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   T
 he success of unlicensed broadband communica-
tion has led to very rapid deployment of com-
munication networks that work independently 
of each other using a relatively narrow spec-
trum. For example, the 802.11g standard 

uses the industrial, scientific, and medical (ISM) 
band that has a total bandwidth of 80 MHz. This 
band is divided into 12 partially overlapping 
bands of 20 MHz. These technologies could 
become the victims of their own success, 
since the relatively small number of chan-
nels and the massive use of the technology 
in densely populated metropolitan areas 
can cause significant mutual interfer-
ence. This is especially important for 
high quality real-time distribution 
of multimedia content that is 
intolerant to errors as well as 
latency. Existing 802.11 [wireless fidelity (WiFi)] 
networks have very limited means to coordinate spectrum 
with other interfering systems. It would be highly desirable to 
reduce the interference environment, for instance by distrib-
uted spectral coordination between different access points. 
Another option is centralized access points such as 802.16  
[worldwide interoperability for microwave access (WiMax)], 
where resources are allocated centrally by a single base sta-
tion. Advanced digital subscriber line (DSL) systems such as 
ADSL2 and VDSL are facing a similar situation. These systems 
are currently limited by crosstalk between lines. As such, the 
DSL environment is another example of a frequency selective 

interference channel. While the need to operate over interfer-
ence limited frequency selective channels is clear in many of 
the current and future communication technologies, the theo-
retical situation is much less satisfying. The capacity region of 
the interference channel is still open (see  [1]  for a short over-
view) even for the fixed channel two-user case. Recently, major 
advances in understanding the situation for flat channels 
under weak interference have been made. It can be shown that 
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in this case, treating the interference as noise leads to a virtu-
ally optimal solution. On the other hand, for medium-strength 
interference as is typical in the wireless environment, the sim-
plest strategy is to use orthogonal signaling, e.g., time division 
multiple access/frequency division multiple access (TDMA/
FDMA) for high spectral efficiency networks, or code division 
multiple access (CDMA) for very strong interference with low 
spectral efficiency per user. Moreover, sequential cancellation 
techniques that are required for the best-known capacity 
region in the medium-interference case  [2]  are only practical 
for small numbers of interferers. The interference channel can 
be seen as a conflict situation, in which not every achievable 
rate pair (from an informational point of view) is an acceptable 
operating point for users. One of the best ways to approach 
this conflict is to analyze the interference channel using game 
theoretic tools. 

  COMMUNICATION OVER  
INTERFERENCE LIMITED CHANNELS
The study of game theory for communication networks and 
power control is a wide field (see  [3]  for an extensive list of ref-
erences). There is considerable literature on applying competi-
tive game theory to frequency selective interference channels, 
starting with early works by Yu et al.  [4]  and more recently 
papers by Scutari et al. (see  [5]  and the references therein). In 
particular, generalized Nash games have been applied to the 
weak interference channel  [6] , and the algorithm in  [7]  that 
extends fixed margin iterative waterfilling (FM-IWF) to itera-
tive pricing under a fixed rate constraint. 

 The fact that competitive strategies can result in significant 
degradation due to the prisoner’s dilemma has been called the 
price of anarchy  [8] . For instance, Laufer and Leshem  [9]  char-
acterized simple cases of the prisoner’s dilemma in interfer-
ence limited channels. There are two alternatives available to 
overcome the suboptimality of the competitive approach, 
namely repeated games or cooperative game theory. Since 
most works on repeated games have concentrated on flat 
fading channels, we will focus on cooperative game theoretic 
approaches. One of the earliest solutions for cooperative games 
is the Nash bargaining solution  (NBS) [10] . Many recent 
papers have been devoted to analyzing the NBS for the fre-
quency flat interference channel in the single-input, single-
output (SISO)  [11] ,  [12] , multiple-input, single output (MISO) 
 [13] ,  [14] , and multiple-input, multiple-output (MIMO)  [15]  
cases. Interesting extensions for log-convex utility functions 
were described in  [16] .   Another cooperative model was 
explored in  [17],  where cooperation between rational wireless 
players was studied using coalitional game theory by allowing 
the receivers to use joint decoding. 

 In the context of frequency selective interference channels, 
much less research has been done. Han et al.  [18] , in a 
 pioneering work, studied Nash bargaining under frequency- 
division multiplexing/time-division multiplexing (FDM/TDM) 
strategies and total power constraint. Unfortunately, the algo-
rithms proposed were only suboptimal. Iterative suboptimal 

algorithms to find a NBS for spectrum allocation under aver-
age power constraint were applied in  [19] . We have only 
recently managed to overcome these difficulties by imposing a 
power spectral density (PSD) mask constraint  [20]  to obtain 
computationally efficient solutions to the bargaining problem 
in the frequency selective SISO and MIMO cases under TDM/
FDM strategies. Furthermore, it can be shown  [21]  that the 
PSD limited case can be used to derive a computationally effi-
cient converging algorithm in the total power constraint case 
as well. A very interesting and open problem arises when the 
users are allowed to treat the interference as noise in some 
bands, while using orthogonal FDM/TDM strategies in others. 
This is a very challenging task, since the NBS requires over-
coming a highly nonconvex power allocation problem. 

 As discussed above, the frequency selective interference 
channel is important, both from a practical as from an informa-
tion theoretic point of view. We show that it has many intrigu-
ing aspects from a game theoretic point of view as well, and that 
various levels of interference admit different types of game theo-
retic techniques. 

 INTRODUCTION TO INTERFERENCE CHANNELS 
 Computing the capacity region of the interference channel is 
an open problem in information theory  [22] . A good overview 
of the results up to 1985 can be found in van der Meulen  [1]  
and the references therein. The capacity region of a general 
interference channel is not yet known. However, in the last 45 
years of research, some progress has been made.   The best known 
achievable region for the general interference channel was defined 
by Han and Kobayashi  [2] . The computation of the Han and 
Kobayashi formula for a general discrete memoryless channel is, 
in general, too complex. Recently, significant advances in obtain-
ing upper bounds on the rate region have been made especially for 
the case of weak  interference. 

 A 232 Gaussian interference channel in standard form (after 
suitable normalization) is given by 

  x5Hs1 n,  H5 c 1 a1

a2 1
d ,  (1) 

 where s5 3s1, s2 4T, and x5 3x1, x2 4T are sampled values of the 
input and output signals, respectively. The noise vector n repre-
sents the additive Gaussian noises with zero mean and unit vari-
ance. The powers of the input signals are constrained to be less 
than P1, P2, respectively. The off-diagonal elements of H, a1, a2 
represent the degree of interference present. The major differ-
ence between the interference channel and the multiple access 
channel is that both encoding and decoding of each channel 
take place separately and independently, with no information 
sharing between receivers. 

