the center of the source is stable. The reason for this is 
the fact that CLEAN overestimate the power due to the high 
sidelobes level. Further analysis of this example is given in [20]. 

LOFAR TEST STATION DATA
The LOFAR test station data were recorded using 25 frequency 
bands of 156 kHz using 45 antennas [array geometry is given in 
Figure 14(d)]. The data were calibrated by S. Wijnholds. The 
AAR dirty image and the classic dirty image are given in Figure 
14(a) and (b), respectively. Since the LOFAR station benefits 
from a good 1u, v 2  domain coverage, the two dirty images are 
similar. The reconstructed image using the LS-MVI algorithm is 
displayed in Figure 14(c); the spurious emission on the right 
side of the image was removed. 

ABELL 2256
The last example used VLA data of Abell 2256 [55]. Abell 
2256 is a merging of two (or three) large clusters of more 
than 500 galaxies. It exhibits strong radio emissions and is 
one of the strongest X-ray emitters. The data measured by 
Clarke and Ensslin [56] contain a single frequency band 
around 1369 MHz. The data were processed using both 
CLEAN and LS-MVI algorithms for 30 iterations. This is the 
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first example of an application of the LS-MVI algorithm for 
measured data. As such it is only a preliminary example and 
significant improvements can be made, e.g., in [56] data 
were also self-calibrated using phase data and then ampli-
tude and phase. This is required here to achieve a deeper 
level of cleaning. We used a visibility domain CLEAN 
(updates were performed on the ungridded visibility). The 
initial data (dirty image) of the CLEAN are shown in Figure 
15(a). The strong sidelobes structure is clearly visible as 
large circles in the dirty image. In contrast the initial AAR 
dirty image is shown in Figure 15(b). The sidelobes level is 
much lower and several point sources that are invisible in 
the classical dirty image are now visible. The reconstruction 
using the visibility domain CLEAN is shown in Figure 15(c). 
The sidelobes level is reduced and the source structure is 
clearly seen. The reconstruction using the LS-MVI algo-
rithm is shown in Figure 15(d). Similar to the CLEAN, the 
sources structure is visible and the sidelobes level is signifi-
cantly reduced. It should be emphasized that even though 
we have used only 30 iterations, the strong structure is 
consistent with that of [56] and [57]. 
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