 The capacity region of the Gaussian interference channel 
with very strong interference (i.e., a1 $ 11 P1, a2 $ 11 P2) is 
given by  [23]  

  Ri # log2 111 Pi 2 ,   i5 1, 2. (2) 

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on September 16, 2009 at 08:33 from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [30]   SEPTEMBER 2009

 This surprising result shows that 
very strong interference does not 
reduce users’ capacity. A Gaussian 
interference channel is said 
to have strong interference 
if min5a1, a26 . 1. Sato  [24]  
derived an achievable capacity 
region (inner bound) of a Gaussian interference channel as the 
intersection of two multiple access Gaussian capacity regions 
embedded in the interference channel. The achievable region is 
the intersection of the rate pair of the rectangular region of the 
very strong interference (2) and the following region 

  R11 R2 # log2 1min511 P11a1P2, 11 P21a2P16 2 .  (3)

 While the two user flat interference channel is a well-studied 
(although unsolved) problem, much less is known about the 
frequency selective case. An N 3 N frequency selective Gaussian 
interference channel is given by 

  xk5Hk 
sk1 nk  k5 1, c, K  (4) 

 where Hk5 1hij 1k 2 2  is the channel matrix at frequency k, sk, 
and xk are sampled values of the input and output signal vec-
tors at frequency k, respectively. The noise vector nk repre-
sents an additive white Gaussian noise (AWGN) with zero 
mean and unit variance. The PSD of the input signals is con-
strained to be less than p1 1k 2 , p2 1k 2  respectively. Alternatively, 
only a total power constraint is given. The off-diagonal ele-
ments of Hk represent the degree of interference present at 
frequency k. The main difference between an interference 
channel and a multiple access channel (MAC) is that in the 
interference channel, each component of sk is decoded inde-
pendently, and each receiver has access to a single element of 
xk. Therefore, iterative decoding schemes are much more lim-
ited and typically impractical for large numbers of users. 

 To overcome this problem, there are two simple strategies. 
When the interference is sufficiently weak, common wisdom is to 
treat the interference as noise, and code at a rate corresponding 
to the total noise. When the interference is stronger, i.e, the 
 signal-to-interference ratio (SIR) is significantly lower than the 
signal-to-noise ratio (SNR), treating the interference as noise 
can be highly inefficient. One of the simplest ways to deal with 

medium-to strong-interference 
channels is through orthogo-
nal signaling. Two extremely 
simple orthogonal schemes 
involve using FDM or TDM 
strategies. These techniques 
allow for single user detec-

tion (which will be assumed throughout this article) without the 
need for complicated multiuser detection. The loss in these tech-
niques has been thoroughly studied, e.g.,  [23]  in the constant 
channel case, showing degradation compared to the techniques 
requiring joint or sequential decoding. However, the widespread 
use of FDMA/TDMA as well as collision avoidance medium access 
 control (carrier-sense multiple access) techniques make the anal-
ysis of these techniques very important from a practical point of 
view. For frequency selective channels, [also known as intersym-
bol interference (ISI) channels] both strategies can be combined 
by allowing time varying allocation of the frequency bands to dif-
ferent users as shown in  Figure 1(b) .  

 In this article, we limit ourselves to a joint FDM and TDM 
scheme where an assignment of disjoint portions of the frequency 
band to several transmitters is made at each time instance. This 
technique is widely used in practice because simple filtering can 
be used at the receivers’ end to eliminate interference. All of these 
schemes operate under physical and regulation constraints such 
as the average power constraint and/or the PSD mask constraint. 

 BASIC CONCEPTS IN COOPERATIVE 
AND COMPETITIVE GAME THEORY 
 In this section, we review the basic concepts of game theory in an 
abstract setting. Our focus is on concepts that have been found to 
be relevant to the frequency selective interference channel. We 
begin with competitive game theory and then continue to describe 
the cooperative solutions. The reader is referred to the excellent 
books by  [25]  and  [26]  for more details and for proofs of the main 
results mentioned here. 

 STATIC COMPETITIVE GAMES IN 
STRATEGIC FORM AND THE NASH EQUILIBRIUM 
 A static N  player game in the strategic form is a three tuple 1N, A, u 2  composed of a set of players 51, c, N6, a set of pos-
sible combinations of actions by each player denoted by 
A5q

N

n51
  An, where An is the set of actions for the nth player 

and a vector utility function u5 3u1, c, uN 4,  where  
un 1a1, c, aN 2 :qN

n51
  An S R is the utility of the nth player 

when strategy vector a5 1a1, c, aN 2  has been played. The 
interpretation of un is that player n receives a payoff of 
un 1a1, c, aN 2  when the players have chosen actions 
a1, c, aN. The game is finite when for all n, An is a finite set. 

 An important solution notion pertaining to games is the Nash 
equilibrium. 

 DEFINITION 1
A vector of actions a5 1a1, c, aN 2 [ A is a Nash equilibrium 
in pure strategies if and only if for each player 1 # n # N and 
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 [FIG1]  (a) Standard form interference channel. (b) TDMA and 
joint TDMA/OFDMA.

THE FACT THAT COMPETITIVE 
STRATEGIES CAN RESULT IN SIGNIFICANT 
DEGRADATION DUE TO THE PRISONER’S 

DILEMMA HAS BEEN CALLED THE 
PRICE OF ANARCHY.
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for every a r5 1ar1,c, arN 2  such 
that ari5 ai for all i 2 n and 
arn 2an we have un 1a r 2, un 1a 2 , 
i.e., each player can only lose 
by deviating by himself from 
the equilibrium. 

 The Nash equilibrium in pure strategies does not always 
exist, as Example 1 shows. 

EXAMPLE 1: A GAME WITH NO 
PURE STRATEGY NASH EQUILIBRIUM  
 Consider the two-player game defined by the following: 
Ai5 50, 16. ui 1a1, a2 2 5 a1  !  a2  !  1 i2 1 2 , i.e., the first play-
er’s payoff is one when actions are different and zero other-
wise, while the second player’s payoff is one when the actions 
are identical and zero otherwise. Clearly, this game, also 
known as matching pennies, has no Nash equilibrium in pure 
strategies, since one of the players can always improve his situ-
ation by changing his choice. Even when it exists, the Nash 
equi librium in pure strategies is not necessarily unique, as 
Example 2 shows. 

EXAMPLE 2: A COMMUNICATION GAME 
WITH INFINITELY MANY PURE NE STRATEGIES  
 Assume that two users are sharing an AWGN multiple access 
channel (i.e., joint user decoding at the access point) 

  y5 x11 x21 z,   (5)

 where z| N 10, s2 2  is a Gaussian noise. Each user has power P. 
It is well known  [22]  that the rate region of this multiple access 
channel is given by a pentagon defined by 

  R1 # C max   R2 # C max   R11 R2 # C1,2,  (6)

 where C max5 1/2 log 111 P/s2 2  and C1,251/2 log 1112P/s2 2 . 
The corners A, B [see  Figure 2(a) ] of the pentagon are A5 1C 

max, 
C 

min 2  and B5 1C 
min, C 

max 2 , where C 
min51/2  log 111P/ 1P1s2 2 2 , 

is the rate achievable by assuming that the other user’s signal 
is interference. Note that any point on the line connecting the 
points A, B is achieved by time sharing between these two 
points. Each player n5 1, 2 can choose a strategy 0 # an # 1, 
which is the time sharing ratio between coding at this rate at 
point A or B. The payoff in this game is given by 

  un 1a1, a2 2 5 eanC 
max1 112an 2C 

min  if   a11a2 # 1
0  otherwise. 

  (7)

 The reason that the utility is 0 when a11a2 . 1 is that no 
reliable communication is possible, since the rate pair achieved 
is outside the rate region. In this game, any valid strategy point 
such that a11a25 1 is a Nash equilibrium. If user n reduces 
his an obviously his rate is lower since he transmits a larger 
fraction of the time at the lower rate. If, on the other hand, he 
increases an, then a11a2 . 1 and both players achieve zero. 

Hence, the AWGN MAC game 
has an infinite number of Nash 
equilibrium points. A similar 
game was used in  [27],  where 
an infinite number of Nash 
equilibrium points are shown. 

It is interesting to note that a similar MAC game for the fading 
channel has a unique Nash equilibrium point  [28] . 

 To better understand this game, it is informative to look 
at the best response dynamics. The best response move is 
when a player attempts to maximize his utility against a 
given strategy vector. This is a well-established means of dis-
tributively achieving the Nash equilibrium. In the context of 
information theory, this strategy has been termed “iterative 
waterfilling” (IWF)  [4] . If, in a multiple access game, the 
players use the best response simultaneously, the first step 
would be to transmit at C 

max. Each player then receives zero 

CONVEX COMPETITIVE GAMES ARE 
A SPECIAL TYPE OF GAME THAT 
ARE CRUCIAL TO THE SPECTRUM 

MANAGEMENT PROBLEM.
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 [FIG2]  (a) Multiple access game with infinitely many pure 
strategy equilibria. Note that the parallel best response 
dynamics leads to unstable dynamics while the serial best 
response leads to one of two extremal NE points. (b) Graph of 
hlim1, hlim2. SNR, The solid line corresponds to hlim1 and the 
dashed line corresponds to hlim2  [9] .
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utility and in the next step reduces his rate to C 
min, and vice 

versa. The iteration never converges and the utility of each 
player is given by 1/2C min, worse than transmitting con-
stantly at C 

min. Interestingly, in this case, the sequential best 
response leads to one of the points A, B, which are the (non-
axis) corners of the rate region. The moral of this story is 
that using the best response strategy should be done care-
fully even in multiple access scenarios such as in  [29] . 

 PURE AND MIXED STRATEGIES 
 To overcome the first problem of the lack of equilibrium in pure 
strategies, the notion of mixed strategy has been proposed. 

DEFINITION 2  
A mixed strategy pn for player n is a probability distribution 
over An.  

 The interpretation of mixed strategies is that player n 
chooses his action randomly from An according to the distribu-
tion pn. The payoff of player n in a game where mixed strategies 
p1, c, pN are played is the expected value of the utility 

  un 1p1, c, pN 2 5 Ep13
c3pN

3un 1x1, c, xN 2 4.  (8)

EXAMPLE 3: MIXED STRATEGIES IN A RANDOM 
ACCESS GAME OVER A MULTIPLE ACCESS CHANNEL   
 To demonstrate the notion of mixed strategy, we now extend the 
multiple access game to a random multiple access game, where 
the players can choose with probability pn of working at rate 
C 

min and 12 pn working at C 
max. This replaces the synchronized 

TDMA strategy in the previous game with a slotted random 
access protocol. This formulation allows for two pure strategies 
corresponding to the corner points A, B and the mixed strate-
gies amount to randomly choosing between these points. This 
game is a special case of the chicken dilemma (a termed pro-
posed by B. Russell  [30] ), since for each user it is better to 
“chicken out” than to obtain zero rate when both players choose 
the tough strategies. Obviously, from the previous discussion, 
points 1C 

max, C 
min 2  and 1C 

min, C 
max 2  are in Nash equilibria. 

Simple computation shows that there is a unique Nash equilib-
rium in mixed strategies corresponding to p15 p25 C 

min/C 
max. 

Interestingly, the rates achieved by this random access (mixed 
strategy) approach are exactly 1C 

min, C 
min 2 , i.e., the price paid 

for random access is that both players achieve their minimal 
rate, so simple p-persistent random access provides no gain for 
the  multiple access channel. Following Papadimitriou  [8] , we 
can call this the price of random access.  

 CONVEX GAMES 
 Convex competitive games are a special type of game that are 
crucial to the spectrum management problem. 

DEFINITION 3  
An N player game 1N, A, U 2  is convex if each An is compact and 
convex and each un 1x1, c, xn 2  is a convex function of xn for 
every choice of 5xj : j 2 n6. 

 Convex games always have a Nash equilibrium in pure 
strategies  [31] . A simple proof can be found in  [26] . Convex 
competitive games are especially important in the context of 
spectrum management, since the basic Gaussian interference 
game forms a convex game. 

 THE PRISONER’S DILEMMA 
 The prisoner’s dilemma game is the major problem in the 
competitive approach. It was first described by Flood and 
Dresher in 1950 almost immediately after the concept of 
Nash equilibrium was published  [10] . For an overview of the 
prisoner’s dilemma and its history, see Poundstone’s  excel-
lent book [30] .   It turns out that this game has a unique Nash 
equilibrium that is the stable point of the game. Moreover, 
this outcome is suboptimal for all players. The emergence of 
the prisoner’s dilemma in simple symmetric interference 
channels was discussed in  [9] . In  [11] and   [20] , a character-
ization of cases where cooperative solutions are better for 
general interference channels are presented. We briefly 
describe a simple case where the prisoner’s dilemma occurs 
 [9] . We assume a simplified two-player game. The game is 
played over two frequency bands each with a symmetric 
interference channel. The channel matrices of this channel 
are H 11 2 5H 12 2 5H where 

 |h12 11 2 |25 |h21 11 2 |25 |h12 12 2 |25 |h21 12 2 |25 h 

 and hii 1k 2 5 1. We limit the discussion to 0 # h , 1. In our 
symmetric game, both users have the same power  constraint P 
and the power is allocated by p1 11 2 5 112a 2P, p1 12 2 5aP,  
p2 11 2 5 bP, p2 12 2 5 112 b 2P. We assume that the decoder 
treats the interference as noise and cannot decode it. The utility 
for user one given power allocation parameters a, b is given by 
its achievable rate 

  C15
1
2
 log2 a11

112a 2
SNR211 b # h

b
 1

1
2
 log2 a11

a

SNR211 112 b 2 # hb   (9)

 and similarly for user two, we replace a, b. The set of strategies in 
this simplified game is 5a, b : 0 # a, b # 16. In the Nash equi-
librium, each user allocates equal power to each band. It turns 
out that there are two functions, hlim1

1SNR 2 , hlim2
1SNR 2  as 

described in  Figure 2(b)  and only three possible situations  [9] : 
1)  Nash equilibrium is optimal for h , hlim1 

 
 2) prisoner’s dilemma, for hlim1

, h , hlim2
  

 3) a chicken dilemma, for hlim2
, h. 

 GENERALIZED NASH GAMES 
 Games in strategic form are a very important part of game 
theory, and have many applications. However, in some cases 
the notion of a game does not capture all the complexities 
involved in the interaction between the players. Arrow and 
Debreu  [32]  defined the concept of a generalized Nash game 
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and a generalized Nash equi-
librium. In strategic form 
games, each player has a set of 
strategies that is independent 
of the actions of the other 
 players. However, in reality sometimes the actions of the play-
ers are constrained by the actions of the other players. The 
 generalized Nash game or abstract economy concept captures 
this dependence. 

 DEFINITION 4 
A generalized Nash game with N players is defined as follows: 
For each player n we have a set of possible actions Xn and a set 
function Kn :wm2n

Xm S P 1Xn 2  where P 1X 2  is the power set of 
X, i.e, Kn 1 8xm : m 2 n9 2 # Xn defines a subset of possible 
actions for player n when other players play 8xm : m 2 n9. un 1x 2  
is a utility function defined on all tuples 1x1, c, xN 2  such that 
xn [ Kn 1xm : m 2 n 2 . 

 Similar to the definition of a Nash equilibrium, a generalized 
Nash equilibrium is explained in Definition 5. 

DEFINITION 5  
A generalized Nash equilibrium is a point x5 1x1, c, xN 2  
such that for all n  xn [ Kn 1 8xm : m 2 n9 2 , and for all 
y5 1y1, c, yn 2  such that yn [ Kn 1 8xm : m 2 n9 2  and  ym5 xm 
for m 2 n un 1x 2 $ un 1y 2 . 

 Arrow and Debreu  [32]  proved the existence of a generalized 
Nash equilibrium under very limiting conditions. Their result 
was generalized, and currently the best result is by Ichiishi  [33] . 
This result can be used to analyze certain fixed rate and margin 
versions of the iterative waterfilling algorithm  [6]  as will be 
shown in the next section. 

 NASH BARGAINING THEORY 
 The prisoner’s dilemma highlights the drawbacks of competi-
tion due to the players’ mutual mistrust. It is apparent that the 
essential condition for cooperation is that it should generate a 
surplus, i.e., an extra gain that can be divided between the par-
ties. Bargaining is essentially the process of distributing the 
surplus. Thus, bargaining is first and foremost a process in 
which parties seek to reconcile contradictory interests and 
values. If all players commit to following the rules, the key 
question is then “what reasonable outcome will be acceptable 
to all parties?” Therefore, the players need to agree on a bar-
gaining mechanism that they must stick with during the 
negotiations. The bargaining results may be affected by factors 
such as the power of each party, the amount of information 
available to each of the players, and the delay response of the 
players. Nash  [10] ,  [34]  introduced an axiomatic approach 
based on properties that a valid outcome of the bargaining 
should satisfy. This approach proved to be very useful since it 
succeeded in finding a unique solution through a small 
number of simple conditions (axioms), thus obviating the need 
for the complicated bargaining process once all the parties had 
accepted these conditions. 

 We now define the bargain-
ing problem. An n-player bar-
gaining problem is described 
as a pair 8S, d9, where S is a 
convex set in n-dimensional 

Euclidean space, consisting of all feasible sets of n-player utili-
ties that the players can receive when cooperating. The dis-
agreement point d  is an element of S, representing the 
outcome if the players fail to reach an agreement. Further-
more, d can also be viewed as the utilities resulting from a 
noncooperative strategy (competition) between players, which 
is the Nash equilibrium of a competitive game. The assump-
tion that S is a convex set is reasonable if both players select 
cooperative strategies, since the players can use alternating or 
mixed strategies to achieve convex combinations of pure bar-
gaining outcomes. Given a bargaining problem, we say that 
the vector u [ S is Pareto optimal if for all w [ S there is no 
u [ S such that w # u (coordinate-wise). A solution to the 
 bargaining problem is a function F defined on all bargaining 
problems such that F 1 8S, d9 2 [ S. Nash’s axiomatic approach 
is based on the following four axioms which the solution func-
tion F should satisfy the following: 

   ■ Linearity (LIN) : Assume that we consider the bargaining 
problem 8S r, d r 9 obtained from the problem 8S, d9 by trans-
formations: srn5ansn1 bn,   n5 1, c, N. d rn5andn1 bn. 
Then the solution satisfies Fi 1 8S r, d r 9 2 5anFn 1 8S, d9 2 1 bn, 
for all n5 1, c, N. 

   ■ Symmetry (SYM) : If two players m , n are identical in 
the sense that S is symmetric with respect to changing the 
mth and the nth coordinates, then Fm 1 8S, d9 2 5 Fn 1 8S, d9 2 . 
Equivalently, players who have identical bargaining prefer-
ences get the same outcome at the end of the bargaining 
process. 

   ■ Pareto optimality (PAR):  If s is the outcome of the bar-
gaining, then no other state t exists such that s , t (coordi-
nate wise). 

   ■ Independence of irrelevant alternatives (IIA):  If S # T 
and if F 1 8T, d9 2 5 1u1

*, u2
* 2 [ S, then F 1 8S, d9 2 5 1u1

*, u2
* 2 . 

 Surprisingly these simple axioms fully characterize a bar-
gaining solution known as Nash’s bargaining solution (NBS). 

 Based on these axioms and definitions we now can state 
Nash’s theorem  [10] . 

 THEOREM 1
Assume that S is compact and convex, then there is a unique 
bargaining solution F 1 8S, d9 2 , satisfying the axioms INV, SYM, 
IIA, and PAR, which is given by 

  F 1 8S, d 9 25 arg max1d1,c,dN2# 1s1,c,sN2[S
 q

N

n51

1sn2 dn 2 .  (10)

 Before continuing our examination of the bargaining solu-
tion, we add a cautionary note. Although Nash’s axioms are 
mathematically appealing, they may not be acceptable in some 
scenarios. Indeed, various alternatives to these axioms have 

THE PRISONER’S DILEMMA GAME IS 
THE MAJOR PROBLEM IN THE 

COMPETITIVE APPROACH. 
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been proposed that lead to other 
solution concepts. An extensive 
survey of these solutions can be 
found in  [35] . In the communi-
cation context, the axioms pro-
posed by Boche et al.  [12]  lead to 
a generalized NBS. To demon-
strate the application of the NBS 
to interference channels, we begin with a simple example for 
flat channels. 

EXAMPLE 3    
Consider two players communicating over a 232 memoryless 
Gaussian interference channel with bandwidth W5 1, as 
described in (1). Assume for simplicity that P15 P25 P. We 
assume that no receiver can perform joint decoding, and the 

utility of player n, Un, is given 
by the achievable rate Rn. 
Similar to the prisoner’s 
dilemma example, if the play-
ers choose to compete, the 
competitive strategies in the 
interference game are given 
by a flat power allocation 

and the resulting rates are given by RnC5 1/2 log2 111 P/111 an
2P 2 2 . Since the rates RnC are achieved by competitive 

strategy, player n will cooperate only if he obtains a rate higher 
than RnC. The game theoretic rate region is defined by pair rates 
higher than the competitive rates RnC [see  Figure 3(b) ]. Assume 
that the players agree on using only FDM cooperative strate-
gies, i.e., player n uses a fraction of 0 # rn # 1 of the band. If 
we consider only Pareto optimal strategy vectors, then obvi-
ously r25 12r1. The rates obtained by the two users are 
given by Rn 1rn 2 5rn/2 log2 11 1 P/rn 2 .  The two users will 
benefit from the FDM type of cooperation as long as 

  RnC # Rn 1r1 2 ,    n5 1, 2.  (11)

 The FDM NBS is given by solving the problem 

  max
r

 F 1r 2 5max
r
1R1 1r 2 2 R1C 2 1R2 1r 2 2 R2C 2 .  (12)

 The cooperative solution for this flat channel model was derived in 
 [11] and   [20] . 

 APPLICATION OF GAME THEORY TO FREQUENCY 
SELECTIVE INTERFERENCE CHANNELS 
 In this section, we apply the ideas presented in previous sec-
tions to analyze the frequency selective interference game. We 
provide examples for both competitive and cooperative game 
theoretic concepts. 

 WATERFILLING-BASED SOLUTIONS 
AND THE NASH EQUILIBRIUM 
 To analyze the competitive approach to frequency selective 
interference channels, we first define the discrete-frequency 
Gaussian interference game, which is a discrete version of the 
game defined in  [4] . Let f0 ,c, fK be an increasing sequence 
of frequencies. Let Ik be the closed interval given by 
Ik5 3fk21, fk 4. We now define the approximate Gaussian inter-
ference game denoted by GI5I1, c, IK6. 

 Let players 1, c, N  operate over K  parallel channels. 
Assume that the K  channels have coupling functions hij 1k 2 . 
Assume that user i is allowed to transmit a total power of 
Pi. Each player can transmit a power vector pn5 1pn 11 2 , c, 
pn 1K 2 2 [ 30, Pn 4K such that pn 1k 2  is the power transmitted in 
interval Ik. Therefore we have a

K

k51
 pn 1k 2 5 Pn. The equality 

follows from the fact that in a non-cooperative scenario all 
users will use all the available power. This implies that the set 
of power distributions for all users is a closed convex subset of 
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 [FIG3]  (a) A frequency selective channel with a unique NE, 
where both sequential and parallel IWF diverge. (b) The game 
theoretic rate region is defined by the set of rates that are 
better than the competitive equilibrium. The boundary of the 
region is exactly the set of Pareto-optimal points. The 
hyperbola tangent to the rate region defines the NBS.

THE BARGAINING RESULTS MAY BE 
AFFECTED BY FACTORS SUCH AS THE 

POWER OF EACH PARTY, THE AMOUNT 
OF INFORMATION AVAILABLE TO EACH 

OF THE PLAYERS, AND THE DELAY 
RESPONSE OF THE PLAYERS.
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the hypercube w
N

n51
30, Pn 4K given by B5 w

N

n51
Bn where Bn is 

the set of admissible power distributions for player n. Each 
player chooses a PSD pn5 8pn 1k 2  : 1 # k # N9 [ Bn. Let the 
payoff for user i be given by the capacity available to player n 

  Cn 1p1, c, pN 2 5 a
K

k51
log2 111 SINR 1k 2 2 ,   (13) 

 where 

  SINR 1k 2 5 |hnn 1k 2 |2pn 1k 2
a |hnm 1k 2 |2pm 1k 2 1sn

2 1k 2 . (14) 

 is the signal to interference ratio for user n at frequency k, 
p1, c, pN are the power distributions, hnn 1 f 2  are the channel 
and crosstalk responses and sn

2 1k 2 . 0 is external noise pres-
ent at the ith channel receiver at frequency k. In cases where 
sn

2 1k 2 5 0, capacities might become infinite using FDM strate-
gies; however, this is a nonphysical situation due to receiver 
noise that is always present, even if it is small. Each Cn is con-
tinuous in all variables. 

DEFINITION 6 
The Gaussian interference game GI5I1, c, Ik65 5N, B, C6 is the 
N  N-players noncooperative game with payoff vector 
C5 1C1, c, CN 2  where Cn is defined in (13) and B is the strat-
egy set. 

 The interference game is a convex noncooperative N-person 
game, since each Bi is compact and convex and each 
Cn 1p1, c, pN 2  is continuous and convex in pn for any value of 5pm, m 2 n6. Therefore, it always has a Nash equilibrium in 
pure strategies. A presentation of the proof in this case using a 
waterfilling interpretation is given in  [36] . 

 A much harder problem is the uniqueness of Nash equilib-
rium points in the waterfilling game. This is very important to 
the stability of waterfilling strategies. An initial result was 
reported in  [37] . A more general analysis of the convergence 
was given in  [4] ,  [5], and [38]–      [40] . Even the uniqueness of the 
Nash equilibrium does not imply a stable dynamics. Scutari 
et al.  [5]  provided conditions for convergence. Basically, they use 
the Banach fixed-point theorem, and require that the waterfill-
ing response be a contractive mapping. The waterfilling pro-
cess has several versions: the sequential IWF is performed by a 
single player at each step. The parallel IWF is performed 
simultaneously by all players at each step, and the asynchro-
nous IWF is performed in an arbitrary order. For a detailed 
discussion of the convergence of these techniques, see  [5] . It 
should be emphasized that some conditions on the interfer-
ence channel matrices are indeed required. A simple condition 
is strong diagonal dominance  [4] , but other papers have 
relaxed these assumptions. In all typical DSL scenarios, the 
IWF algorithms converge. However, the convergence condi-
tions are not always met, even in very simple cases, as the fol-
lowing examples show. 

EXAMPLE 4: DIVERGENCE OF THE PARALLEL IWF   
We consider a Gaussian interference game with two tones and 
three players. Each player has total power P. The signal received 
by each receiver is just yn 1k 2 5 a

3

m51
xm 1k 2 1 zn 1k 2  where 

zn 1k 2  N 10, s2 1k 2 2 , where the noise in the second band is stron-
ger satisfying s2 12 2 5 P1s2 11 2 . We assume that simultaneous 
waterfilling is used. In the first stage, all users put all their power 
into frequency one, by the first inequality. In the second stage, all 
users see a noise and interference power of 2P1s2 11 2 at the first 
 frequency, while the interference at the second frequency is 
s2 12 2 5 P1s2 11 2 . Since even when all power is put into fre-
quency two, the total power plus noise is below the noise level at 
 frequency one and all users will move their total power to fre-
quency two. This will continue, with all users alternating between 
frequencies simultaneously. The average rate obtained by the 
simultaneous iterative waterfilling is 

 
1
4

 log a11
P

2P1s2 11 2 b 1 1
4

 log a11
P

3P1s2 11 2 b. 

 A Nash equilibrium exists in this case, for example, if two users use 
frequency one and one user uses frequency two, resulting in a rate 

 
1
2

 log a11
P

P1s2 11 2 b  

 for each user. 
 The previous example demonstrated a simple condition 

where one of the waterfilling schemes diverges. The following 
channel is frequency selective, with a single Nash equilibrium 
in the Gaussian interference game. However none of the water 
filling schemes converge. 

EXAMPLE 5: DIVERGENCE OF ALL 
WATERFILLING APPROACHES  
 We now provide a second example where both the sequential and 
the parallel IWF diverge, even though there is a unique Nash 
equilibrium point. Assume that we have two channels where the 
channel matrices H 1k 2 , k5 0, 1 are equal and given by 

  H 1k 2 5 £ 1 0 2
2 1 0
0 2 1

§   (15)

 and the noise at the first tone is s2 and at the second tone is 
s21 P. Each user has total power P. This situation might occur 
when there is a strong interferer at tone two while the receivers 
and transmitters are located on the sides of a triangle, with each 
user transmitting to a receiver near the next transmitter as in 
 Figure 3(a) . When the first user allocates his power, he puts it all 
at the first frequency. The second user chooses tone two. The third 
player puts all his power at frequency one but this generates inter-
ference to user one who migrates to frequency two with the out-
come that the users change their transmission tone at each step. 
In the simultaneous IWF, all users choose channel one and then 
migrate together to channel two and back. It is worth noting that 
this game has a unique equilibrium, where each user allocates 
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two-thirds of the power to frequency one and one-third of the 
power to frequency two. Nevertheless all iterative schemes diverge.  

 PRICING MECHANISMS FOR 
REGULATING DISTRIBUTED SOLUTIONS 
 To overcome some of the problems of competitive behavior, 
regulation can play an important role. One generalization of 
the RA-IWF algorithm is the  band preference spectrum man-
agement (BPSM) algorithm  [41]  in which each user solves 
the following problem in parallel (or sequentially) to the 
other users: 

  
maxpn112, c, pn1K2 a

K

k51
cn 1k 2 log2 111 SINR 1k 2 2

Subject to Pn5 a
K

k51
pn 1k 2  .  

(16) 

 In the BPSM algorithm, the total rate is replaced by a weighted 
sum of the rates at each frequency. The weights can be provided 
by the regulator to limit the use of certain bands by strong 
users, so that users that suffer severe interference but do not 
affect other users are protected. This results in waterfilling 
against a compensated noise level. 

 An alternative approach to the BPSM is using generalized 
Nash games. The basic approach was proposed in  [4]  and termed 
“fixed-margin” (FM) IWF. Each user has a power constraint, a 
target noise margin, and a desired rate. The user minimizes his 
power as long as he achieves his target rate. This is a general-
ized Nash game, first analyzed by Pang et al.  [6] , who provided 
the first conditions for convergence. Noam and Leshem  [7]  pro-
posed a generalization of the FM-IWF termed “iterative power 
pricing” (IPP). In their solution, a weighted power is minimized, 
where frequency bands that have higher capacity are reserved 
for players with longer lines through a line dependent pricing 
mechanism. The users iteratively optimize their power alloca-
tion so that their rates and total power constraints are main-
tained while minimizing the total weighted power. It can be 
shown that the conditions in Pang et al. can also be used to 
analyze the IPP algorithm. For both the BPSM and the IPP 
approaches, simple pricing schemes that are adapted to the 
DSL scenario have been proposed. The general question of 
finding good pricing schemes is still open but would require 
combining physical modeling of the channels as well as 
insights into the utilities as a function of the desired rate. 
Even the autonomous spectrum balancing (ASB) algorithm 
 [42]  can be viewed as a generalized Nash game, where the util-
ity is given by the rate of a fictitious reference line, and the 
strategy sets should satisfy both the rate and power constraint. 
The drawback of the ASB approach here is finding a reference 
line which serves as a good utility function. 

 BARGAINING OVER FREQUENCY SELECTIVE 
CHANNELS UNDER A MASK CONSTRAINT 
 In this section, we define the cooperative game corresponding 
to the joint FDM/TDM achievable rate region for the frequency 

selective N-user interference channel. For simplicity of presen-
tation, we limit the derivation to the two-player case under the 
PSD mask constraint. In  [18],  the NBS was used for resource 
allocation in orthogonal frequency division multiple access 
(OFDMA) systems. The goal was to maximize the overall system 
rate, under constraints on each user’s minimal rate require-
ment and total transmitted power. However, in that paper, the 
solution was used only as a measure of fairness. Therefore, the 
point of disagreement was not taken as the Nash equilibrium 
for the competitive game, and instead an arbitrary Rmin was 
used. This can lead to a nonfeasible problem, and the proposed 
algorithm might become unstable. An alternative approach is 
based on the PSD mask constraint  [20]  in conjunction with the 
general  bargaining theory originally developed by Nash  [10] , 
 [34] . Based on the solution for the PSD limited case, computing 
the NBS under total power constraint can then be solved effi-
ciently as well  [21] . To keep the  discussion simple, we concen-
trate on the two user PSD mask limited case. 

 In real applications, the regulator limits the PSD mask and 
not only the total power constraint. Let the K channel matrices 
at frequencies k5 1, c, K be given by 8Hk : k5 1, c, K 9. A 
player is allowed to transmit at maximum power pn 1k 2  in the 
kth  frequency bin. In the competitive scenario, under the mask 
 constraint, all players transmit at the maximal power they can 
use. Thus, player n chooses the PSD, pn5 8pn 1k 2  : 1 # k # K9. 
The payoff for user n in the noncooperative game is therefore 
given by: 

  RnC 1p 2 5 a
K

k51
log2 111 SINR 1k 2 2 . (17) 

 Here, RnC is the capacity available to player n given a PSD 
mask constraint distribution p. Note that without loss of 
 generality, and to simplify notation, we assume that the width 
of each bin is normalized to one. We now define the cooperative 
game GTF 12, K, p 2 . 
 DEFINITION 7
The FDM/TDM game GTF 12, K, p 2  is a game between two play-
ers transmitting over K frequency bins under the common PSD 
mask constraint. Each player has full knowledge of the channel 
matrices Hk and the following conditions hold: 
 1)  Player n  transmits using a PSD limited by 8pn 1k 2  :  k5 1, c, K9. 
 2)  The players use coordinated FDM/TDM strategies. The 

strategy for player one is a vector a15 3a1 11 2 , c, a1 1K 2 4T 
where a1 1k 2  is the proportion of time player one uses the 
kth frequency channel. Similarly, the strategy for player two 
is a vector a25 3a2 11 2 , c, a2 1K 2 4T. 

 3)  The utility of the players is given by 

  Rn 1an 2 5 a
K

k51
an 1k 2Rn 1k 2 ,   

 where

  Rn 1k 2 5 log2a11
|hnn 1k 2 |2pn 1k 2

sn
2 1k 2 b.   (18)
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 By Pareto optimality of the NBS, for each k, a2 1k 2 5 12a1 1k 2 , 
so we will only refer to a5a1 as the strategy for both players. 
Note that interference is avoided by time sharing at each fre-
quency band; i.e., only one player transmits with maximal power 
at a given frequency bin at any time. The allocation of the spec-
trum using the vector a induces a simple convex optimization 
problem that can be posed as  follows: 

 
max 1R11a 2 2 R1C 2 1R2 1a 2 2 R2C 2
subject to: 0 # a 1k 2 # 1  4k, RnC # Rn 1a 2   4n.

 
(19)

 Since the log of the Nash function (19) is a convex function the 
overall problem is convex. Hence, it can be solved efficiently 
using Karush-Kuhn-Tucker (KKT) conditions  [20] . Assuming 
that a feasible solution exists it follows from the KKT conditions 
that the allocation is done according to the following rules: 

 1)  The two players share frequency bin k, (0 , a 1k 2 , 1) if 

  
R1 1k 2

R1 1a 2 2 R1C
5

R2 1k 2
R2 1a 2 2 R2C

. (20) 

 2)  Only player n is using the frequency bin k, (an 1k 2 5 1), if 

  
Rn 1k 2

Rn 1a 2 2 RnC
.

R32n 1k 2
R32n 1a 2 2 R32n,C

.  (21)

 These rules can be further simplified. Let Lk5 R1 1k 2 /R2 1k 2  
be the ratio between the rates at each frequency bin. We can 
sort the frequency bins in decreasing order according to Lk. 
 From now on we assume that when  k1 , k2  then  Lk1

. Lk2
. 

If all the values of Lk are distinct, then there is at most a single 
frequency bin that has to be shared between the two players. 
Since only one bin can satisfy equation (20), let us denote this 
frequency bin as ks, then all the frequency bins 1 # k , ks will 
only be used by player one, while all the frequency bins 
ks , k # K will be used by player two. The frequency bin ks 
must be shared according to the rules. 

 We now need to find the frequency bin that must be shared 
between the players if there is a solution. Let us define 
the surplus of players one and two when using the NBS as 
A5 a

K

m51
a 1m 2R1 1m 2 2 R1C,  a n d  B5 a

K

m51
112a 1m 2 2  

R2 1m 2 2 R2C, respectively. Note that the ratio G5 A/B is inde-
pendent of frequency and is set by the optimal assignment. 
A-priori G  is unknown and may not exist. We are now ready to 
define the optimal assignment of the as. 

 Let Gk be a moving threshold defined by Gk5 Ak/Bk. where 

  Ak5 a
k

m51
R1 1m 2 2 R1C, Bk5 a

K

m5k11
R2 1m 2 2 R2C.  (22)

 Ak is a monotonically increasing sequence, while Bk is mono-
tonically decreasing. Hence, Gk is also monotonically increasing. 
Ak is the surplus of player one when frequencies 1, c, k are 

allocated to player one. Similarly Bk is the surplus of player two 
when frequencies k1 1, c, K are allocated to player two. 

 Let kmin5mink5k : Ak $ 06,  and kmax5mink5k : Bk , 06. 
Since we are interested in feasible NBS, we must have a positive 
surplus for both users. Therefore, using the allocation rules, we 
obtain kmin # kmax and Lkmin

# G # Lkmax
.  The sequence 5Gm : kmin # m # kmax2 16  is strictly increasing, and always 

positive. While the threshold G is unknown, one can use the 
sequences Gk and L 1k 2  to find the correct G. 

 If there is an NBS, let ks be the frequency bin that is shared 
by the players. Then, kmin # ks # kmax. Since both players must 
have a positive gain in the game ( A . Akmin21, B . Bkmax

 ). Let ks 
be the smallest integer such that L 1ks 2 , Gks

, if such ks exists. 
Otherwise, let ks5 kmax. 

LEMMA 1 
The following two statements provide the  solution: 

 1) If an NBS exists for kmin # ks , kmax, then a 1ks 2  is given 
by a 1ks 2 5max50, g6,  where 

  g5 11
Bks

2R2 1ks 2 a12
Gks

L 1ks 2 b.  (23)

 2)  If an NBS exists and there is no such ks, then ks5 kmax 
and a 1ks 2 5 g. 

 Based on the previous lemmas, the algorithm is described in 
 Table 1 . In the first stage, the algorithm computes L 1k 2  and sorts 
them in a nonincreasing order. Then kmin, kmax, Ak,  and Bk are 
computed. In the second stage, the algorithm computes ks and a.

    To demonstrate the algorithm  we compute the Nash bar-
gaining for Example 6. 

EXAMPLE 6  
Consider two players communicating over a 232 Gaussian 
interference channel with six frequency bins. The players’ rates 
(if they do not cooperate) are R1C5 15, and R2C5 10. The 
 feasible rates R1 1k 2  and R2 1k 2  in each frequency bin with no 

[TABLE 1] ALGORITHM FOR COMPUTING THE 2 3 2 
 FREQUENCY SELECTIVE NBS.

INITIALIZATION: SORT THE RATIOS L 1k 2  IN DECREASING ORDER.
CALCULATE THE VALUES OF Ak, Bk AND Gk, kmin, kmax,

IF kmin . kmax NO NBS EXISTS. USE COMPETITIVE SOLUTION.
ELSE

FOR k5 kmin TO kmax2 1
IF L 1k 2 # Gk.

SET ks5 k AND a rS ACCORDING TO THE LEMMAS-THIS IS NBS. STOP
END

END
IF NO SUCH k EXISTS, SET ks5 kmax AND CALCULATE g.
IF g $ 0 SET aks

5 g, a 1k 2 5 1, FOR k , kmax. STOP.
ELSE (g , 0)
THERE IS NO NBS. USE COMPETITIVE SOLUTION.
END.

END
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interference are given in  Table 2  after sorting the frequency bins 
with respect to Lk.       

 We now need to compute the surplus Ak and Bk for each 
player. If the NBS exists, then the players must have a positive 

surplus; thus, kmin5 2 and kmax5 4. Since k5 4 is the first 
bin such that Gk . Lk, we can conclude that ks5 4 and 
a5 0.33 (using lemma 4.1). Thus, player one is using fre-
quency bins 1, 2, and 3, and using one-third of the time, fre-
quency bin 4. 

 We can also give a geometric interpretation to the solu-
tion. In  Figure 4(a) , we draw the feasible total rate that 
player one can obtain as a function of the total rate of player 
two. The enclosed area in blue is the achievable utilities set. 
Since the frequency bins are sorted according to Lk, the set is 
convex. Point RC5 1R2C, R1C 2 5 110, 15 2  is the point of dis-
agreement. If point RC is inside the achievable utility set 
there is a solution. The slope of the boundaries of the achiev-
able utilities set with respect to the 2x axis is Lk. The vector 
RC2 B connects point RC and point B with the same slope 
with respect to the x axis; this is the geometric interpreta-
tion of (20). The area covered by the light blue rectangle is 
the value of the Nash product function. 

 The results can be generalized in the following directions. 
 First, if the values 5L 1k 2  : k5 1, c, K6 are not all distinct 

then if there is a solution one can always find an allocation such 
that at most a single frequency has to be shared. 

 Second, in the general case of N  players the optimization 
problem has similar KKT conditions and can be solved using a 
convex optimization algorithm. Moreover, the optimal solu-
tion has at most 1N2 2  frequencies that are shared between 
 different players. This suggests that the optimal FDM NBS is 
very close to the joint FDM/TDM solution. It is obtained by 
 allocating the common frequencies to one of the users. Third, 
while the method described above fits stationary channels 
well, the method is also useful when only fading statistics are 
known. In this case, the coding strategy will change, and the 
achievable rate in the competitive case and the cooperative 
case are given by 

   R
&

nC 1pi 2 5 a
K

k51
E c log2a11

|hnn 1k 2 |2 pn 1k 2
gm2n |hnm 1k 2 |2 pm 1k 2 1s2

n 1k 2 b d  
(24)R

&
n 1an 2 5 a

K

k51
an 1k 2E c log2a11

|hnn 1k 2 |2rn 1k 2
s2

n 1k 2 b d ,
 respectively. All the rest of the expansion is unchanged, replac-
ing RnC and Rn 1an 2  by R|nC, R|i 1an 2 , respectively. This is particu-
larly attractive when the computations are done in a distributed 
fashion. In this case, only channel state distributions are sent 
between the units. Hence, the time scale for this data exchange 
is much longer. This implies that the method can be used with-
out a central control, by exchange of parameters between the 
units at a very low rate. 

 Fourth, computing the NBS under total power constraint 
is more difficult to solve. Several ad-hoc techniques have 
been proposed in the literature. Recently, it was shown that 
for this case there is an algorithm that can find the optimal 
solution  [21] .  
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 [FIG4]  (a) Feasible FDM rate region (blue area), NBS (the area 
covered by the light blue rectangle). (b) Per user price of 
anarchy for frequency selective Rayleigh fading channel. 
SNR 5 30 dB.

[TABLE 2] THE RATES OF THE PLAYERS IN EACH FREQUENCY 
BIN AFTER SORTING.

k 1 2 3 4 5 6

R1 14 18 5 10 9 3
R2 6 10 5 15 19 19

L 1k 2 2.33 1.80 1.00 0.67 0.47 0.16
Ak –1 17 22 32 41 44
Bk 58 48 43 28 9 –10
Gk –0.02 0.35 0.51 1.14 4.56 –4.40
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 APPLICATIONS 

 WEAK INTERFERENCE: THE DSL CASE 
 The DSL channel is an interesting example for testing algo-
rithms emerging from game theoretic considerations. The 
 iterative waterfilling algorithm  [4]  has been successfully 
implemented for distributed spectrum coordination of DSL 
lines. However, the drawbacks caused by the prisoner’s 
dilemma suggest that the strictly competitive approach 
(RA-IWF) is inappropriate for real-life applications. Several 
amendments have been proposed. The first is FM-IWF  [4] . In 
this algorithm, the players are provided with a fixed target rate 
and each user independently minimizes his total transmit 
power. As shown by Pang et al.  [6],  this is a generalized Nash 
game that converges if the interference is sufficiently weak. In 
 [7],  a generalization of the FM-IWF is proposed that favors 
weak users who implement a pricing mechanism termed “iter-
ative power pricing.” This pricing mechanism improves the 
 performance of the FM-IWF. The game theoretic approaches 
exhibit very good performance as compared to optimal spec-
trum management techniques, as shown in  Figure 5 .  

 MEDIUM AND STRONG INTERFERENCE– 
WIRELESS TECHNOLOGIES 
 The rapid adoption of wireless services by the public has 
resulted in a remarkable increase in demand for reliable high 
data rate Internet access. This process has motivated the devel-
opment of new technologies. The new generation of cellular 
systems like LTE and WiMax operating in the licensed band will 
be launched in the next five years. In the unlicensed band, 
802.11N with MIMO technology will soon become part of our 
daily lives. The capacity of future wireless data networks will 
inevitably be interference-limited due to the limited radio spec-
trum. It is clear that any cooperation between the different net-
works or base stations sharing the same spectral resource will 
be a source of significant improvement in the utilization of 
radio resources. Even in the same cell, cooperation between 
sectors can improve the overall spectral efficiency (b/Hz/sec./
sector). The OFDMA technology is capable of efficiently allocat-
ing frequency bins based on the channel response of the user. In 
 [43] , a noncooperative game approach was employed for distrib-
uted subchannel assignment, adaptive modulation, and power 
control for multicell OFDM networks. The goal was to minimize 
the overall transmitted power under maximal power and per 
user minimal rate constraints. Based on simulation results, the 
proposed distributed algorithm reduces the overall transmitted 
power in comparison to a pure waterfilling scheme for a seven-
cell case. Kwon and Lee  [44]  presented a distributed resource 
allocation algorithm for multicell OFDMA systems relying on a 
noncooperative game in which each base station tries to maxi-
mize the system performance while minimizing the cochannel 
interference. They proved that there exists a Nash equilibrium 
point for the noncooperative game and the equilibrium is 
unique in some constrained environment. However, the Nash 
equilibrium achieved by the distributed algorithm may not be 

as efficient as the resource allocation obtained through central-
ized optimization. To demonstrate the advantage of the NBS 
over competitive approaches for a frequency selective interfer-
ence channel, we assumed that two users share a frequency 
selective Rayleigh fading channel. The direct channels have a 
unit fading variance and an SNR of 30 dB. The users suffer from 
cross interference. The cross channels fading variance was 
varied from 210 dB to 0 dB (shij

2 5 0.1, c, 1). The spectrum 
consisted of 32 parallel frequency bins with independent fading 
matrices. At each interference level s1

25sh21

2 , s2
25sh12

2  we ran-
domly picked 25 channels (each comprised of 32 232 random 
matrices). The results of the minimal relative improvement (25) 
are depicted in  Figure 4(b)  

  Dmin5min5R1
NBS/R1

C, R2
NBS/R2

C6. (25) 

 The NBS showed a relative 1.5–3.5 fold gain over the competi-
tive solution, which clearly demonstrates the merits of 
the method. 
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 [FIG5]  (a) Simulation setup. Three users at each location. 
(b) Rate regions of FM IWF, IPP, and OSB. The optimal OSB is 
centralized and computationally very expensive. It is given as 
a reference for the optimal performance.
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